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A Software Tool For Sparse Estimation Of
A General Class Of High-dimensional
GLMs

by Hassan Pazira, Luigi Augugliaro and Ernst C. Wit

Abstract Generalized linear models are the workhorse of many inferential problems. Also in the
modern era with high-dimensional settings, such models have been proven to be effective exploratory
tools. Most attention has been paid to Gaussian, binomial and Poisson settings, which have efficient
computational implementations and where either the dispersion parameter is largely irrelevant
or absent. However, general GLMs have dispersion parameters ¢ that affect the value of the log-
likelihood. This in turn, affects the value of various information criteria such as AIC and BIC, and has
a considerable impact on the computation and selection of the optimal model. The R-package dglars
is one of the standard packages to perform high-dimensional analyses for GLMs. Being based on
fundamental likelihood considerations, rather than arbitrary penalization, it naturally extends to the
general GLM setting. In this paper, we present an improved predictor-corrector (IPC) algorithm for
computing the differential geometric least angle regression (dgLARS) solution curve, proposed in
Augugliaro et al. (2013) and Pazira et al. (2018). We describe the implementation of a stable estimator of
the dispersion parameter proposed in Pazira et al. (2018) for high-dimensional exponential dispersion
models. A simulation study is conducted to test the performance of the proposed methods and
algorithms. We illustrate the methods using an example. The described improvements have been
implemented in a new version of the R-package dglars.

1 Introduction

High-dimensional inference problems are studies where the number of predictors p for some response
variable is larger than the sample size n. Modern statistical methods developed to study such high-
dimensional data are usually based on combining the objective function with a penalty function (i) to
calculate a solution curve embedded in the parameter space and then (ii) to find a point on that curve
that represents the best compromise between sparsity and predictive behaviour of the model. The
recent statistical literature has a great number of contributions devoted to this problem, such as the
{1-penalty function (Tibshirani, 1996), the SCAD method (Fan and Li, 2001) and the Dantzig selector
(Candes and Tao, 2007).

Augugliaro et al. (2013) proposed a new approach based on the differential geometrical representa-
tion of the likelihood, in particular for a generalized linear model (GLM). The method does not require
an explicit penalty function and is called differential geometric LARS (dgLARS) because it generalizes
the geometrical ideas on which the least angle regression (Efron et al., 2004) is based. Pazira et al.
(2018) extended the dgLARS method to high-dimensional GLMs with exponential dispersion models
and arbitrary link functions. In the same paper, the authors repurposed the classic estimation of the
dispersion parameter in a high-dimensional setting and also proposed a new, more efficient estimatator.
Wit et al. (2020) extended the dgLARS method to sparse inference in relative risk regression models.

From a computational point of view, the main problem of the dgLARS method is related to the
standard predictor-corrector (PC) algorithm developed by Augugliaro et al. (2013) to compute the
implicitly defined solution path. The PC algorithm becomes computationally intractable when working
with thousands of variables because in the prediction step, the number of arithmetic operations needed
to compute the Euler predictor scales as the cube of the number of variables. This leads to a cubic
increase in the run time needed for computing the solution curve.

In this paper we briefly explain an improved version of the PC algorithm, proposed in Pazira et al.
(2018) and Pazira (2020), simply called the improved PC (IPC) algorithm. The IPC algorithm is able
to calculate the solution path in fewer, but more relevant points, greatly reducing the computational
burden. In addition, we use a much more efficient cyclic coordinate descend (CCD) algorithm
(Augugliaro et al., 2012) to calculate a rough dgLARS solution curve for ultra high-dimensional data.
In this paper, we focus on the behaviour of the IPC algorithm. The new version of the R-package
dglars is implemented with both the CCD and IPC algorithms (Augugliaro et al., 2020). The user
can also opt to use the old PC algorithm. The package is available on the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/package=dglars.

The remaining of this paper is organized as follows. Firstly, we briefly review the differential
geometry underlying the dgLARS method and briefly explain the dispersion parameter estimation
methods. Next, the new functions implemented in the updated version of the dglars package are
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described and shown that they can be used to estimate the dispersion parameter. Then, various
simulation studies are performed to evaluate the performance and run times of the proposed estimation
algorithms. Finally, we use the functions implemented in the dglars package to illustrate its use in an
example data set.

2 Methodological Background

In this section we describe very briefly the dgLARS method and the dispersion parameter estimation
methods. The interested reader is referred to Augugliaro et al. (2014) and Pazira et al. (2018). In
general, the aim of the dgLARS method is to define a continuous model path that attains the highest
likelihood with the fewest number of variables.

Geometric foundation and formal definition

Let Y be a scalar random variable with probability density function belonging to the exponential
family p(y; 6, ¢) = exp{(y0 — b(0))/a(¢p) + c(y, ¢)}, where 6 € © C R is called canonical parameter,
¢ € ® C RT is called dispersion parameter and a(-), b(-) and ¢(-, -) are specific given functions. We
shall assume that © is an open set. The expected value of Y is related to the canonical parameter by
the mean value mapping, namely E(Y) = y = 7(0) = 9b(0) /96, where 7 : int(®) — Q). Similarly, the
variance of Y is related to its expected value by the identity Var(Y) = a(¢)V (), where V(u) is the
variance function. Since y is a reparameterization of the model, in the following paper we denote by
p(y; i, ¢) the probability density function of Y. Let X be a p-dimensional vector of random predictors,
a GLM is based on the assumption that the conditional expected value of Y given X is specified by the
identity

4
g(E(Y‘X)) =Bo+ Zl Xm Pm = xTﬁ/

where, with a little abuse of notation, x = (1, x;,...,x,) " and g(-) is called link function. For notation
purposes, it is more convenient to denote ¢! (x" ) as u(B).

When we work with n independent and identically distributed copies of the pair (Y, X), the
marginal distribution of the random vector Y = (Yi,...,Yy) " isan element of theset S = {p(y; p, p) =
" pWipi,¢) i p e Q"¢ € R}, which is a minimal and regular exponential family of order n
and can be treated as a differential manifold in which y is a coordinate system (Amari and Nagaoka,
1985). At each point of S we can attach a tangent space, denoted by Tp(ﬂ)S, defined as the as the linear
vector space spanned by the n score functions 9;4(pu, ¢;Y) = dlogp(Y;u, ¢)/0u;. As suggested in
Burbea and Rao (1982), each tangent space can be equipped with an inner product: given two tangent
vectors belonging to T,,S, say v =Y.' v;0;((p, ¢;Y) and w = Y | w;9;£(p, ;Y ), their inner product
is defined to be:

VW) = v-w) = ; V;W; i ; 2) = 3 &
< 4 >14 Ell( ) 1:21 1 zE({aze(,u/(PIY)} ) 1; u(4>)V(Hi) (1)

In order to study the geometrical structure of a GLM, we shall assume that B — {g~1(x{ B), ...,
¢ 1 (x) B)} " = u(B) is an embedding, then the set M = {p(y;u(B),¢) € S: p € RP*L, ¢ € RT}
is a p + 1-dimensional submanifold of S. As previously done, the tangent space of M at the point
p(y;u(B), ¢), denoted by T, )M, is the linear vector space spanned by the p + 1 score functions
a;,é(ﬁ, ¢;Y) =9dlog p(Y;y('ﬁ),cp)/f'),Bh. Since T}, ()M is a linear subspace of T, g)S, the' inner product
(1) can also be used to define the inner product between two tangent vectors belonging to T, g M.
For more details see Augugliaro et al. (2013) and Pazira (2017).

