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Editorial
by Dianne Cook

On behalf of the editorial board, I am pleased to present Volume 13 Issue 1 of the R Journal.

First, some news about the journal board. Welcome to Gavin Simpson, who joins as a
new Executive Editor! In addition, welcome to our new Associate Editors Nicholas Tierney,
Isabella Gollini, Rasmus Bååth, Mark van der Loo, Elizabeth Sweeney, Louis Aslett and
Katarina Domijan. With the large volume of submissions, the Associate Editors now play a
vital role in processing articles.

There are some new developments in the journal operations under way. We are working
on a new package rjtools which will operate a little like the devtools package and help
you to create a new article from a template, and check that it conforms to the style and
requirements of the R Journal.

We are also working on supporting articles written in RMarkdown, which will be
rendered in html through a modified distill web site. The exciting feature is that interactive
graphics could be included directly in the article. You can see how this current issue would
look in the new style at https://rjournal.r-project.org/dev. Particularly, look at articles
Conversations in Time by Wang and Cook as an example that has two examples of how
interactive graphics might be included. Other articles rendered in html are “Finding Optimal
Normalizing Transformations” by Peterson, “Automating Reproducible, Collaborative
Clinical Trial Document Generation” by Kane, Jiang and Urbanek, and “Towards a Grammar
for Processing Clinical Trial Data” by Kane. All remaining articles in the new site style are
the current pdf style.

To experiment with creating a new article, or to check that your article, conforms with
the R Journal author guidelines, go to https://rjournal.github.io/rjtools/. Note that it
is still ok to use the rticles package R Journal Rmarkdown template to create your article.
This will generate the files that are compiled to pdf using latex, but it is an easy translation
for us to convert them into the new style.

The operational support and the experiments have been supported with generous fund-
ing from the R Consortium (https://www.r-consortium.org).

Behind the scenes, several people are assisting with the journal operations and the
new developments. Mitchell O’Hara-Wild has worked on infrastructure, the new article
submission system, a new issue build system and now the new article delivery system
providing html format. H. Sherry Zhang has taken over from Stephanie Kobakian, in
developing the rjtools package including check functions for new articles to help authors
get the style constraints correct. In addition, articles in this issue have been painstakingly
copy edited by Dewi Amaliah.

1 In this issue

News from the R Core, CRAN, Bioconductor, the R Foundation, and the foRwards Taskforce
are included in this issue along with a summary of activities at the R Medicine and Why R?
2021 conferences.

This issue features 37 contributed research articles covering these topics:

• Multivariate analysis

– SeedCCA: An integrated R-package for Canonical Correlation Analysis and
Partial Least Squares

– Unidimensional and Multidimensional Methods for Recurrence Quantification
Analysis with crqa

– clustcurv: An R Package for Determining Groups in Multiple Curves
– gofCopula: Goodness-of-Fit Tests for Copulae
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– ROCnReg: An R Package for Receiver Operating Characteristic Curve Inference
With and Without Covariates

• Non-parametric methods

– npcure: An R Package for Nonparametric Inference in Mixture Cure Models
– ROBustness In Network (robin): an R package for Comparison and Validation of

Communities
– krippendorffsalpha: An R Package for Measuring Agreement Using Krippen-

dorff’s Alpha Coefficient

• Temporal and longitudinal methods

– JMcmprsk: An R Package for Joint Modelling of Longitudinal and Survival Data
with Competing Risks

– Linear Regression with Stationary Errors: the R Package slm
– penPHcure: Variable Selection in Proportional Hazards Cure Model with Time-

Varying Covariates
– pdynmc: A Package for Estimating Linear Dynamic Panel Data Models Based on

Nonlinear Moment Conditions
– DChaos: An R Package for Chaotic Time Series Analysis
– IndexNumber: An R Package for Measuring the Evolution of Magnitudes
– garchx: Flexible and Robust GARCH-X Modelling
– Working with CRSP/COMPUSTAT in R: Reproducible Empirical Asset Pricing
– Analysing Dependence Between Point Processes in Time Using IndTestPP
– Conversations in Time: Interactive Visualisation to Explore Structured Temporal

Data

• Computing infrastructure

– A Method for Deriving Information from Running R Code
– Wide-to-tall Data Reshaping Using Regular Expressions and the nc Package
– The bdpar Package: Big Data Pipelining Architecture for R
– Benchmarking R packages for calculation of Persistent Homology
– distr6: R6 Object-Oriented Probability Distributions Interface in R
– Automating Reproducible, Collaborative Clinical Trial Document Generation
– Reproducible Summary Tables with the gtsummary Package
– Towards a Grammar for Processing Clinical Trial Data

• Simulation and optimisation

– Finding Optimal Normalizing Transformations via bestNormalize
– Package wsbackfit for Smooth Backfitting Estimation of Generalized Structured

Models
– RLumCarlo: Simulating Cold Light using Monte Carlo Methods
– OneStep: Le Cam’s one-step estimation procedure
– The HBV.IANIGLA Hydrological Model
– Regularized Transformation Models: The tramnet Package

• Other topics

– exPrior: An R Package for the Formulation of Ex-Situ Priors
– BayesSPsurv: An R Package to Estimate Bayesian (Spatial) Split-Population

Survival Models
– Statistical Quality Control with the qcr Package
– The R Package smicd: Statistical Methods for Interval-Censored Data
– stratamatch: Prognostic Score Stratification Using a Pilot Design

Happy reading, and code testing!

Dianne Cook
Monash University
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SEEDCCA: An Integrated R-Package for
Canonical Correlation Analysis and Partial
Least Squares
by Bo-Young Kim, Yunju Im and Jae Keun Yoo

Abstract Canonical correlation analysis (CCA) has a long history as an explanatory statistical method
in high-dimensional data analysis and has been successfully applied in many scientific fields such as
chemometrics, pattern recognition, genomic sequence analysis, and so on. The so-called seedCCA is a
newly developed R package that implements not only the standard and seeded CCA but also partial
least squares. The package enables us to fit CCA to large-p and small-n data. The paper provides a
complete guide. Also, the seeded CCA application results are compared with the regularized CCA in
the existing R package. It is believed that the package, along with the paper, will contribute to high-
dimensional data analysis in various science field practitioners and that the statistical methodologies
in multivariate analysis become more fruitful.

1 Introduction

Explanatory studies are important to identify patterns and special structures in data prior to developing
a specific model. When a study between two sets of a p-dimensional random variables X (X ∈ Rp) and
an r-dimensional random variable Y (Y ∈ Rr), are of primary interest, one of the popular explanatory
statistical methods would be canonical correlation analysis (CCA; Hotelling (1936)). The main goal of
CCA is the dimension reduction of two sets of variables by measuring an association between the two
sets. For this, pairs of linear combinations of variables are constructed by maximizing the Pearson
correlation. The CCA has successful application in many scientific fields such as chemometrics, pattern
recognition, genomic sequence analysis, and so on.

In Lee and Yoo (2014), it is shown that the CCA can be used as a dimension reduction tool for
high-dimensional data, but also it is connected to the least square estimator. Therefore, the CCA is not
only an explanatory and dimension reduction method but also can be utilized as an alternative to least
square estimation.

If max(p, r) is bigger than or equal to the sample size, n, usual CCA application is not plausible
due to no incapability of inverting sample covariance matrices. To overcome this, a regularized CCA is
developed by Leurgans et al. (1993), whose idea was firstly suggested in Vinod (1976). In practice, the
CCA package by González et al. (2008) can implement a version of the regularized CCA. To make the
sample covariance matrices saying Σ̂x and Σ̂y, invertible, in González et al. (2008), they are replaced
with

Σ̂
λ1
x = Σ̂x + λ1Ip and Σ̂

λ2
y = Σ̂y + λ1Ir.

The optimal values of λ1 and λ2 are chosen by maximizing a cross-validation score throughout the
two-dimensional grid search. Although it is discussed that a relatively small grid of reasonable values
for λ1 and λ2 can lesson intensive computing in González et al. (2008), it is still time-consuming as
observed in later sections. Additionally, fast regularized CCA and robust CCA via projection-pursuit
are recently developed in Cruz-Cano (2012) and Alfons et al. (2016), respectively.

Another version of CCA to handle max(p, r) > n is the so-called seeded canonical correlation
analysis proposed by Im et al. (2014). Since the seeded CCA does not require any regularization
procedure, which is computationally intensive, its implementation to larger data is quite fast. The
seeded CCA requires two steps. In the initial step, a set of variables bigger than n is initially reduced
based on iterative projections. In the next step, the standard CCA is applied to two sets of variables
acquired from the initial step to finalize the CCA of data. Another advantage is that the procedure of
the seeded CCA has a close relation with partial least square, which is one of the popular statistical
methods for large p-small n data. Thus the seed CCA can yield the PLS estimates.

The seedCCA package is recently developed mainly to implement the seeded CCA. However, the
package can fit a collection of the statistical methodologies, which are standard canonical correlation
and partial least squares with uni/multi-dimensional responses, including the seeded CCA. The
package is already uploaded to CRAN (https://cran.r-project.org/web/packages/seedCCA/index.
html).

