miWQS: Multiple Imputation Using Weighted Quantile Sum Regression

Abstract:

The miWQS package in the Comprehensive R Archive Network (CRAN) utilizes weighted quantile sum regression (WQS) in the multiple imputation (MI) framework. The data analyzed is a set/mixture of continuous and correlated components/chemicals that are reasonable to combine in an index and share a common outcome. These components are also interval-censored between zero and upper thresholds, or detection limits, which may differ among the components. This type of data is found in areas such as chemical epidemiological studies, sociology, and genomics. The miWQS package can be run using complete or incomplete data, which may be placed in the first quantile, or imputed using bootstrap or Bayesian approach. This article provides a stepwise and hands-on approach to handle uncertainty due to values below the detection limit in correlated component mixture problems.

Cite PDF Tweet

Authors

Affiliations

Paul M. Hargarten

 

David C. Wheeler

 

Published

Jan. 13, 2021

Received

Apr 4, 2020

DOI

10.32614/RJ-2021-014

Volume

Pages

12/2

226 - 250

Supplementary materials

Supplementary materials are available in addition to this article. It can be downloaded at RJ-2021-014.zip

CRAN packages used

miWQS, wqs, gWQS, mice, norm, mi, coda, Rsolnp, glm2, rlist, Hmisc, tidyr, ggplot2, survival, invgamma, truncnorm, purrr, GGally, rticles

CRAN Task Views implied by cited packages

MissingData, SocialSciences, OfficialStatistics, Bayesian, ClinicalTrials, Econometrics, Multivariate, Distributions, gR, Graphics, Optimization, Phylogenetics, ReproducibleResearch, Survival, TeachingStatistics

Footnotes

    Reuse

    Text and figures are licensed under Creative Commons Attribution CC BY 4.0. The figures that have been reused from other sources don't fall under this license and can be recognized by a note in their caption: "Figure from ...".

    Citation

    For attribution, please cite this work as

    Hargarten & Wheeler, "The R Journal: miWQS: Multiple Imputation Using Weighted Quantile Sum Regression", The R Journal, 2021

    BibTeX citation

    @article{RJ-2021-014,
      author = {Hargarten, Paul M. and Wheeler, David C.},
      title = {The R Journal: miWQS: Multiple Imputation Using Weighted Quantile Sum Regression},
      journal = {The R Journal},
      year = {2021},
      note = {https://doi.org/10.32614/RJ-2021-014},
      doi = {10.32614/RJ-2021-014},
      volume = {12},
      issue = {2},
      issn = {2073-4859},
      pages = {226-250}
    }