The dgLARS estimator is based on a differential geometric characterization of the Rao score test
statistic, obtained using the inner product between the bases of the tangent space T,,(5)M and the
tangent residual vector r(B,¢,y;Y) = YL, 7, 0;¢(B,¢;Y), where rg; = y; — p;(B). Formally, we
have the following identity:

ol (B, ;YY) = (Ont(B, ¢:Y);r(B, . y; Y))u(p)
= cos(on(B,9)) - [11(B, ¢, 9: V)l - Zp/ > (B, ), @)

where Z;,(B, ¢) is the Fisher information for B;, and p; (B, ¢) is a generalization of the Euclidean
notion of angle between the 1™ column of the design matrix and the residual vector (r8,i)i= (1.2}

Importantly, (2) shows that the gradient of the log-likelihood function does not generalize the equian-
gularity condition proposed in Efron et al. (2004) to define the LARS algorithm, since the latter does
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not consider the variation related to I;/ 2(B, ¢), which in the case of a GLM is typically not constant.
Using the previous identity, one can see that the signed Rao score test statistic, denoted by r,,(8, ¢),
can be characterized as follows:

(B ¢) = T, 2(B¢) - 0ut(B.9:Y)
= cos(o (B, P)) - Ir(B, ¢, 1Y) [l,u(p)- ®)
From (3) we shall say that two given predictors, say / and k, satisfy the generalized equiangularity

condition at the point (B, ¢) when |r, (B, ¢)| = |x(B, ¢)|. Inside the dgLARS theory, the generalized
equiangularity condition is used to identify the predictors that are included in the active set.

As shown in Pazira et al. (2018), the Rao score test statistic can be written as

C12 X i (B)V (i (B) (i — 1i(B))
VIV ((B))9uni (B))

then the equiangularity condition and the dgLARS method can be defined using only the function
m(B)-

Formally, the dgLARS is a method for constructing a path of solutions, indexed by a positive
parameter 7y, where the nonzero estimates of each solution can be defined as follows. For any dataset
there exists with probability one a finite decreasing sequence of transitions points, denoted by {(/)}.
Such that for any 7 € (71);40U~1)) the subvector of non-zero estimates, denoted by .4 (), is defined
as the solution to the following non-linear equations

m(Ba(y)) —spy =0, VheA, (4)

where A = {h : ﬁh(fy)jé 0} is called active set and s;, = sign(r,(B.4(7))). Furthermore, for any
k ¢ Awe have that |r.(B(7))] < 7.

At each transition point we have a change in the active set. We shall say that 7) is an inclusion
transition point if there exists k ¢ A such that the equiangularity condition is satisfied, which can also
be written as

= (a(¢))""*nu(B),

(B, 9) = (a(9))

e (Ba(rV))] =Y. (5)
In this case the active set is updated adding the index k, i.e. the predictor Xj is included in the current
model. As explained in Augugliaro et al. (2013), a generalization of the lasso estimator can be obtained
letting s;, = sign(B,(y)), in this way a predictor will be removed from the current model when the
sign of the the associated estimate is not in agreement with the sign of the Rao score test statistic.
Formally, we shall say that (/) is an exclusion transition point if there exists € A such that the
following condition is satisfied:
sign(ri(Ba(v))) # sn. ©6)
In this case the active set is updated removing the index h and X, is removed from the current
model. In Table 1 the pseudo-code of the improved PC algorithm is reported. In order to distinguish
between the two generalizations, in this paper the first one is called dgLARS and dgLASSO denotes
the generalization of the lasso estimator.

Computational aspects: the improved PC algorithm

Computationally, the problem of how to estimate the dgLARS solution curve can be decomposed
into two sub-problems. The first defines an efficient computational method to compute the transition
points, i.e., the values of the tuning parameter corresponding to a change in the active set. In other
words, at each transition points, say 'y(f ) , only one of condition (5) or (6) is satisfied. Note that condition
(6) is only used when the generalization of the lasso estimator is considered. The second problem is to
define an efficient computational method to compute the path of solutions when y € (”y(j ); yU-1) ).
This sub-problem requires the solution to the following system of non-linear equations:

m(Ba(y) —syy =0, YheA,

with ¢ € (v1);90=1)) and where s, = sign(r;,(B.4(7))) if we want to compute the dgLARS solution
curve or s, = sign(f,(y)) if the dgLASSO solution curve is required.

Augugliaro et al. (2013) proposed a predictor-corrector (PC) algorithm to solve the two sub-
problems. Although this algorithm can compute the solution curve for moderately large problems,
identifying the transition points is extremely inefficient and can led to a significant increase in computa-
tional time. This problem is highlighted in Pazira et al. (2018) and Pazira (2020), where an improvement
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Table 1: Pseudo-code of the IPC algorithm to compute the dgLARS and dgLASSO solution curves.

Step Algorithm

1 First compute fg

2 Set A < argmaxig 4{|7+(Bo)|} and v ¢ [rea(Bo)|

3 Repeat

4 Use (8) to compute A" and set Ay + Ay

5 If method = “dgLASSO” then

6 use (9) and then (10) to compute A% and A%, respectively, and

7 set Ay +— A%y

8 Sety « v— Ay

9 Use (7) to compute B 4(7y) (predictor step)

10 Use E A(7y) as starting point to solve system (4) (corrector step)

11 For all k ¢ A compute r(B.4(7))

12 If 3k ¢ A such that ‘rk(BA(’y))‘ > 7 then

13 use (11) to compute 'y,tf(l) and set vzf — mlax{'y;f(l)}

14 first set Ay « Ay — ('y,r(f — ) and then 7 + 'y]:f, and go to step 9
15 If 3k ¢ A such that ‘rk([;A(’y))‘ = ‘rh(ﬁA('y))‘ forall h € A(y), then
16 update A(7y)

17 Until convergence

to the original PC algorithm is also proposed. In order to make this paper self-contained, we briefly
review this algorithm.