The main goal of the paper is to introduce and illustrate the seedCCA package. Accordingly, three
real data are fitted by the standard CCA, the seeded CCA, and partial least square. Two of the three
data are available in the package. One of them has been analyzed in González et al. (2008). So, the

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://cran.r-project.org/web/packages/seedCCA/index.html
https://cran.r-project.org/web/packages/seedCCA/index.html


CONTRIBUTED RESEARCH ARTICLE 8

implementation results by the seeded and regularized CCA are closely compared.

The organization of the paper is as follows. The collection of three methodologies is discussed in
Section 2. The implementation of seedCCA is illustrated, and compared with CCA in Section 3. In
Section 4, we summarize the work.

We will use the following notations throughout the rest of the paper. A p-dimensional random
variable X will be denoted as X ∈ Rp. So, X ∈ Rp means a random variable, although there is no
specific mention. For X ∈ Rp and Y ∈ Rr, we define that cov(X) = Σx, cov(Y) = Σy, cov(X, Y) = Σxy
and cov(Y, X) = Σyx. Moreover, it is assumed that Σx and Σy are positive-definite.

2 Collection of implemented methodologies in seedCCA

Canonical correlation analysis

Suppose the two sets of variable X ∈ Rp and Y ∈ Rr and consider their linear combinations of
U = aTX and V = bTY. Then we have var(U) = aTΣxa, var(V) = bTΣyb, and cov(U, V) = aTΣxyb,
where a ∈ Rp×1 and b ∈ Rr×1. Then Pearson-correlation between U and V is as follows:

cor(U, V) =
aTΣxyb√

aTΣxa
√

bTΣyb
. (1)

We seek to find a and b to maximize cor(U, V) by satisfying the following criteria.

1. The first canonical variate pair (U1 = aT
1 X, V1 = bT

1 Y) is obtained from maximizing (1).

2. The second canonical variate pair (U2 = aT
2 X, V2 = bT

2 Y) is constructed from the maximization
of (1) with restriction that var(U2) = var(V2) = 1 and (U1, V1) and (U2, V2) are uncorrelated.

3. At the k step, the kth canonical variate pair (Uk = aT
k X, Vk = bT

k Y) is obtained from the
maximization of (1) with restriction that var(Uk) = var(Vk) = 1 and (Uk, Vk) are uncorrelated
with the previous (k − 1) canonical variate pairs.

4. Repeat Steps 1 to 3 until k becomes q (= min(p, r)).

5. Select the first d pairs of (Uk, Vk) to represent the relationship between X and Y.

Under this criteria, the pairs (ai, bi) are constructed as follows: ai = Σ−1/2
x ψi and bi = Σ−1/2

y ϕi for
i = 1, . . . , q, where (ψ1, ..., ψq) and (ϕ1, ..., ϕq) are, respectively, the q eigenvectors of Σ−1/2

x ΣxyΣ−1
y ΣyxΣ−1/2

y

and Σ−1/2
y ΣyxΣ−1

x ΣxyΣ−1/2
x with the corresponding common ordered-eigenvalues of ρ∗2

1 ≥ · · · ≥
ρ∗2

q ≥ 0. Then, matrices of Mx = (a1, ..., ad) and My = (b1, ..., bd) are called canonical coefficient
matrices for d = 1, ..., q. Also, MT

x X and MT
y Y are called canonical variates. In the sample, the population

quantities are replaced with their usual moment estimators. For more details regarding this standard
CCA, readers may refer to Johnson and Wichern (2007).

Seeded canonical correlation analysis

Since the standard CCA application requires the inversion of Σ̂x and Σ̂y in practice, it is not plausible
for high-dimensional data with max(p, r) > n. In Im et al. (2014), a seeded canonical correlation
analysis approach is proposed to overcome this deficit. The seeded CCA is a two-step procedure
consisting of initialized and finalized steps. In the initialized step, the original two sets of variables are
reduced to m-dimensional pairs without loss of information on the CCA application. In the initialized
step, it is essential to force m << n. In the finalized step, the standard CCA is implemented to the
initially-reduced pairs for the repairing and orthonormality. A more detailed discussion on the seeded
CCA is as follows in the next subsections.

Development

Define a notation of S(M) as the subspace spanned by the columns of M ∈ Rp×r . Lee and Yoo (2014)
show the following relation:

S(Mx) = S(Σ−1
x Σxy) and S(My) = S(Σ−1

y Σyx). (2)

The relation in (2) directly indicates that Mx and My form basis matrices of S(Σ−1
x Σxy) and S(Σ−1

y Σyx)

and that Mx and My can be restored from Σ−1
x Σxy and Σ−1

y Σyx.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 9

Now, we define the following two matrices:

Rx,u1 ∈ Rp×ru1 = (Σxy, ΣxΣxy, . . . , Σu1−1
x Σxy) and

Ry,u2 ∈ Rr×pu2 = (Σyx, ΣyΣyx, . . . , Σu2−1
y Σyx). (3)

In Rx,u1 and Ry,u2 , the numbers of u1 and u2 are called termination indexes. They decide the number
of projections of Σxy and Σyx onto Σx and Σy, respectively. Also define that

M0
x,u1

∈ Rp×r = Rx,u1 (R
T
x,u1

ΣxRx,u1 )
−1RT

x,u1
Σxy and

M0
y,u2

∈ Rr×p = Ry,u2 (R
T
y,u2

ΣyRy,u2 )
−1RT

y,u2
Σyx. (4)

In Cook et al. (2007), it is shown that S(M0
x,u1

) = S(Σ−1
x Σxy) and S(M0

y,u2
) = S(Σ−1

y Σyx) in (4).
Hence M0

x,u1
and M0

y,u2
can be used to infer Mx and My, respectively. One clear advantage to use

M0
x,u1

and M0
y,u2

is no need of the inversion of Σx and Σy.

Practically, it is important to select proper values for the termination indexes u1 and u2 as they
define that ∆x,u1 = M0

x,u1+1 − M0
x,u1

and ∆y,u2 = M0
y,u2+1 − M0

y,u2
. Finally, the following measure for

increment of u1 and u2 is defined: nFx,u1 = ntrace(∆T
x,u1

Σx∆x,u1 ) and nFy,u2 = ntrace(∆T
y,u2

Σy∆y,u2 ).
Then, a proper value of u is set to have little changes in nFx,u1 and nFx,u1+1 and in nFy,u2 and nFy,u2+1.
It is not necessary that the selected u1 and u2 for M0

x,u1
and M0

y,u2
are common.

Next, the original two sets of variables of X and Y are replaced with M0 T
x,u1

X ∈ Rr and M0 T
y,u2

Y ∈
Rp. This reduction of X and Y does not cause any loss of information on CCA in the sense that
S(M0

x,u1
) = S(Mx) and S(M0

y,u2
) = S(My), and it is called initialized CCA. The initialized CCA has

the following two cases.

case 1: Suppose that min(p, r) = r << n. Then, the original X alone is replaced with M0 T
x,u1

X
and the original Y is kept.

case 2: If min(p, r) = r is not fairly smaller than n, Σxy and Σyx are replaced by their m largest
eigenvectors in the construction of Rx,u1 , Ry,u2 , M0

x,u1
and M0

y,u2
. The following two ways to

determine a proper value of m is recommended among many. One is a graphical determination
by a scree plot for eigenvalues of Σxy. The other is the number of eigenvalues whose sum is to
cover 90% or above of the total variations of Σxy.

The primary goal in the initialized step is the reduction of X and Y less than n without loss of
information on CCA. In case 1, X and Y are reduced to r-dimensional variates, while they are replaced
with the m-dimensional sets of variables in case 2. After the initialized step, r and m are fairly smaller
than n.

The next step is to conduct the standard CCA for M0 T
x,u1

X and M0 T
y,u2

Y for the repairing and
orthonormality. This CCA application is called finalized CCA. Finally, this two-step procedure for CCA
is called seeded CCA.

Partial least squares

The main goal of the two CCA methods is dimension reduction based on the joint relation of X and Y
rather than the conditional relation of Y|X. For simplicity, in this subsection, Y with r = 1 is assumed
as a response variable in a regression of Y|X.

Recall Rx,u1 in (3) and M0
x,u1

in (4):

Rx,u1 = (Σxy, ΣxΣxy, Σ2
xΣxy, . . . , Σu1−1

x Σxy) and M0
x,u1

= Rx,u1 (R
T
x,u1

ΣxRx,u1 )
−1RT

x,u1
Σxy.