Let p4(7) = @4(7) — 547, where @ 4 (v) = (1 (Ba(7)))jcq and s4 = (sp)jec 4 Suppose we
have computed the solution of the system (4) at 7y, denoted by ﬁ A(7), and we want to compute the
next solution at y — Ay € (y1);4U~1). In the predictor step, the new solution is approximated by the
following expression:

Baly—A0y) = Baly— A7) =Bal(y) =My S (1) sa, @)

where S 4 (+y) is the Jacobian matrix of the vector function @ 4(7) evaluated at B 4(7). In the corrector
step, the approximation (7) is used as the starting point of the algorithm solving the system of
non-linear equations: .

m(Baly —A7)) —sp(y —Ay) =0, Vhe A
In order to reduce the computational burden needed to compute the entire path of solutions, A7y is cho-
sen in such a way that at B 4(y — A7) there is a change in the current active set. After straightforward
algebra, 1) can be approximated by 7U=1) — Ay where the step size A" is equal to:

Mm:mm{ 7 =n(Bam) v +n(Bal) } @)
KA | 1—drg(Ba(r)/dy’ 1+dn(Baly))/dr |,

When we want to compute the dgLASSO solution curve, exclusion condition (6) must be added in the
computation of the step size. Since the sign of a Rao score test associated with a predictor included
in the current model never changes, condition (6) is equivalent to the following condition: 7) is an
exclusion transition point if there exists a i € A such that 3, (7 )) = 0. Combining approximation (7)
with the previous condition, it is easy to see that the step size corresponding to the first exclusion can
be approximated by the quantity

Ayt = Ihnin{Bh(v)/ dp(7)}, ©)
eA

where d 4(7) = ;' (7) s 4. Then the step size for the dgLASSO solution curve can be approximated
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by the quantity _
A% = min{Ay™; Ay°ut}, (10)

Since the step size Ay'™ and A°" are obtained using the approximation (7), we also include
an exclusion step for removing incorrectly included variables in the model. Determining how to
implement this exclusion step is the main difference between the PC and IPC algorithms. When an
incorrect variable is included in the model after the corrector step, there exists a non-active variable
such that the absolute value of the corresponding Rao score test statistic is greater than . In this
case, the original PC algorithm reduces the step size using a contractor factor cf, whereas the IPC
algorithm applies the Regula-Falsi (rf) method. This method uses information about the function
(7)) = re(BA(Y)) — vsk, draws a secant from @ (Ynew) to @i (7or4), and estimates the root as where
it crosses the -axis.

From (4), we know that 7;,(B4(7)) — sy = 0 for all i € A. Indeed, after the corrector step, when
there are non-active variables such that the absolute value of the corresponding Rao score test statistic
is greater than -y, we want to find a point, 7'/ that is close to the true point transition point, reducing

rf

the number of the points of the solution curve. It is easy to verify that the root y,’ is given by

of _ re(Ba(vora)) Ynew = ri(Ba(rnew)) Yota Vk ¢ A 1
Te (B A(Yo1a)) — k(B A(Ynew)) + (Ynew — Yota) Sk )

where s; = sign{r¢(BA(Ynew))}. Then the optimal step size is defined as

v =1 I Ban))l >

In total, the main difference between the PC and IPC algorithms is the different techniques used for
adjusting the step size to find the transition points. In At the end of next section we examine the
performance of the IPC algorithm and compare it to the original PC algorithm by using the functions
in the dglars package.

Estimation of the dispersion parameter

Since the dispersion parameter ¢ affects the value of the log-likelihood function, it also impacts the
value of various information criteria such as AIC and BIC. Therefore, model selection considerations
need to take into account the estimation of the dispersion parameter. There are three commonly-
used estimators of the dispersion parameter for ordinary GLMs: deviance, maximum likelihood and
Pearson estimators (McCullagh and Nelder, 1989). For high-dimensional GLMs, Pazira et al. (2018)
proposed two alternative estimators. The first is a generalized version of the Pearson estimator, ¢, (7),

PO B T silC 0 Y1L))s
' n—lAlS V(g (x Ba(1))
This estimator is fast, but can be improved by the second proposal of an iterative procedure, called

General Refitted Cross-Validation (GRCV), to attenuate the influence of irrelevant variables with high
spurious correlations.

(12)

The idea of the GRCV method is to split the data (y,, Xuxp) randomly into two equal halves
(y%), X,(,})Xp) and (y,(q?,X,%)Xp). Where we assume that the sample size n is even and ny = np = n/2.
In the first stage, the dgLARS method is applied to these two data sets separately to estimate two
solution paths ﬁAj('y) based on (y), X)) where j = {1,2} and |A;| < min(3 —1,p).

In the second stage, we perform model selection on each training set to determine two small

subsets of selected variables fll C Ay and A, C A,. To do that, we estimate ¢ by the generalized
Pearson estimator (12) on these two data sets separately to obtain valid log-likelihood functions

n ~(1 5 ~(2
By (1), 987 (1) 9 M) and £(Bay (v), 64 (1) y@).
In the third stage, the coefficient B for each subset of the data are re-estimated using the variables
selected on the other subset, i.e., (y(z), Xi%)) and (y(l), Xi%))‘ Since the MLE may not always exist, in
1 2

this stage we propose to use the dgLARS method to estimate the coefficients based on the selected
variables B 4 (70) and B 4, (70) where 7 is close to zero. If the MLE does exist, then the dgLARS

estimate 8 4(0) is equal to the MLE.
Finally, in the fourth stage, we estimate the dispersion parameter ¢ by the following estimator on
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D= (y'rL?X”lXP)
1) (1) _ (v(® x@
|D1 = (yn/Z’Xn/ZXp)l |D2 - (yn/27Xn/2><p)
dgLARS is applied to the subset D; to obtain 3 4, () Apply dgLARS to D

stage 1 .5
where |A;| < min(n/2 — 1,p) and v € [0, Vmaz) stage to obtain B 4, (v)

use Eq. (9) to obtain (13}1)(7) and then obtain ég)(y) using Eq. (9) and then
do model selection to obtain A; C A, get Ay C A, by model selection

|

apply MLE to Dy with Ay to obtain BAZ(O) stage 3 | obtain BA1 (0) using Dy and A,

l

use Eq. (11) to obtain ¢; (As;) stage 4 obtain ¢y (A;) using Eq. (11)

stage 2

baroy = d1(Az) + da(Ar)

Figure 1: A general diagram for obtaining the GRCV estimate, a four-stage refitted procedure.

the two data sets (y(z), Xfl)) and (y(1>,X(}));

Az

qSGRCV (-’41/-’42) = 431(-’42) + 432(-’41)/ (13)

where

b Ay = n—2lﬁj|f§1 v(g—1 (xféﬁ,;,(o.))) e (14)

xl(a is the i row of the ¢ subset of the data Xf‘%‘), |fl]| denotes the cardinality of the set A]-, B A ()
() ]

is the dgLARS estimator at y € [0, Ymax], :BA,-(O) is the ML estimate of 'Bﬁj'j ={1,2} and ¢ = {1,2}.

Figure 1 describes the four step procedure for calculating the GRCV estimate of the dispersion
parameter. Since in the second stage of the GRCV procedure the dispersion parameter has to be
estimated, an iterative procedure can be defined to reduce its dependence on the generalized Pearson
estimator: The algorithm iterates the four steps, such that for the (x + 1)t iteration the ¥ GRCV

estimate (4322 .,) is used to compute the new (x + 1)!" GRCV estimate ((ﬁg; Cl‘)/), and so on. Furthermore
due to the random cross-validation splits, the estimate contains random variation, and the algorithm
will not numerically converge. Therefore, the median of the final iterates can be used as the final
GRCV estimate (¢} ., ).

Pazira et al. (2018) showed that the GRCV estimator qS;R -y 18 more stable and accurate, which leads
to improved overall model selection behaviour.

3 The dglars package: new features

The dglars package (Augugliaro et al., 2020) is a collection of computational tools related to the
inference procedure of the dgLARS method in the R programming environment.

Description of the new dglars() function

Different from the previous version, the new dglars package (version 2.1.6) supports the gaussian,
binomial, poisson, Gamma and inverse.gaussian families with the most commonly used link functions.
The main function of this package, dglars(), is a wrapper function implemented to handle the formula
interface usually used in R to create the n x p model matrix X and the n-dimensional response vector

Y
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Table 2: Some families and their link functions that can be used in the dglars package.

Family Available link functions
gaussian “identity", “log", “inverse"
binomial “logit", “probit", “cauchit", “cloglog", “log"
poisson “log", “identity", “sqrt"
Gamma “inverse", “log", “identity"
inverse.gaussian “1/mu”2", “inverse", “log", “identity"

dglars(formula, family = gaussian, g, unpenalized, b_wght, data, subset,
contrast = NULL, control = list())

This function is used to compute the dgLARS/dgLASSO solution curve. As in the standard glm
function, the user can specify the family and link functions using the argument family; see the next
section regarding an example of Gamma GLM. This can be a character string naming a family function
or the result of a call to a family function. In the new version of the package, the model can be specified
by combining family and link functions as described in Table 2. By default the gaussian family with
identity link function is used. In the future, the package will be updated with the negative.binomial
family with the link functions log, identity, and sqrt.

The argument control is a named list of control parameters with the following elements:

control = list(algorithm = "pc”, method = "dgLASSO", g@ = NULL, nNR= 200,
nv = NULL, eps = 1.0e-05, np = NULL, dg_max = @, cf = 0.5,
NReps = 1.0e-06, ncrct = 50, nccd = 1.0e+05)

By using the control parameter algorithm it is possible to select the algorithm used to fit the
dgLARS solution curve. Setting algorithm = "pc” selects the default IPC algorithm; the CCD
algorithm is used when algorithm = "ccd” is selected. To reduce the computational time needed to
compute the dgLARS/dgLASSO solution curve, the algorithms have been written in Fortran 90. The
argument method is used to choose between the dgLASSO solution curve (method = "dgLASS0") and
the dgLARS solution curve (method = "dgLARS").

The g0 control parameter is used to define the smallest value of the tuning parameter. By default
this parameter is set to 1.0e-06 when p > n and to 0.05 otherwise. For more details about the other
control parameters and arguments see Augugliaro et al. (2014) and Augugliaro et al. (2020).

When Gaussian, Gamma or inverse Gaussian family is used, dglars() returns the vector of
estimates for the dispersion parameter; by default, the generalized Pearson statistic is used as estimator
but the user can use the function phihat() to specify other estimators. For the binomial and Poisson
family, the dispersion parameter is assumed known and equal to one.

Description of the functions grcv() and phihat()

Since the Gaussian, Gamma and inverse Gaussian error distributions have an additional dispersion
parameter, this package implements the functions grcv() and phihat() to estimate the dispersion
parameter ¢ for high-dimensional GLMs. The first function implements the method explained in the
previous section and can be called as follows:

grcv(object, type = c("BIC", "AIC"), nit = 10, control = list(), trace = FALSE, ...)

where object is a fitted dglars object, type is the measure of goodness-of-fit used in Step 2 of the
algorithm reported in Figure 1. With the current version, the user can choose between the Bayesian
(default) and the Akaike information criteria. The argument nit is used to specify the number
of iterations of the GRCV procedure. The resulting estimate is obtained as the median of the nit
iterations. control is a list of control parameters passed to the function dglars, whereas trace is a

logical variable specifying whether or not information is printed as the GRCV algorithm proceeds.

Finally, the argument . .. is used to pass the arguments to the method functions AIC.dglars and
BIC.dglars.

As grev() is only used to estimate the dispersion parameter using the GRCV estimator, the
function phihat() is specifically developed to handle the all the estimators of the dispersion parameter
available in the dglars package. This function is defined as follows:

phihat(object, type = c("pearson”, "deviance”, "mle", "grcv"), g = NULL, ...)

where object is a fitted dglars object and type is string specifying the estimator of the dispersion
parameter. The user can select the Pearson estimator (default), the deviance estimator, the MLE
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estimator or the GRCV estimator. The optional argument g is a vector specifying the values of the
tuning parameter <. If not specified (default), the estimates of the dispersion parameter are computed
for the sequence of models stored in the argument object; for an example see next section. Finally,
the argument . . . is used to pass the argument to the function grcv. The function phihat() returns a
vector with the estimates of the dispersion parameter; when type = "grcv" all elements of this vector
are the same, because the GRCV estimator does not depend on the tuning parameter y whereas the
other three estimators do.

The function phihat() is called by the method functions loglLik.dglars(), AIC.dglars() and
coef.dglars():

loglik(object, phi = c("pearson”, "deviance”, "mle"”, "grcv"), g = NULL, ...)
AIC(object, phi = c("pearson”, "deviance"”, "mle", "grcv"), k = 2,

complexity = c("df"”, "gdf"), g = NULL, ...)
coef(object, type = c("pearson”, "deviance”, "mle"”, "grcv"), g = NULL, ...)

when the argument phi (or type in coef ()) is set to any of the four estimation methods, i.e., “pearson”,

A

“deviance”, “mle” or “grcv”. In the dglars package, the summary () method:
summary(object, type = c("AIC", "BIC"), digits = max(3, getOption("digits") - 3), ...)

uses the generalized Pearson estimator to define the BIC or AIC values, but the user can use “...” to
pass to the method AIC() the additional arguments needed to compute a more general measure of
goodness-of-fit, e.g., “phi”, “k” or “complexity”.

An example of a Gamma GLM

To gain more insight about the new features of the dglars, we simulated a data set from a Gamma
regression model with the log link function where the sample size is n = 50 and the number of
variables is p = 100. This is a typical high-dimensional setting (p > n). We fix it such that only the
first two predictors influence the response variable.