According to Helland (1990), the population partial least square (PLS) with u components on the
regression of Y|X is as follows:

βu1,PLS = M0
x,u1

. (5)

It is noted that this PLS representation in (5) is equivalent to the canonical matrix for X via the seeded
CCA.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859
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3 Illustration of seedCCA package

Outline of seedCCA package

The methods discussed in the previous section are implemented through the main function seedCCA.
Its arguments are as follows.

seedCCA(X, Y, type="seed2", ux=NULL, uy=NULL, u=10, eps=0.01, cut=0.9, d=NULL, AS=TRUE,
scale=FALSE)

The main function seedCCA returns “seedCCA” class and three subclasses depending on the values
of type. The values of type and its resulting subclasses are as follows.

type="cca": standard CCA (max(p, r) < n and min(p, r) > 1) / “finalCCA” subclass

type="cca": ordinary least squares (max(p, r) < n and min(p, r) = 1) / “seedols” subclass

type="seed1": seeded CCA with case1 (max(p, r) ≥ n) / “finalCCA” subclass

type="seed2": seeded CCA with case2 (max(p, r) ≥ n) / “finalCCA” subclass

type="pls": partial least squares (p ≥ n and r < n) / “seedpls” subclass

The function seedCCA prints out estimated canonical coefficient matrices for all subclasses, and addi-
tionally does canonical correlations for “finalCCA” subclasses, although it produces more outputs. For
details, the readers are recommended to run ?seedCCA after loading the seedCCA package. It should
be noted that the seedCCA package must be loaded before using all functions in the package.: of CCA
and corpcor (Schafer et al. (2017)).

For illustration purpose, three data sets will be considered. Pulp data is used for the standard CCA,
which is available from the author’s webpage (http://home.ewha.ac.kr/~yjkstat/pulp.txt). For
the seeded CCA, along with the comparison with the regularized CCA and the partial least squares,
cookie and nutrimouse in seedCCA package will be illustrated.

Standard CCA: pulp data

Pulp data is measurements of properties of pulp fibers and the paper made from them. It contains two
sets of variables with 62 sample sizes. The first set, Y, is for the pulp fiber characteristics, which are
arithmetic fiber length, long fiber fraction, fine fiber fraction, and zero spans tensile. The second set, X,
is regarding the paper properties such as breaking length, elastic modulus, stress at failure, and burst
strength. To implement the standard CCA application, the function seedCCA with type="cca" should
be used. In this case, seeCCA results in the “finalCCA” subclass. The function requires two matrix-type
arguments, and it returns the following five components of cor, xcoef, ycoef, Xscores and Yscores.
The first component is cor is the sample canonical correlations. The next two ones, xcoef, and ycoef,
are the estimated canonical matrices for X and Y. The last two components, which are Xscores and
Yscores, are the estimated canonical variates for X and Y. A command plot(object) constructs a plot
of the cumulative correlations against the number of canonical pairs. The plot(object) will provide a
90% reference line as default, and users can change the reference line with plot(object,ref=percent).

## loading pulp data
> pulp <- read.table("http://home.ewha.ac.kr/~yjkstat/pulp.txt", header=TRUE)
> Y <- as.matrix(pulp[,1:4])
> X <- as.matrix(pulp[,5:8])

## standard CCA for X and Y
> fit.cca <- seedCCA(X, Y, type="cca")
NOTE: The standard CCA is fitted for the two sets.

> names(fit.cca)
[1] "cor" "xcoef" "ycoef" "Xscores" "Yscores"

## plotting cumulative canonical correlation
> par(mfrow=c(1, 2))
> plot(fit.cca, ref=80)
> plot(fit.cca)
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Figure 1: Cumulative canonical correlation plot in pulp data in Section 3.2

## first two canonical pairs
> X.cc <- fit.cca$Xscores[,1:2]
> Y.cc <- fit.cca$Yscores[,1:2]

According to Figure 1(a) and (b), with 80% cumulative canonical correlations, two canonical pairs are
enough, while three canonical pairs should be good with the default 90%.

Ordinary least squares: pulp data

If the dimension of either X or Y is equal to one, the estimated canonical coefficient matrix from
the standard CCA is equivalent to that from ordinary least squares. In such case, the command
seedCCA(X,Y[,1],type="cca") results in the ordinary least squares estimate, which is “seedols” sub-
class. The output of "seedols" has three components, which are the estimated coefficients and
the two sets of variables. For example, assume that a regression study of arithmetic fiber length,
which is the first column of Y, given X is of specific interest. It should be noted that the order
of seedCCA(X,Y[,1],type="cca") and seedCCA(Y[,1],X,type="cca") does not matter, and any of
them yields the same results. Also, the commands of coef(object) and fitted(object) return the
estimated coefficients and fitted values from the ordinary least squares, respectively.

## extracting arithmatic fiber from Y
> fit.ols <- seedCCA(X, Y[, 1], type="cca")
NOTE: One of the two sets are 1-dimensional, so a linear regression via ordinary least
square is fitted.

> names(fit.ols)
[1] "coef" "X" "Y"

> coef(fit.ols)
> fitted(fit.ols)

Seeded CCA (case 1): cookie data

The biscuit dough data set called cookie in seedCCA comes from the experiment of analyzing the
composition of biscuits by NIR spectroscopy. Two sets of variables are obtained from 72 biscuit
samples. The first set of variables is wavelengths measured by spectroscopy. In the original data set,
wavelengths at 700 different points from 1100 to 2798 nanometers (NM) at the steps of 2nm were
measured. However, since some of the figures seemed to contain little information, wavelengths from
1380nm to 2400 at an interval of 4nm were analyzed. The second set of variables is the percentages of
four ingredients: biscuits- fat, sucrose, dry flour, and water. Since the 23rd and 61st samples in the
data set were believed to be outliers, they were deleted from the data set. The standard CCA is not
applicable because of p = 256 > n = 72, and case 1 of the seeded CCA should be fitted, considering
that n = 72 >> r = 4.

The basic command for this is seedCCA(X,Y,type="seed1"), which results in “finalCCA” subclass.
Regardless of the order of X and Y, the lower dimensional set alone is reduced in the initial step.
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Therefore, seedCCA(X,Y,type="seed1") and seedCCA(Y,X,type="seed1") basically produce the same
seeded CCA results. For type="seed1", the values of the options of ux, uy, u, eps, and AS affect the
implementation, whose defaults are NULL, NULL, 10, 0.01, and TRUE, respectively.

Option u controls the maximum number of projections unless both ux and uy are specified. The
option ux=k works only when the dimension of the first set X is bigger than that of the second set Y.
Then, the maximum number of projections becomes the value given in ux=k. The option uy works
in the opposite way to ux. The options of AS=TRUE and eps control automatic termination of the
projections before reaching the maximum given in u, ux, or uy. The projection is terminated if the
increment gets less than the value given in eps. Then, the first candidate value, which satisfies the
stopping criteria, is suggested as a proper value of projections. If any of ux, uy, and u are specified not
enough to guarantee the automatic stopping, a notice is provided to increase it.

After running seedCCA(X,Y,type="seed1"), a plot for the proper selection of u is automatically
constructed, and a blue vertical bar in the plot is the suggested value of u.

## loading cookie data
> data(cookie)
> myseq<-seq(141, 651, by=2)
> A <- as.matrix(cookie[-c(23, 61), myseq])
> B <- as.matrix(cookie[-c(23, 61), 701:704])

## seedec CCA with case 1
> fit.seed1.ab <- seedCCA(A, B, type="seed1") ## the first set A has been initial-CCAed.
NOTE: Seeded CCA with case 1 is fitted. The set with larger dimension is initially reduced.
The first and second sets are denoted as X and Y, respectively.

> fit.seed1.ba <- seedCCA(B, A, type="seed1") ## the second set A has been initial-CCAed.
NOTE: Seeded CCA with case 1 is fitted. The set with larger dimension is initially reduced.
The first and second sets are denoted as X and Y, respectively.

> names(fit.seed1.ab)
[1] "cor" "xcoef" "ycoef" "proper.u" "initialMX0" "newX" "Y" "Xscores" "Yscores"

> names(fit.seed1.ba)
[1] "cor" "xcoef" "ycoef" "proper.u" "X" "initialMY0" "newY" "Xscores" "Yscores"

> fit.seed1.ab$xcoef[, 3] <- -fit.seed1.ab$xcoef[, 3] ## changing the sign
> fit.seed1.ab$xcoef[, 4] <- -fit.seed1.ab$xcoef[, 4] ## changing the sign

> all(round(fit.seed1.ab$cor, 5)== round(fit.seed1.ba$cor, 5))
[1] TRUE

> fit.seed1.ab$proper.u
[1] 3

> fit.seed1.ba$proper.u
[1] 3

> all(round(fit.seed1.ab$xcoef, 5) == round(fit.seed1.ba$ycoef, 5))
[1] TRUE

> fit.seed1.ab.ux <- seedCCA(A, B, type="seed1", ux=2)
The maximum number of iterations is reached. So, users must choose u bigger than 2.

> fit.seed1.ab.ux$proper.u
[1] 2

For fit.seed1.ab, the first set A is reduced in the initial step. The output component initialMX0
is the estimate of M0

x,u1
and newX is M̂0 T

x,u1
X. On the contrary, in case of fit.seed1.ba, the second

set A is initially reduced, so initialMY0 and newY are produced. So, it is observed that the canon-
ical correlations and suggested values of u from fit.seed1.ab and fit.seed1.ba are equal, not to
mention that fit.seed1.ab$xcoef and fit.seed1.ba$ycoef are the same. The selection plot for u
is reported in Figure 2, and three projections are suggested. Since ux is not given big enough in
seedCCA(A,B,type="seed1",ux=2), the following warning is given:

The maximum number of iterations is reached. So, users must choose u bigger than 2.
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Next, we change the values of ux, uy, AS, and eps. Since the usage of these options for type="seed1"
are the same as that for type="seed2" and type="pls". To measure the computing time, the tictoc
package (Izrailev (2014)) is used with Intel(R) Core(TM)i7 2.9GHz and 12GB Ram computer.

> seedCCA(A, B, type="seed1", ux=5)$proper.u
[1] 3

> seedCCA(B, A, type="seed1", eps=0.000001)$proper.u
[1] 4

> library(tictoc)
> tic()
> seedCCA(B, A, type="seed1", u=30)$proper.u
> toc()
0.03 sec elapsed

> tic()
> seedCCA(B, A, type="seed1", u=30, AS=FALSE)$proper.u
> toc()
0.29 sec elapsed

Usage of AS should be noted. With bigger choices of u and AS=FALSE, the running time of the function
will be longer.

Seeded CCA (case 2) versus Regularized CCA: nutrimouse data

The nutrimouse data was collected from a nutrition study in 40 mice (n = 40). One of two sets of
variables was expressions of 120 genes measured in liver cells by microarray technology. The other set
of variables was concentrations of 21 hepatic fatty acids(FA) measured through gas chromatography.
In addition, the forty mice are cross-classified based on two factors, genotype and diet. There are
two genotypes, wild-type (WT) and PPARα deficient (PPARα) mice and five diets: corn and colza oils
(50/50 REF), hydrogenated coconut oil for a saturated FA diet (COC), sunflower oil for ω6 FA-rich
diet (SUN), linseed oil for ω3-rich diet (LIN) and corn/colza/enriched fish oils (42.5/42.5/15, FISH).
The nutrimouse data is contained in the seedCCA package.

In this data, case 2 of the seeded CCA should be used because min(120, 21) is relatively big
compared to n = 40. Then, case 2 of the seeded CCA requires to choose how many eigenvectors of Σ̂xy
should be enough to replace it. This is another tuning parameter for case 2 of the seeded CCA along
with the number of projections. The option cut in seedCCA controls automatic selection of the number
of eigenvectors of Σ̂xy. The option cut=α determines a set of the eigenvectors whose cumulative
proportions of their corresponding eigenvalues is bigger than equal to α. For the set of eigenvectors to
be chosen conservatively, we set the default of cut at 0.9. Also, users can directly give the number of
eigenvectors using d. Unless d is NULL, the option cut is discarded. This means that cut works only
when d=NULL. If users want to use d, then a function covplot should be run first. The function covplot
has the option mind, which set the number of the eigenvalues to show their cumulative percentages.
Its default is NULL, and then it becomes min(p, r). The function returns the eigenvalues, the cumulative
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Figure 3: Scree plots for the selection of sets of eigenvectors to replace cov(X, Y) generated from
covplot(X, Y, mind=10) in Section 3.5

percentages, and the number of the eigenvectors to account for 60%, 70%, 80%, and 90% of the total
variation along with the scree plot of the eigenvalues.

The results of the seeded and regularized CCAs are compared. Since the regularized CCA is
necessary to choose proper values of the two parameters, we compare running times for the automatic
searches for the regularized and seeded CCAs via the tictoc package. For seedCCA, we use the default
value of cut.

> library(CCA)
> library(tictoc)

## loading nutrimouse data
> data(nutrimouse)
> X <- scale(as.matrix(nutrimouse$gene))
> Y <- scale(as.matrix(nutrimouse$lipid))

## determining the number of the eigenvectors of cov(X,Y) with cut=0.9
> tic("SdCCA")
> fit.seed2 <- seedCCA(X, Y)
> toc()
SdCCA: 0.13 sec elapsed

## finding the optimal values of lambda1 and lambda2 for RCCA
> tic("Regularized CCA")
> res.regul <- estim.regul(X, Y, plt=TRUE, grid1=seq(0.0001, 0.2, l=51), grid2=seq(0, 0.2, l=51))
> toc()
Regularized CCA 819.58 sec elapsed

## scree plot of cov(X, Y)
> names(covplot(X, Y, mind=10))
[1] "eigenvalue" "cum.percent" "num.evecs"

> names(fit.seed2)
[1] "cor" "xcoef" "ycoef" "proper.ux" "proper.uy" "d" "initialMX0" "initialMY0"
[9] "newX" "newY" "Xscores" "Yscores"

> fit.seed2$d
[1] 3

Since type="seed2" reduces the dimensions of X and Y at the initialized CCA step, the output compo-
nents of initialMX0, initialMY0, newX and newY and d are reported.

The plot generated from covplot(X,Y,mind=10) is given in Figure 3. According to Figure 3, the
first two, three, and four eigenvalues account for 79.6%, 91.8%, and 95.9% of the total variation of Σ̂xy,
respectively. Using 90% conservative guideline, it is determined that the first three largest eigenvectors
replace Σ̂xy well enough.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 15

●

●
●

●

●
●

●

ux

nF
u_

x

1 to 2 3 to 4 5 to 6 7 to 8

0
5

10
15

20

●

● ●

●

●

●

uy

n*
F

u_
y

1 to 2 3 to 4 5 to 6 7 to 8

0
5

10
15

20

Figure 4: Selection plot of ux and uy generated from seedCCA(X, Y) in Section 3.5

The selection plot of ux and uy is given in Figure 4. The figure suggests that ux and uy are equal to
7 and 6, respectively.

Now we compare the parameter selection time. For the regularized CCA, it can be done with
estim.regul, and users must provide a small enough range for them to reduce the computing time.
The resulted optimal λ1 and λ2 are 0.168016 and 0.004, respectively. With Intel(R) Core(TM)i7 2.9GHz
and 12GB Ram, the seeded CCA took 0.32 seconds, while 819.58 seconds, around 13.5 minutes, lapsed
for the regularized CCA. This difference is really huge, so time consumed in the selection of ux, uy and,
d is trivially small compared to the regularized CCA. This is a clear desirable aspect and advantage of
the seeded CCA over the regularized one.

Next, we compare the first two pairs of estimated canonical variates. The results shown in Figures
5–6 are equivalent to the analysis discussed in González et al. (2008).

## Extracting the first two pairs of canonical variates
> sx1 <- fit.seed2$Xscores[, 1]
> sx2 <- fit.seed2$Xscores[, 2]
> sy1 <- fit.seed2$Yscores[, 1]
> sy2 <- fit.seed2$Yscores[, 2]

## fitting the regularized CCA
> res.rcc <- rcc(X, Y, 0.168016, 0.004)
> RCCA.X <- X%*%res.rcc$xcoef
> RCCA.Y <- Y%*%res.rcc$ycoef
> rx1 <- RCCA.X[,1]
> rx2 <- RCCA.X[,2]
> ry1 <- RCCA.Y[,1]
> ry2 <- RCCA.Y[,2]

par(mfrow=c(1,2))
> with(plot(rx1, ry1, col=c(2,4)[genotype], pch=c(1,2)[genotype],
+ main="1st pair from RCCA", xlab="rx1", ylab="ry1"), data=nutrimouse)
> with(legend(-1.4, 1.4, legend=levels(genotype), col=c(2,4), pch=c(1,2), cex=1.5),
+ data=nutrimouse)
> with(plot(-sx1, -sy1, col=c(2,4)[genotype], pch=c(1,2)[genotype],
+ main="1st pair from seedCCA", xlab="sx1", ylab="sy1"), data=nutrimouse)
> with(legend(-1.5, 1.6, legend=levels(genotype), col=c(2,4), pch=c(1,2), cex=1.5),
+ data=nutrimouse)

> par(mfrow=c(1,2))
> with(plot(rx2, ry2, col=c(1:4,6)[diet], pch=c(15,16,17,18,20)[diet], cex=1.5,
+ main="2nd pair from RCCA", xlab="rx2", ylab="ry2"), data=nutrimouse)
> with(legend(-2.3, 1.9, legend=levels(diet), col=c(1:4,6), pch=c(15:18,20)),
+ data=nutrimouse)
> with(plot(sx2, sy2, col=c(1:4,6)[diet], pch=c(15,16,17,18,20)[diet], cex=1.5,
+ main="2nd pair from seedCCA", xlab="sx2", ylab="sy2"), data=nutrimouse)
with(legend(-2.5, 1.9, legend=levels(diet), col=c(1:4,6), pch=c(15:18,20)),
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Figure 5: the first pair of canonical variates from regularized CCA and seeded CCA marked with
genotype in Section 3.5
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Figure 6: the second pair of canonical variates from regularized CCA and seeded CCA marked with
diet in Section 3.5

+ data=nutrimouse)

According to Figures 5–6, the first pair of canonical variates from both CCAs distinguish genotype
very well, but their second pairs marked with diet are quite complex. To have more insight into
the results for the second pair on a diet, multivariate analysis of variance is fitted. Further pairwise
comparison is done via lsmeans (Lenth (2016)) with level 5% and p-values adjusted by false discovery
rate Benjamini and Hochberg (1995).