First we install and load the dglars package in the R session by the codes

R> install.packages("dglars")
R> library("dglars")

The corresponding R code is given by:

R> set.seed(11235)

R> n <- 50
R> p <- 100
R> s <- 2

R> X <- matrix(runif(n = n *x p), n, p)

R> bs <- rep(2, s)

R> Xs <- X[, 1:s]

R> eta <- drop(0.5 + Xs %*% bs)

R> mu <- Gamma("log")$linkinv(eta)

R> shape <- 1

R> phi <- 1 / shape

R> y <- rgamma(n, shape = shape, scale = mu * phi)
R> fit <- dglars(y ~ X, family = Gamma("log"),

+ control = list(algorithm = "pc”, method = "dgLARS",
+ go = 0.5))

We use the argument g0=0. 5 in the function dglars to avoid convergence problems coming from the
high-dimensionality of the data. The fit object is a S3 class ‘dglars’, for which the method function

summary .dglars() can be used to obtain more information about the estimated sequence of models.

The following R code shows the output printed by the summary.dglars() method with BIC criterion
and the GRCV estimate for the dispersion parameter.

R> set.seed(11235)
R> summary(fit, type = "BIC", phi = "grcv", control = list(g@

0.5))

n n

Call: dglars(formula =y ~ X, family = Gamma("log"), control = list(algorithm = "pc",
method = "dgLARS", g0 = 0.5))
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Sequence g
2.5003
+ X1
1.9828
1.9827
+ X2
1.5384
1.5314
+ X12
1.3876
1.3861
+ X74
1.2834
1.2833
+ X31
1.1688
+ X100
1.1065
+ X24
0.9437
0.9413
+ X71
0.9208
+ X9
0.8460
0.8436
+ X16
0.7450
0.7447
+ X64
0.7252
0.7250
+ X18
0.5902
+ X6
0.5821
+ X36
0.5659
+ X37
0.5279
0.5278
+ X93
0.5000
Details:
BIC values
dispersion

%Dev
0.00000

0.08380
0.08381

0.20214
0.20372

0.26004
0.26060

0.29734
0.29738

0.33733

0.36541

0.44169
0.44271

0.45310

0.49003
0.49117

0.53586
0.53597

0.54783
0.54793

0.62506

0.62907

0.63773

0.65923
0.65929

0.67501

computed using k = 3.912 and complexity = 'df"'
parameter estimated by 'grcv'

df

11
11

12
12

13
13

BIC
381.6

378.4
378.4

372.3
372.1

371.3
371.2

372.0
372.0

372.5

374.0

371.5
371.4

374.4

375.2
375.1

375.2
375.2

378.1
378.1

375.4

379.0

382.2

384.3
384.3

386.8

Rank

22

20
19

13
12

15
14

18
17

21

23

25
24

26

Summary of the Selected Model

Formula: y ~ X1 + X2 + X12

Family: 'Gamma'

Link: 'log'
Coefficients:
Estimate
Int. 1.7494
X1 0.9320
X2 0.5119
X12 0.1749
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Dispersion parameter: 1.044 (estimated by 'grcv' method)

g: 1.386
Null deviance: 88.74
Residual deviance: 65.62
BIC: 371.21

Algorithm 'pc' ( method = 'dgLARS' )

From this output, we can see that the dgLARS method first finds the true predictors (X1 and X2)
and then includes the other false predictors. The ranking of the estimated models obtained by the
number of estimated non-zero coefficients as a measure of goodness of fit (complexity = "df")is
also shown. The corresponding best model is identified by an arrow on the right. The formula of
the identified best model, the corresponding estimated coefficients and the estimate of the dispersion
parameter are shown in the second section of the output. These values are obtained at the optimal
value of the tuning parameter <, which is calculated by the BIC criterion. For example, from the
previous output we can see that the values of the BIC criterion, GRCV estimate and optimal tuning
parameter are 371.21, 1.044 and 1.386, respectively. This section shows that GRCV estimate of the
dispersion parameter is really close to the true value but the selected model contains false predictors,
ie. X12.

Since the deviance, the MLE and the generalized Pearson estimators of the dispersion parameter
depend on the tuning parameter 7, the values of these estimates can change during the solution
path. The GRCV estimator is computationally more involved, but is fixed across 7. The estimates
can be extracted using the phihat () function. For example, with the following R code we can see the
sequence of values of the tuning parameter with the estimated values of the dispersion parameter by
means of the generalized Pearson, deviance, MLE and GRCV methods. For the GRCV method we
apply the BIC criterion and nit=10 iterations inside the algorithm.

R> set.seed(11235)

R> g <- fit$g

R> phi.grcv <- phihat(fit, type = "grcv", control = list(gd = 0.5))
R> phi.pear <- phihat(fit, type = "pearson”)

R> phi.dev <- phihat(fit, type = "deviance")

R> phi.mle <- phihat(fit, type = "mle")

R> path <- cbind(g, phi.pear, phi.dev, phi.mle, phi.grcv)

R> print(path, digits = 4)
g phi.pear phi.dev phi.mle phi.grcv

[1,1 2.5003 2.2017 1.8111 1.4327 1.044
[2,] 1.9828 1.9604 1.6939 1.3309 1.044
[3,7 1.9827 1.9603 1.6938 1.3309 1.044
[4,] 1.5384 1.6245 1.5065 1.1829 1.044
[5,]1 1.5314 1.6197 1.5035 1.1809 1.044
[6,1 1.3876 1.4518 1.4275 1.1085 1.044
[7,71 1.3861 1.4499 1.4264 1.1078 1.044
[8,]1 1.2834 1.3472 1.3857 1.0599 1.044
[9,1 1.2833 1.3470 1.3856 1.0598 1.044
[10,] 1.1688 1.2357 1.3365 1.0071 1.044
[11,] 1.1065 1.1848 1.3096 ©.9696 1.044
[12,] 0.9437 1.0242 1.1797 0.8659 1.044
[13,]1 0.9413 1.0218 1.1775 0.8645 1.044
[14,] 0.9208 1.0189 1.1837 0.8502 1.044
[15,] 0.8460 ©.9425 1.1314 0.7988 1.044
[16,] 0.8436 ©0.9394 1.1289 0.7972 1.044
[17,]1 0.7450 0.8419 1.0561 0.7340 1.044
[18,] 0.7447 ©0.8416 1.0559 0.7338 1.044
[19,] 0.7252 ©.8336 1.0560 0.7169 1.044
[20,] 0.7250  0.8334 1.0557 0.7167 1.044
[21,] 0.5902 0.6622 ©0.8993 0.6045 1.044
[22,] 0.5821 0.6704 0.9144 0.5986 1.044
[23,] 0.5659 0.6676 ©.9185 0.5858 1.044
[24,] 0.5279 0.6339 0.8894 0.5537 1.044
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[25,] 0.5278 0.6338 ©0.8893 0.5536 1.044
[26,] 0.5000 ©0.6160 ©0.8740 0.5300 1.044

By the following R code, we can specify the values of the tuning parameter o to compute the
estimates of the dispersion parameter:

R> set.seed(11235)
R> new_g <- seq(range(fit$g)[2], range(fit$g)[1]1, by = -0.5)
R> phi.grcv <- phihat(fit, g = new_g, type = "grcv”,
+ control = list(gd = 0.5))
R> phi.pear <- phihat(fit, g = new_g, type = "pearson")
R> phi.dev <- phihat(fit, g = new_g, type = "deviance")
R> phi.mle <- phihat(fit, g = new_g, type = "mle")
R> path <- cbind(new_g, phi.pear, phi.dev, phi.mle, phi.grcv)
R> print(path, digits = 4)
new_g phi.pear phi.dev phi.mle phi.grcv

[1,] 2.5003 2.2017 1.8111 1.4327 1.044
[2,] 2.0003 1.9677 1.6985 1.3340 1.044
[3,1 1.5003 1.6072 1.5117 1.1647 1.044
[4,] 1.0003 1.0817 1.2328 0.9004 1.044
[5,1 0.5003 0.6163 @.8743 0.5302 1.044

Finally, we show the output of function summary.dglars() with the generalized Pearson estimator
for a comparison with the results yielded by the GRCV method.

R> summary(fit, type = "BIC", phi = "pearson”)

n

Call: dglars(formula =y ~ X, family = Gamma("”log"), control = list(algorithm = "pc",
method = "dglLARS", g0@ = 0.5))

Sequence g %Dev  df BIC Rank
2.5003 0.00000 2 382.5 26
+ X1
1.9828 0.08380 3 380.1 25
1.9827 0.08381 3 380.1 24
+ X2
1.5384 0.20214 4 374.4 17
1.5314 0.20372 4 374.3 16
+ X12
1.3876 0.26004 5 373.1 8
1.3861 0.26060 5 373.1 7
+ X74
1.2834 0.29734 6 373.6 10
1.2833 0.29738 6 373.6 9
+ X31
1.1688 ©.33733 7 373.7 11
+ X100
1.1065 ©.36541 8 375.0 22
+ X24
0.9437 0.44169 9 371.3 3
0.9413 0.44271 9 371.2 2
+ X71
0.9208 ©.45310 10 374.1 14
+ X9
0.8460 0.49003 11 373.9 13
0.8436 ©.49117 11 373.8 12
+ X16
0.7450 0.53586 12 372.3 6
0.7447 ©.53597 12 372.3 5
+ X64
0.7252 0.54783 13 374.9 21
0.7250 ©.54793 13 374.9 20
+ X18
0.5902 0.62506 14 368.1 1 <-
+ X6
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0.5821 ©.62907 15 371.5 4

+ X36

0.5659 0.63773 16 374.2 15
+ X37

0.5279 0.65923 17 374.8 19

0.5278 ©.65929 17 374.8 18
+ X93

0.5000 0.67501 18 376.3 23

Details:

BIC values computed using k = 3.912 and complexity = 'df'
dispersion parameter estimated by 'pearson'

Summary of the Selected Model

Formula: y ~ X1 + X2 + X9 + X12 + X16 + X18 + X24 + X31 + X64 + X71 +

X74 + X100
Family: 'Gamma'
Link: 'log'
Coefficients:
Estimate
Int. 0.6492
X1 1.6660
X2 1.2259
X9 -0.1183
X12 0.5763
X16  -0.0987
X18 -0.1471

X24 0.6490
X31 0.5249
X64  -0.2859
X71 -0.2110
X74 0.0810
X100 -0.6195

Dispersion parameter: 0.6622 (estimated by 'pearson' method)

g: 0.5902

Null deviance: 88.74
Residual deviance: 33.27
BIC: 368.05

Algorithm 'pc' ( method = 'dgLARS' )

These outputs show that by using different dispersion estimators one can obtain different final
models. By using the GRCV estimator, the dgLARS method selects a really small model containing the
true predictors, thatisy ~ X1 + X2 + X12, while using the generalized Pearson estimator our final
model contains 12 predictors. We note, however, that the final model selected by the dgLARS method
is very sensitive to the (slightly random) value of the GRCV estimator. Although the GRCV tends to
work better than the generalized Pearson estimator, no strong conclusions should be attached to this
particular example.

Comparing PC and IPC algorithms

In this section we illustrate the difference in performance between the original PC and the new IPC
algorithms; for an extensive simulation study see next section. As we mentioned before, the new
version of the dglars package only implements the IPC and CCD algorithms to compute the dgLARS
solution curve. Therefore, we use the PC algorithm in version 1.0.5 of the package (which can only be
run using R version 2.10) and the IPC algorithm in the latest version (2.1.6) for the comparisons.

We consider the following R code to simulate a Poisson regression model with the canonical link
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function (link = "log"), sample size equal to n = 100 with p = 5 predictors. The corresponding R
code is given by:

R> set.seed(11235)

R>n <- 100

R>p <-5

R> X <- matrix(abs(rnorm(n * p)), n, p)
R>b <- 1:2

R> eta <- drop(b[1] + (X[, 11 * b[2]1))
R> mu <- poisson()$linkinv(eta)

R> y <- rpois(n, mu)

Only the first predictor is set to affect the response variable y. By the following code we estimate
the dgLASSO solution curve using the IPC algorithm:

R> fit_ipc <- dglars(y ~ X, family = poisson,
+ control = list(algorithm = "pc"))

By running the following commands we remove the last version and then install the version 1.0.5
of the package to be able to estimate the dgLASSO solution curve using the PC algorithm. The function
install.packages() can do it for us, such that if the package is already installed, this function replaces
it with the specified package from source:

R> detach(name = "package:dglars”, unload = TRUE)

R> remove.packages(pkgs = "dglars")

R> 0ld_dglars <- "https://cran.r-project.org/src/contrib/Archive/dglars/
+ dglars_1.0.5.tar.gz"

R> install.packages(0ld_dglars, repos = NULL, type = "source")

R> library("dglars")

R> fit_pc <- dglars(y ~ ., family = "poisson”,

+ control = list(algorithm = "pc"))

By printing the ‘dglars’ object fit_pc for our simulated data set, we can see that the number of
the points composing the dgLASSO solution curve achieved by the PC algorithm is 25;

R> fit_pc

Call: dglars(formula =y ~ X, family = "poisson”, control = list(algorithm = "pc"))

Sequence g Dev %Dev df
68.2417 9403.51 0.0000 1

+X1
10.1351 623.36 0.9337 2
3.7587 186.10 0.9802 2
2.6310 143.85 0.9847 2
2.5719  141.99 0.9849 2
2.5718 141.99 0.9849 2

+X4
1.9682 124.04 0.9868 3
1.6730 116.91 0.9876 3
1.5270 113.79 0.9879 3
1.4544  112.34 0.9881 3
1.4182 111.64 0.9881 3
1.4001 111.30 0.9882 3
1.3820 110.96 ©0.9882 3