> library(lsmeans)
> fit2r <- manova(cbind(rx2, ry2)~diet, data=nutrimouse)
> fit3sd <- manova(cbind(sx2, sy2)~diet, data=nutrimouse)
> test( contrast( lsmeans(fit2r, "diet"), "pairwise"), side = "=", adjust = "fdr")
contrast estimate SE df t.ratio p.value
coc - fish -2.3842686 0.2684019 35 -8.883 <.0001
coc - lin -2.1749708 0.2684019 35 -8.103 <.0001
coc - ref -1.4881111 0.2684019 35 -5.544 <.0001
coc - sun -1.6582635 0.2684019 35 -6.178 <.0001
fish - lin 0.2092978 0.2684019 35 0.780 0.4897
fish - ref 0.8961575 0.2684019 35 3.339 0.0040
fish - sun 0.7260051 0.2684019 35 2.705 0.0175
lin - ref 0.6868597 0.2684019 35 2.559 0.0214
lin - sun 0.5167073 0.2684019 35 1.925 0.0780
ref - sun -0.1701524 0.2684019 35 -0.634 0.5302

Results are averaged over the levels of: rep.meas
P value adjustment: fdr method for 10 tests
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> test( contrast (lsmeans(fit3sd, "diet"), "pairwise"), side = "=", adjust = "fdr")
contrast estimate SE df t.ratio p.value
contrast estimate SE df t.ratio p.value
coc - fish -2.14838660 0.3163067 35 -6.792 <.0001
coc - lin -1.79396325 0.3163067 35 -5.672 <.0001
coc - ref -1.07697196 0.3163067 35 -3.405 0.0035
coc - sun -1.03303440 0.3163067 35 -3.266 0.0041
fish - lin 0.35442334 0.3163067 35 1.121 0.3001
fish - ref 1.07141463 0.3163067 35 3.387 0.0035
fish - sun 1.11535219 0.3163067 35 3.526 0.0035
lin - ref 0.71699129 0.3163067 35 2.267 0.0371
lin - sun 0.76092885 0.3163067 35 2.406 0.0308
ref - sun 0.04393756 0.3163067 35 0.139 0.8903

Results are averaged over the levels of: rep.meas
P value adjustment: fdr method for 10 tests

For the regularized CCA, the “coc” diet is different from the others. Moreover “fish” differs from
“sun”. However, the other pairwise comparisons are quite mixed. It is determined that there are
no significant differences between “fish-lin”, “lin-sun”, and “ref-sun”. On the contrary, reasonable
pairwise comparison results come from the seeded CCA. Like the others, the “coc” diet is different
from the others. Furthermore, “fish-lin” is not significantly different, and “ref-sun” is concluded to be
similar. Fish oil is known to contain ω3, and linseed oil is designed for it. Therefore, this conclusion
would be reasonable. Also, the reference oil diet consists of corn and colza oil, which is known to
contain ω6. Since sun-flower oil is, indeed, for ω6-rich diet, this result is also reasonable. In this regard,
the seeded CCA results would be preferable to the regularized CCA.

Partial least square application with nutrimouse data

With the nutrimouse data, consider a regression of the first one, “ C14.0” in concentrations of 21 hepatic
fatty acids given expressions of 120 genes measured in liver cells. In this case, partial least squares
is a front-runner choice. Then, to obtain the partial least square estimator in seedCCA, one needs
to implement seedCCA(X,Y,type="pls"). This results in “seedpls” subclass. An important matter
in partial least squares is that the first set of the variable must be predictors. The response variable
can be either univariate or multivariate. Option u is recommended to set reasonably small because
the estimated coefficients are reported up to the value given in u. If scale=TRUE, the predictors are
standardized to have zero sample means and the sample correlation matrix.

The estimated coefficients and fitted values by partial least square can be obtained via coef(object,u=NULL)
and fitted(object,u=NULL). The default of u in both coef and fitt is NULL. In both functions, usage
of u is equivalent. If u=k is specified, only the estimated coefficients and fitted values computed from
k projections are reported. All of the coefficient estimates and fitted values are reported up to u, if
u=NULL.

For type="pls", the automatic procedure to suggest a proper value of projections is not conducted.
For the “seedpls” subclass, plot(object) suggests a proper value of projections along with other
output components. If the terminating condition is not satisfied before reaching the value of u, then
plot(object) provides a caution to increase the value of u.

> data(nutrimouse)
> Y <- as.matrix(nutrimouse$lipid)
> X <- as.matrix(nutrimouse$gene)
> Y1 <- as.matrix(Y[, 1]) ## univariate response
> Y12 <- as.matrix(Y[, 1:2]) ## multivariate response

## fitting partial least square and obtaining the estimated coefficient vector
> fit.pls1.10 <- seedCCA(X, Y1, u=10, type="pls")
> fit.pls1.3 <- seedCCA(X, Y1, u=3, type="pls", scale=TRUE)

> names(fit.pls1.10)
[1] "coef" "u" "X" "Y" "scale"

> names(fit.pls1.10$coef)
[1] u=1" "u=2" "u=3" "u=4" "u=5" "u=6" "u=7" "u=8" "u=9" "u=10"
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> names(fit.pls1.3$coef)
[1] "u=1" "u=2" "u=3"

> fit.pls1.3$scale
[1] TRUE

> par(mfrow=c(1,2))
> plot(fit.pls1.10)
$proper.u
[1] 6
$nFu
[1] 6.344725e+00 2.383108e+00 1.681329e+00 2.669394e+00 1.853061e+00 3.217472e-04 5.296046e-05
[8] 6.017641e-06 4.895905e-07 3.117371e-08
$u
[1] 10
$eps
[1] 0.01
> title("fit.pls1.10")

> plot(fit.pls1.3)
Caution: The terminating condition is NOT satisfied. The number of projections should be bigger than 3.
$proper.u
[1] 3
$nFu
[1] 6.344725 2.383108 1.681329
$u
[1] 3
$eps
[1] 0.01
> title("fit.pls1.3")

> names(fitted(fit.pls1.10))
[1] "u=1" "u=2" "u=3" "u=4" "u=5" "u=6" "u=7" "u=8" "u=9" "u=10"

> fitted(fit.pls1.10, u=6)
1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.137 0.368 0.317 0.346 0.492 1.620 0.722 0.003 0.065 1.212 0.458 0.640 0.272 0.397
15 16 17 18 19 20 21 22 23 24 25 26 27 28

-0.103 0.426 1.448 0.287 1.264 0.517 2.803 0.914 0.043 0.028 0.234 0.598 0.875 0.434
29 30 31 32 33 34 35 36 37 38 39 40

0.694 0.666 2.958 2.350 0.620 0.958 0.495 2.790 0.701 0.168 0.767 0.535

> fit.pls.m <- seedCCA(X, Y12, u=5, type="pls")
> dim(fit.pls.m$coef$'u=1')
[1] 120 2

The selection of projections for two partial least squares by seedCCA(X,Y1,u=10,type="pls") and
seedCCA(X,Y1,u=3,type="pls",scale=TRUE) is given in Figure 7. According to Figure 7, the proper
value of projection is suggested at 6 for fit.pls1.10 object, while the termination condition is not
satisfied for fit.pls1.3 object, so a caution statement is given.

4 Discussion

When a study between two sets of variables, saying (X ∈ Rp, Y ∈ Rr), is of primary interest, canonical
correlation analysis (CCA; Hotelling (1936)) is still popularly used in explanatory studies. The CCA
has successful application in many science fields such as chemometrics, pattern recognition, genomic
sequence analysis, and so on.

The recently developed seedCCA package implements a collection of CCA methodologies includ-
ing the standard CCA application, seeded CCA, and partial least squares. The package enables us to fit
CCA to large-p and small-n data. The paper provides a complete guide for the package to implement
all the methods, along with three real data examples. Also, the seeded CCA application results are
compared with the regularized CCA in the existing CCA package.
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Figure 7: Selection plot of u generated from seedCCA(X, Y1, u=10, type="pls")(left) and seedCCA(X,
Y1, u=3, type="pls", scale=TRUE)(right) in Section 3.6

It is believed that the package, along with the paper, will contribute to high-dimensional data
analysis in various scientific field practitioners and that the statistical methodologies in multivariate
analysis become more fruitful.
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npcure: An R Package for Nonparametric
Inference in Mixture Cure Models
by Ana López-Cheda, M. Amalia Jácome, Ignacio López-de-Ullibarri

Abstract Mixture cure models have been widely used to analyze survival data with a cure fraction.
They assume that a subgroup of the individuals under study will never experience the event (cured
subjects). So, the goal is twofold: to study both the cure probability and the failure time of the
uncured individuals through a proper survival function (latency). The R package npcure implements a
completely nonparametric approach for estimating these functions in mixture cure models, considering
right-censored survival times. Nonparametric estimators for the cure probability and the latency as
functions of a covariate are provided. Bootstrap bandwidth selectors for the estimators are included.
The package also implements a nonparametric covariate significance test for the cure probability,
which can be applied with a continuous, discrete, or qualitative covariate.

1 Introduction

In classical survival analysis, it is assumed that all the individuals will eventually experience the
event of interest. However, there are many contexts in which this assumption might not be true.
Noticeable examples are the lifetime of cancer patients after treatment, time to infection in a risk
population, or time to default in credit scoring, among many others. Cure models are a stream of
methods recently developed in survival analysis that take into account the possibility that subjects
could never experience the event of interest. See Maller and Zhou (1996) for early references and
Amico and Van Keilegom (2018) for an updated review.

Let X be a set of covariates and Y the time to the event of interest with conditional survival
function S (t|x) = P (Y > t|X = x). Mixture cure models, initially proposed by Boag (1949), consider
the population as a mixture of two types of subjects: the susceptible of experiencing the event if
followed for long enough (Y < ∞) and the cured ones (Y = ∞). Hence, the survival function of Y can
be written as

S (t|x) = 1 − p (x) + p (x) S0 (t|x) ,

where 1 − p (x) = P (Y = ∞|X = x) = limt→∞ S (t|x) is the cure probability, and the (proper) survival
function of the uncured subjects or latency is S0 (t|x) = P (Y > t|Y < ∞, X = x). A major advantage of
these models over the non-mixture approach is that they allow the covariates to have different effect
on cured and uncured individuals.

The cure probability, 1 − p (x), is usually estimated parametrically by assuming a logistic form
log (p (x) / (1 − p (x))) = β′x, with β a parameter vector. Estimation of S0 (t|x) can be done by
assuming a particular parametric distribution for the failure time of the uncured subjects, or more
generally, by applying, e.g., proportional hazards (PH) or accelerated failure time (AFT) assumptions.
These two approaches lead to parametric (see, e.g., Farewell, 1982, 1986; Denham et al., 1996) or
semiparametric (see, e.g., Kuk and Chen, 1992; Peng et al., 1998; Peng and Dear, 2000; Li and Taylor,
2002) mixture cure models.

An attractive feature of parametric and semiparametric models is that they provide close expres-
sions for relevant parameters and functions. On the other hand, the sound inference is guaranteed
only if the chosen model fits the data suitably. A problem with these methods is that the parametric
assumptions may be incorrect. For example, regarding the cure rate 1 − p (x), there is no reason to
believe that the cure rate is monotone in x, let alone that it follows a logistic model. To solve this hassle,
Müller and Van Keilegom (2019) propose a test statistic to assess whether the cure rate, as a function
of X, satisfies a certain parametric model. As for the latency function, S0 (t|x), it is difficult to verify
the distributional assumptions of the model. The goodness of fit for the latency function has only
been addressed in settings without covariates and in an informal way (Maller and Zhou, 1996). The
challenge of developing procedures for testing the parametric form of the conditional survival function
of the uncured with covariates is even more ambitious. It would lead to curse-of-dimensionality
problems and remains an open question.

As a result of the increasing demand for the use of cure models, the number of packages in R
accounting for the possibility of cure in survival analysis has grown significantly over the last decade:
see the CRAN task view on survival analysis (https://CRAN.R-project.org/view=Survival). The
smcure package (Cai et al., 2012) fits the semiparametric PH and AFT mixture cure models (see
Kalbfleisch and Prentice, 2002). Besides, the NPHMC package (Cai et al., 2013) allows to calculate
the sample size of a survival trial with or without cure fractions. More recently, the flexsurvcure
package (Amdahl, 2017) provides flexible parametric mixture and non-mixture cure models for time-
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to-event data, and the rcure package (Han et al., 2017) incorporates methods related to robust cure
models for survival data which include a weakly informative prior in the logistic part. The geecure
package (Niu and Peng, 2018) features the marginal parametric and semiparametric PH mixture
cure models for analyzing clustered survival data with a possible cure fraction. Furthermore, the
miCoPTCM package (Bertrand et al., 2020) fits semiparametric promotion time cure models with
possibly mis-measured covariates, while the mixcure package (Peng, 2020) implements parametric and
semiparametric mixture cure models based on existing R packages. For interval-censored data with a
cure fraction, the GORcure package (Zhou et al., 2017) implements the generalized odds rate mixture
cure model, including the PH mixture cure model and the proportional odds mixture cure model as
special cases. The intercure package (Brettas, 2016) provides an implementation of semiparametric
cure rate estimators for interval-censored data using bounded cumulative hazard and frailty models.

In contrast with (semi)parametric procedures, nonparametric methods do not rely on data belong-
ing to any particular parametric family or fulfilling any parametric assumption. They estimate the goal
functions without making any assumptions about its shape, so they have much wider applicability
than alternative parametric methods. A completely nonparametric mixture cure model must consider
purely nonparametric estimators for both the cure rate, 1 − p(x), and latency function, S0 (t|x). Unlike
the (semi)parametric approach, nonparametric mixture cure models have been under study only
in recent years. Laska and Meisner (1992), building on the Kaplan-Meier (KM) product-limit (PL)
estimator of the survival function S (t) = P (Y > t) (Kaplan and Meier, 1958), derive nonparametric
estimators of the cure rate and latency function, but their model does not allow for covariates. More
recently, Xu and Peng (2014) propose a nonparametric estimator of the cure rate with one or more
covariates, showing its consistency and asymptotic normality. This estimator was further studied by
López-Cheda et al. (2017a), who, besides proving that it is the maximum likelihood nonparametric
estimator of the cure probability, also obtain an i.i.d. representation and proposed a bootstrap-based
bandwidth selector. As for the latency function, López-Cheda et al. (2017b) introduce a completely
nonparametric estimator, studied some theoretical properties, and proposed a bandwidth selector
based on the bootstrap.

Although some of the aforementioned packages have a nonparametric flavor, their approach to
mixture cure modeling is not completely nonparametric. Our R package npcure (López-de-Ullibarri
et al., 2020) fills the gap by providing implementations of the nonparametric estimator of the cure rate
function proposed by Xu and Peng (2014) (further studied by López-Cheda et al., 2017a) and of the
nonparametric estimator of the latency function proposed by López-Cheda et al. (2017b).

Furthermore, the generalized PL estimator of the conditional survival function, S (t|x), proposed
by Beran (1981), is implemented. Note that the estimators of the cure rate and latency implemented in
npcure relate strongly to Beran estimator. In any case, Beran estimator is of outstanding importance by
its own, as evidenced by the variety of R packages with functions for computing it, like, e.g., Beran() in
package condSURV (Meira-Machado and Sestelo, 2016), prodlim() in package prodlim (Gerds, 2018)
and Beran() in package survidm (Meira-Machado et al., 2019). The function in our package compares
advantageously with the aforementioned functions with respect to the issue of bandwidth selection.
This smoothing parameter plays an essential role in the bias-variance tradeoff of every nonparametric
smoothing method. In Dabrowska (1992), an expression for the bandwidth minimizing the asymptotic
mean squared error (MSE) of this estimator was obtained, and a plug-in bandwidth selector was
proposed based on suitable estimators of the unknown functions in that expression. However, the
performance of this bandwidth selector is unsatisfying for small sample sizes, and a cross-validation
(CV) procedure is usually preferred (see Iglesias-Pérez, 2009; Gannoun et al., 2007, among others).
Recently, Geerdens et al. (2017) propose an improved CV bandwidth selector, especially with a high
censoring rate. To the best of our knowledge, there are not any R packages allowing to compute Beran
estimator with a suitable bandwidth selector: while the condSURV and survidm packages do not
consider any bandwidth selectors, the prodlim package uses nearest neighborhoods as the smoothing
parameter. The npcure package, available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=npcure, fulfills this need with the implementation of the CV
bandwidth selector for the Beran estimator in Geerdens et al. (2017).