+X3
1.1309 104.95 0.9888 4
1.0056 102.37 ©0.9891 4
0.9430 101.20 0.9892 4
0.9117 100.63 ©.9893 4
0.8804 100.09 ©0.9894 4

+X2
0.5796 93.69 0.9900 5
0.4302 91.44 0.9903 5
0.3557 90.57 0.9904 5
0.3186 90.19 0.9904 5
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0.3000 90.02 0.9904 5
0.2814 89.85 0.9904 5
+X5
0.0001 88.01 0.9906 6
Algorithm pc ( method = dgLASSO ) with exit = @

The number of the iterations computing the solution points by the PC algorithm and the values of
the tuning parameter can be obtained by the following code:

R> fit_pc$np
[1] 25
R> fit_pc$g

[1] 68.2417321 10.1350645 3.7587453 2.6310292 2.5719482 2.5717722
[7] 1.9681589 1.6729772 1.5269781 1.4543691 1.4181613 1.4000815
[13] 1.3820137 1.1308691 1.0055607 0.9429753 ©.9117001 0.8804338
[19] 0.5796210 0.4302023 0.3557410 ©0.3185725 ©0.3000037 ©.2814428
[25] ©.0001000

By printing fit_ipc, we can see that the IPC algorithm reduces the number of the iterations for
obtaining the solution curve at the change points, leading to significant computational savings.

R> fit_ipc

Call: dglars(formula =y ~ X, family = poisson, control = list(algorithm = "pc"))

Sequence g Dev %Dev n. non zero
68.241732 9403.51 0.0000 1

+ X1
10.135064 623.36 0.9337 2
3.758745 186.10 0.9802 2
2.631029 143.85 0.9847 2
2.571948 141.99 0.9849 2
2.571772 141.99 0.9849 2

+ X4
1.382273 110.97 ©.9882 3
1.382018 110.96 0.9882 3

+ X3
0.880438 100.09 0.989%4 4

+ X2
0.281457 89.85 0.9904 5
0.281445 89.85 0.9904 5

+ X5
0.000001 88.01 0.9906 6

Algorithm 'pc' ( method = 'dgLASSO' ) with exit = @

Fewer than half the number of the iterations are needed by the IPC algorithm compared to the PC
algorithm, speeding up the algorithm by a factor of 2.

R> fit_ipc$np
[11 12
R> fit_ipc$g

[1] 6.824173e+01 1.013506e+01 3.758745e+00 2.631029e+00 2.571948e+00
[6]1 2.571772e+00 1.382273e+00 1.382018e+00 8.804378e-01 2.814572e-01
[11] 2.814454e-01 9.999996e-07

From a computational point of view, the main consequence of using the technique used in the
IPC algorithm is a decrease in the run times by adjusting the step size and finding the true transition
points. The next section investigates the overall performance of the IPC algorithm by a simulation
study.
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Table 3: Average CPU times (time) in seconds to compute the solution curve using the IPC and PC
algorithms based on the logistic regression model, and the mean number of points of the solution
curve (g). Standard deviations are in parentheses. The means and standard deviations are trimmed
at the 5% level. The IPC algorithm is always faster than the PC algorithm, and the trimmed mean
number of g yielded by IPC is always lower than those needed in PC.

n =50 n =200
IPC PC IPC PC
0 p  time q time q time q time q

100 0.018 52.011 0.022 79956 0250 103.74 0.406 190.74
(0.003) (5.686) (0.005) (12.68) (0.031) (5.439) (0.077) (16.03)

1000 0193  67.622 0.278  99.267  4.333 16594 5489  233.06
(0.023) (6.225) (0.056) (15.51) (0.458) (9.120) (0.935) (20.51)

3000 0775 72511 0.854  111.00 15.068 183.47 19.933 256.84

0.0 (0.080) (6.469) (0.165) (1632) (1.351) (8.601) (2.422) (18.17)
5000 1134 68933 1205 97100 24219 18283 31844 24978
(0.132) (6682) (0.232) (1658) (2934) (11.08) (5.140) (22.66)

7000 1553 74378 1962 10952 37149 19058 49091 26267
(0.190) (6.604) (0.444) (19.62) (3.198) (8.760) (6439) (19.96)

100 0016 49.167 0022 80144 0174 91178 0274 16203
(0.003) (5613) (0.004) (1257) (0.022) (5.170) (0.049) (14.02)

1000 ~0.150 59311 0.196 81611 3129 14350 4116 207.72
(0.021) (6272) (0.048) (1394) (0.467) (11.39) (0.870) (25.10)

o5 000 0682 65111 0684 89100 10365 15649 13933 21619

(0.067) (7.083) (0.141) (16.59) (1.255) (9.871) (2.611) (23.57)
5000 ~ 1.095 69.122 1212 98.822 18.663 163.66 25388 22516
(0.126) (6505) (0.235) (15.34) (2.355) (10.87) (4.095) (20.52)
7000 ~ 1.420 70.844 1763 10200 24742 15940 33.101 217.87
(0.180) (6.283) (0.321) (14.657) (2.827) (9.858) (5.181) (21.07)

4 Simulation Studies

In this section we present a simulation study to investigate the performance of the improved PC
algorithm implemented in the dglars package. Although the PC and IPC algorithms compute the same
active set, they have different number of arithmetic operations for getting there. The main problem of
the PC algorithm is related to the number of the number of arithmetic operations needed to compute
the solution curve.

Our simulation study is based on a logistic regression model with sample size equal to n = 50, 200.
The number of predictors p follows a sequence of five values 100, 1000, 3000, 5000 and 7000. The
study is based on two different configurations of the covariance structure of the p predictors, that is,
the random vector X = (X1, X, -, Xp)—r is sampled from an N (0, X) distribution with elements of
¥ satisfying corr(X;; X;) = pli=l, where p = 0 or p = 0.5. The response vector is simulated using a
model with intercept By and regression coefficients g chosen as follows:

=1 and =(1,2,3,0,---,0).
Bo B=( )
p—3

The R code to replicate our study is reported in the attached file. Table 3 reports the average CPU times
in seconds and the mean number of points of the solution curve (§) coming from 100 simulation runs,
so that all means and their standard deviations are trimmed of the 5% tails. All timings reported were
carried out on a personal computer with Intel Core i5 520M dual-core processor. The proposed IPC
algorithm is always faster than the PC algorithm, regardless of the correlation between the predictors.
This table also displays that, the trimmed mean number of the points of the solution curve yielded
by the IPC algorithm is always lower than those needed in the PC algorithm. Interestingly, when the
correlation among the predictors is stronger (o = 0.5) both algorithms are faster than when there is no
correlation. Figure 2 shows the trimmed mean number of the points of the solution curve for the two
algorithms. The IPC algorithm is more efficient than the PC algorithm.
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Figure 2: Simulation study for a logistic regression showing the relationship between the trimmed
mean number of points of the solution curve g for the IPC and PC algorithms at the 5% level. In all
cases, the IPC algorithm is faster than the PC.