In this paper, we explain how the npcure package can be used in the context of nonparametric
mixture cure models with right-censored data. The main objective is to estimate the cure probability
and latency functions, as well as to perform covariate significance tests for the cure rate. In the
next section, we describe our approach to nonparametric estimation in mixture cure models. The
methodology applied in the covariate significance tests is presented in another section. Two sections
follow, devoted respectively to explain the package functions and to illustrate their use with an
application to a medical dataset.
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2 Nonparametric estimation in mixture cure models

One of the specificities of time-to-event data is related to the presence of individuals that have not
experienced the event by the end of the study. The observed survival times of these individuals are
said to be right-censored and underestimate the true unknown time to the occurrence of the event.
This situation is usually modeled by considering a censoring variable C, with distribution function
G, which is conditionally independent of Y given the covariate X. The observed data are then
{(Xi, Ti, δi) : i = 1, . . . , n}, where T = min (Y, C) is the observed lifetime and δ = 1 (Y ≤ C) is the
uncensoring indicator. For a one-dimensional continuous covariate X, Xu and Peng (2014) propose
the following nonparametric kernel-type estimator of the cure rate:

1 − p̂h (x) =
n

∏
i=1

(
1 −

δ[i]Bh[i](x)

∑n
r=i Bh[r](x)

)
= Ŝh(T

1
max|x), (1)

where, for i = 1, . . . , n, δ[i] and X[i] are the concomitant status indicator and covariate corresponding
to the ith ordered time T(i), and

Bh[i](x) =
Kh

(
x − X[i]

)
∑n

j=1 Kh

(
x − X[j]

) (2)

are the Nadaraya-Watson weights, where Kh(·) = 1
h K
( ·

h
)

is a rescaled kernel with bandwidth h → 0.
Although some different kernel functions could be considered, the Epanechnikov kernel, defined as

K(u) =
3
4
(1 − u2)1(|u| ≤ 1),

is the one implemented in the npcure package. Moreover, Ŝh is the estimator of the conditional survival
function S in Beran (1981), and T1

max = max{i:δi=1} Ti is the largest uncensored failure time. Xu and
Peng (2014) prove the consistency and asymptotic normality of the estimator in (1), and López-Cheda
et al. (2017a) show that it is the local maximum likelihood estimator of the cure rate, and obtained an
i.i.d. representation and an asymptotic expression for the MSE.

The nonparametric latency estimator proposed by López-Cheda et al. (2017a), and further studied
in López-Cheda et al. (2017b), is:

Ŝ0,b (t|x) =
Ŝb (t|x)− (1 − p̂b(x))

p̂b (x)
, (3)

where Ŝb is the PL estimator of the conditional survival function S (Beran, 1981) and p̂b is the estimator
in (1). As in the case of the cure rate estimator, a smoothing parameter b, not necessarily equal to h, is
needed to compute Ŝ0,b in (3).

Consistency of the nonparametric estimators

The proposed nonparametric estimators of both the cure rate and latency are consistent under the
general condition (see Laska and Meisner, 1992; Maller and Zhou, 1992; López-Cheda et al., 2017a,b)

τ0 ≤ τG(x), (4)

where τ0 = supx τ0(x), and τ0(x) = sup{t ≥ 0 : S0 (t|x) > 0} and τG(x) = sup{t ≥ 0 : G (t|x) < 1}
are the right endpoints of the support of the conditional distribution of the uncures and the censoring
variable, respectively.

The condition in (4) ensures 1 − p (x) and S0 (t|x) to be consistently estimated when there is zero
probability that a susceptible individual survives beyond the largest possible censoring time, τG (x).
Since T1

max converges to τ0 in probability (see Xu and Peng, 2014), assumption (4) guarantees that,
asymptotically, all times observed after the largest uncensored survival time, T1

max, can be assumed to
correspond to cures.

Under condition (4), S0 (τG(x)|x) = 0 and, for large n, the cure rate estimator in (1) tends to a
nonparametric estimator of S (τG (x) |x) = 1 − p(x) + p(x)S0 (τG(x)|x) = 1 − p(x). However, if there
could be uncured individuals surviving beyond τG(x), then S0 (τG(x)|x) > 0 and the estimator in
(1) would estimate S (τG(x)|x) = 1 − p(x) + p(x)S0 (τG(x)|x) > 1 − p(x). This might happen, for
example, in a clinical trial with fixed maximum follow-up time.

These comments emphasize that care must be exercised in choosing the length of follow-up if
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cures might be present since too much censoring or insufficient follow-up time could lead to erroneous
conclusions. For example, if the last observation is uncensored, then, even if there is considerable late
censoring, the estimated cure rate is 0. To avoid these difficulties, particularly with heavy censoring,
reasonably long follow-up times and large sample sizes may be required. In this way, S0 (τG(x)|x) is
sufficiently small for the cure rate estimator in (1) to be close enough to 1 − p(x).

Thus, when estimating 1 − p(x) and S (t|x) for a given x with a data set, it is important to be
confident that τ0 ≤ τG(x). In any case, if the censoring distribution G(t|x) has a heavier tail than
S0 (t|x), the cure rate estimates computed with the nonparametric estimator in (1) will tend to have
smaller biases regardless of the value of τ0(x) (see Xu and Peng, 2014). Maller and Zhou (1992) propose
a simple nonparametric test to assess condition (4). The procedure is based on the length of the interval
(T1

max, T(n)], i.e., the right tail of the KM estimate where it has a constant value. A long plateau with
heavy censoring at the right tail of the KM curve is interpreted as evidence that follow-up time has
been long enough to conclude that condition (4) holds.

Bandwidth selection

The nonparametric estimators in (1) and (3) depend on two smoothing parameters, h and b, respectively.
Bootstrap-based selectors for the bandwidth h of the cure rate estimator and the bandwidth b of
the latency estimator are proposed by López-Cheda et al. (2017a) and López-Cheda et al. (2017b),
respectively. The bandwidths are locally chosen so that the selected bandwidths hx and bx depend on
the point x of estimation. Using locally adaptive bandwidths instead of global ones is advantageous
because they adapt to the structure of the underlying function, differentially smoothing its flat and
peaky parts.

For a fixed value x, the bootstrap bandwidth of the cure estimator, h∗x, was introduced by López-
Cheda et al. (2017a) as the minimizer of the bootstrap MSE, approximated with B resamples as
follows:

MSE∗
x(hx) ≃

1
B

B

∑
b=1

(
p̂∗b

hx
(x)− p̂gx (x)

)2
, (5)

where p̂∗b
hx
(x) is the estimator of p(x) in (1) computed with

{(
X∗b

i , T∗b
i , δ∗b

i

)
: i = 1, . . . , n

}
(the bth

bootstrap resample), and using the local bandwidth hx, and p̂gx (x) is computed with the original
sample {(Xi, Ti, δi) : i = 1, . . . , n}, and the local pilot bandwidth gx.

With respect to the latency estimator in (3), López-Cheda et al. (2017b) propose to choose the
bandwidth bx locally with a bootstrap bandwidth selector. The bootstrap bandwidth of the latency
estimator, b∗x , is taken as the minimizer of the bootstrap mean integrated squared error (MISE):

MISE∗
x(bx) ≃

1
B

B

∑
b=1

∫ u

0

(
Ŝ∗b

0,bx
(t|x)− Ŝ0,gx (t|x)

)2
dt, (6)

where Ŝ∗b
0,bx

(t|x) is the nonparametric estimator of S0 (t|x) in (3) computed with the bth bootstrap
resample and local bandwidth bx, Ŝ0,gx (t|x) is the same estimator obtained using the original sample
and a local pilot bandwidth gx, and u is an adequately chosen upper bound of the integral.

For a fixed covariate value x, the procedure for obtaining the bootstrap bandwidth selector of hx
for p̂hx (x) (respectively, bx for Ŝ0,bx (t|x)) is as follows:

1. Generate B bootstrap resamples
{(

X∗b
i , T∗b

i , δ∗b
i

)
: i = 1, . . . , n

}
, for b = 1, . . . , B.

2. Consider a search grid of bandwidths hl ∈ {h1, . . . , hL}. For b = 1, . . . , B and l = 1, . . . , L,
compute the nonparametric estimator p̂∗b

hl
(x) (respectively, the nonparametric latency estimator,

Ŝ∗b
0,hl

(t|x)) with the bth bootstrap resample and bandwidth hl .

3. Compute the nonparametric estimator p̂gx (x) (respectively, the nonparametric latency estimator
Ŝ0,gx (t|x)) with the original sample and pilot bandwidth gx.

4. For each bandwidth hl ∈ {h1, . . . , hL}, compute the Monte Carlo approximation of MSE∗
x(hl) in

(5), (respectively, the Monte Carlo approximation of MISE∗
x(hl) in (6)).

5. The bootstrap bandwidth h∗x for the cure rate estimator (respectively, b∗x for the latency estimator)
is the minimizer of the Monte Carlo approximation of MSE∗

x(hl) (respectively, MISE∗
x(hl)) over

the grid of bandwidths {h1, . . . , hL}.

Following López-Cheda et al. (2017a) and López-Cheda et al. (2017b), the bootstrap resamples in
Step 1 are generated considering the following procedure, which is equivalent to the simple weighted
bootstrap proposed by Li and Datta (2001) without resampling the covariate X:
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I. Generate X∗
1 , . . . , X∗

n by fixing X∗
i = Xi, i = 1, . . . , n.

II. For each i, compute the weighted empirical distribution F̂gX∗
i

(
t, δ|X∗

i
)

with the original sample,

where F̂gx (t, δ|x) = ∑n
i=1 Bgx i(x)1 (Ti ≤ t, δi ≤ δ) and Bgx i(x) is computed with a local pilot

bandwidth gx (see (7) below).

III. For each i, generate the pair
(
T∗

i , δ∗i
)

from the weighted empirical estimator F̂gX∗
i

(
t, δ|X∗

i
)

of the
conditional distribution.