5 Application to Example Data

In this section we analyze an example dataset by using the functions available in the dglars package.
We consider the benchmark diabetes data (Efron et al., 2004) to study the sparse structure of an inverse
Gaussian regression model. This dataset was also used in Ishwaran et al. (2010) and is available in the
R package lars:

R> install.packages(pkgs = "lars")
R> data("diabetes"”, package = "lars")

The response y are quantitative measurements of disease progression for patients with diabetes after
one year. The covariate data include 10 baseline measurements for each patient, recorded in the design
matrix x, such as age, sex, bmi (body mass index), map (mean arterial blood pressure) and six blood
serum measurements: ldl (low-density lipoprotein), hdl (high-density lipoprotein), /tg (lamotrigine),
glu (glucose), tc (triglyceride) and tch (total cholesterol). In addition to (120) = 45 interactions and
9 quadratic terms (excluding the binary sex variable), the design matrix x2 consists of a total of 64
columns. So, the complete data consists of diabetes progression observations on n = 442 patients
in combination with p = 64 predictor variables. The aim of the study is to identify which of the
covariates are important factors in disease progression.

From previous analyses, it was clear that the disease progression is not appropriately modelled by
a Gaussian. After some goodness-of-fit considerations, we settle on an inverse Gaussian regression
model, which requires us to estimate the dispersion parameter. First, we estimate the optimal value of
the tuning parameter y by 10-fold cross-validation (CV) using the cvdglars() function, i.e.,

R> library("dglars")
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R> set.seed(11235)

R> cv_diabetes <- cvdglars(y ~ x, family = inverse.gaussian("log"),
+ data = diabetes)

R> cv_diabetes

Call: cvdglars(formula =y ~ x, family = inverse.gaussian("log"), data = diabetes)

Coefficients:

Estimate
Int. 4.9539
xsex -2.0273
xbmi 2.8447
xmap  2.1969
xtc -0.3811
xhdl -2.4124
xltg  3.8501

Dispersion parameter: 0.001141

Details:
number of non zero estimates: 8
cross-validation deviance: 0.06224
g: 0.01533
n. fold: 10

Algorithm 'pc' ( method = 'dgLASSO' )

This output shows that the dgLARS method by the help of the CV criterion selects an inverse
Gaussian regression model with six covariates (sex, bmi, map, tc, hdl and Itg);

R> cv_diabetes$formula_cv
y ~ sex + bmi + map + tc + hdl + 1tg

Moreover, the optimal tuning parameter is v = 0.01533 and the dispersion parameter estimate by the
GRCV method is ¢grcy = 0.001141. If we had selected the BIC instead of 10-fold cross-validation, we
would have obtained

R> diabetes_dglars <- dglars(y ~ x, family = inverse.gaussian("log"),
+ data = diabetes)

R> set.seed(11235)

R> summary(diabetes_dglars, type = "BIC", phi = "grcv")

Call: dglars(formula

y ~ x, family = inverse.gaussian("log"), data = diabetes)

Sequence g %Dev df BIC Rank
0.505974 0.00000 2 5223 18
+ xbmi
0.481473 0.02290 3 5207 17
0.481262 0.02309 3 5207 16
+ xltg
0.250152 0.26744 4 4986 15
0.233248 0.27846 4 4975 14
0.233174 0.27851 4 4975 13
+ xmap
0.222313 0.28613 5 4974 12
+ xhdl
0.100212 0.36560 6 4906 11
0.099904 0.36572 6 4906 10
+ xsex
0.030320 0.41322 7 4868 2
0.030263 ©.41324 7 4868 1 <-
+ xtc
0.014883 0.41892 8 4869 3
+ xglu

0.005757 0.42063 9 4873 4
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+ xtch
0.002389 0.42122 10 4879 6
0.002384 0.42122 10 4879 5
+ x1dl
0.001704 ©0.42199 11 4884 8
0.001691 0.42200 11 4884 7
+ xage
0.000001 0.42272 12 4890 9
Details:

BIC values computed using k = 6.091 and complexity = 'df"'
dispersion parameter estimated by 'grcv'

Summary of the Selected Model

Formula: y ~ xsex + xbmi + xmap + xhdl + xltg
Family: 'inverse.gaussian'
Link: 'log'

Coefficients:

Estimate
Int. 4.9495
xsex -1.6834
xbmi  2.7786
xmap  1.9536
xhdl -2.2917
xltg  3.5420

Dispersion parameter: 0.001112 (estimated by 'grcv' method)

g: 0.03026
Null deviance: 1.0361
Residual deviance: 0.6079

BIC: 4868.0435
Algorithm 'pc' ( method = 'dgLASSO' )

The fitted model now does not include fc, but does include the other five predictors (sex, bmi,
map, hdl and Itg). In fact, the optimal value of the tuning parameter y = 0.03026 is somewhat larger
than with cross-validation, as can be expected from the BIC, resulting in a sparser model. The GRCV
estimate of the dispersion parameter ¢grcy = 001112, due to the stable nature of the GRCV method.
It is also possible to obtain the GRCV estimate directly without a fitted ‘dglrs’ object, by only using
the design matrix x and the response variable y using the following code:

set.seed(11235)
grcv(diabetes_dglars, type = "BIC")

[1] 0.001111604

Since the original PC algorithm is only available for the version 1.0.5 (and older) and the inverse
Gaussian family has only been added to the package from version 2.0.0 onwards, we are not able to
compare the run times and also the number of the iterations computing the solution points for the PC
and IPC algorithms. The run time of the IPC algorithm is given using the following R code:

R> system.time(diabetes_dglars_ipc <- dglars(y ~ x,
+ family = inverse.gaussian("log"), data = diabetes))

user system elapsed
0.016 0.000 0.016

and the number of iterations computing the solution points by the IPC algorithm is
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R> diabetes_dglars_ipc$np

[1]1 18

6 Conclusions

In this paper, we have described improvements to the R package dglars for estimating a larger class of
generalized linear models with arbitrary link functions and a general class of exponential dispersion
models. We briefly reviewed the differential geometrical theory underlying the dgLARS method
and briefly explained the dispersion parameter estimation methods. We described some functions
implemented in the new version of the dglars package that can be used to estimate the dispersion
parameter. We also used these functions to compare run times between the new IPC and old PC
algorithms. The simulations showed that the IPC algorithm is significantly faster than the original PC
algorithm. The new version of dglars is available on CRAN.
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