López-Cheda et al. (2017a) and López-Cheda et al. (2017b) show that the effect of the pilot
bandwidth on the bootstrap bandwidth selectors of hx and bx is considerably low. Consequently, the
same expression for the pilot bandwidth, gx, is used in Step II of the bootstrap resampling procedure
and in the approximation of the MSE∗

x in (5) for the selection of the bandwidth hx of the cure rate
estimator (respectively, in the approximation of the MISE∗

x in (6) for the bandwidth bx of the latency
estimator):

gx =
d+k (x) + d−k (x)

2
1001/9n−1/9, (7)

where d+k (x) (respectively, d−k (x)) is the distance from x to the kth nearest neighbor on the right
(respectively, on the left). If there are not at least k neighbors on the right (or left), we use d+k (x) =
d−k (x). López-Cheda et al. (2017a) show that a good choice for the parameter k is to consider k = n/4.
The order n−1/9 satisfies the conditions in Theorem 1 of Li and Datta (2001) and coincides with the
optimal order for the pilot bandwidth obtained by Cao and González-Manteiga (1993) in the case
without censoring.

When selecting locally adaptive bandwidths, the results might look a little bit spiky due to its local
nature (see, e.g., Brockmann et al., 1993, on local bandwidth selection for kernel regression estimators).
That could be the case for the bootstrap bandwidths for both the cure rate and latency functions. To
get rid of the fluctuation of these local bandwidths, hx and bx can be further smoothed, for example,
by computing a centered moving average of the unsmoothed vector of bandwidths as in López-Cheda
et al. (2017a).

3 Covariate significance tests

In medical studies, it is usually important to assess whether the cure probability depends on a specific
covariate, X. Noting that the cure rate can be interpreted as the regression function E (ν|X = x) =
1 − p(x), where ν is the indicator of cure, the question can be cast in the form of a hypothesis test:{

H0 : E (ν|X) = 1 − p
H1 : E (ν|X) = 1 − p(X)

. (8)

Although there are some parametric approaches to deal with this hypothesis testing problem (see
Müller and Van Keilegom, 2019, among others), the only completely nonparametric method was
introduced by López-Cheda et al. (2020). Their procedure is based on the test for selecting explanatory
variables in nonparametric regression described by Delgado and González-Manteiga (2001). The
greatest advantage of the proposed significance test for the cure rate is that although the test is
completely nonparametric, no smoothing parameters are required to test (8).

The main challenge when testing (8) is that the cure indicator, ν, is only partially known due to
censoring: complete observations are known to be uncured (ν = 0), but censored observations might
be either cured or uncured (i.e., ν is unknown). Under right censoring, all of the cured individuals
and some of the uncured ones will be censored. This makes it difficult to guess whether a censored
observation belongs to the cured or uncured subpopulation. López-Cheda et al. (2020) solved this
situation by replacing the unknown and inestimable response variable ν in (8) by an unknown but
estimable response η with the same conditional expectation as ν:

η =
ν (1 − 1(δ = 0, T ≤ τ))

1 − G (τ|X)
, (9)

where τ is an unknown time beyond which a lifetime might be assumed to be cured. López-Cheda
et al. (2020) propose to estimate η by replacing G and τ with suitable nonparametric estimators. The
censoring distribution is estimated with the generalized PL estimator by Beran (1981) computed with
the cross-validation (CV) bandwidth selector in Geerdens et al. (2017) when X is continuous and with
the stratified KM estimator with the same bandwidth selector otherwise. The cure threshold, τ, is
estimated as τ̂ = T1

max, the largest uncensored observed time. The expression of η in (9) avoids the
need for an estimator of the unknown cure indicator, ν, since if δi = 1 or (δi = 0, Ti < τ̂) then η̂i = 0,
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whereas if (δi = 0, Ti ≥ τ̂) then η̂i = 1/
(
1 − Ĝ(τ̂|Xi)

)
. It is easy to check that E (ν|X) = E (η|X) if the

conditional censoring distribution G (t|x) is independent of the cure status.

Finally, building on Delgado and González-Manteiga (2001) and using the estimated values of η in
(9), the significance test proposed by López-Cheda et al. (2020) is based on the process:

Un(x) =
1
n

n

∑
i=1

η̂i −
1
n

n

∑
j=1

η̂j

 1 (Xi ≤ x) . (10)

Cramér-von Mises (CM) or Kolmogorov-Smirnov (KS) test statistics can be used:

CMn =
n

∑
i=1

U2
n(Xi),

KSn = max
i=1,...,n

n1/2|Un(Xi)|. (11)

Note that if X is a nominal variable, it is impossible to compute the indicator function in (10). In this
case, López-Cheda et al. (2020) propose to consider all the possible ‘ordered’ permutations of the
values of X and to compute Un(x) according to the ‘ordering’ of each permutation. The values of the
CM and KS test statistics are given by the maximum of the values CMn and KSn computed along with
all the permutations.

The distribution of the CM and KS statistics under the null hypothesis is approximated by boot-
strap, according to the following steps:

A. Obtain X∗
i , i = 1, . . . , n, by randomly resampling with replacement from {X1, . . . , Xn}.

B. Estimate the probability of cure under H0 as 1 − p̂ = ŜKM
n
(
T1

max
)
, with ŜKM

n the KM estimator
of the survival function S(t) = P (Y > t). For i = 1, . . . , n:

B.1. Compute Ŝ0,b
(
t|X∗

i
)
, a nonparametric estimator of the latency S0

(
t|X∗

i
)
, with the original

sample. Set Y∗
i = ∞ with probability 1 − p̂, and draw Y∗

i from Ŝ0,b(t|X∗
i ) with probability

p̂.

B.2. Generate C∗
i from a nonparametric estimator of G

(
t|X∗

i
)

with the original sample.

B.3. Compute T∗
i = min

(
Y∗

i , C∗
i
)

and δ∗i = 1
(
Y∗

i ≤ C∗
i
)
.

C. With the bootstrap resample
{(

X∗
i , T∗

i , δ∗i
)

: i = 1, . . . , n
}

compute η̂∗
i for i = 1, . . . , n.

D. With
{(

η̂∗
i , X∗

i
)

: i = 1, . . . , n
}

, compute the bootstrap versions of Un in (10) and the correspond-
ing CM and KS statistics, CM∗

n and KS∗
n.

E. Repeat Steps A-D above B times in order to generate B values of the CM and KS statistics,{
CM∗1

n , . . . , CM∗B
n
}

and
{

KS∗1
n , . . . , KS∗B

n
}

.

F. The p-value of the CM (respectively, KS) test is approximated as the proportion of values{
CM∗1

n , . . . , CM∗B
n
}

larger than CMn (respectively,
{

KS∗1
n , . . . , KS∗B

n
}

larger than KSn).

Note that nonparametric estimators of the conditional functions S0 (t|x) and G (t|x) are required in
Step B. Following López-Cheda et al. (2020), if X is continuous, then S0 (t|x) and G (t|x) are estimated
with the nonparametric estimator in (3) and the generalized PL estimator in Beran (1981), respectively,
and with the corresponding stratified unconditional estimators otherwise.

4 The npcure package: structure and functionality

The npcure package provides several functions to model nonparametrically survival data with a
possibility of cure. Table 1 contains a compact summary of the available functions. The estimators of
the cure rate and latency functions, discussed in the section "Nonparametric estimation in mixture cure
models", are implemented by probcure() and latency(), respectively. The functions probcurehboot()
and latencyhboot() compute bootstrap bandwidths for these estimators. Another function deserving
mention in this context is beran(), which computes the generalized PL estimator of the conditional
survival function S (t|x). A CV bandwidth for use with beran() is returned by berancv(). Given the
computational burden of the procedures implemented by the aforementioned functions, all of them
make extensive use of compiled C code. The significance test introduced in the previous section is
carried out by testcov(), and testmz() performs the nonparametric test of Maller and Zhou (1992).
Next, a detailed account of the usage of all these functions is provided.

The estimation functions in npcure are restricted to one-dimensional continuous covariates. The
Epanechnikov kernel is used in the smoothing procedures. Nonparametric estimation with discrete or
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Function Description

beran Computes Beran’s estimator of the conditional survival function.
berancv Computes the CV bandwidth for Beran’s estimator of the conditional

survival function.
controlpars Sets the control parameters of the latencyhboot() and

probcurehboot() functions.
hpilot Computes pilot bandwidths for the nonparametric estimators of the

cure rate and the latency.
latency Computes the nonparametric estimator of the latency.
latencyhboot Computes the bootstrap bandwidth for the nonparametric estimator

of the latency.
print.npcure Method of the generic function print for ‘npcure’ objects.
probcure Computes the nonparametric estimator of the cure rate.
probcurehboot Computes the bootstrap bandwidth for the nonparametric estimator

of the cure rate.
summary.npcure Method of the generic function summary for ‘npcure’ objects.
testcov Performs covariate significance tests for the cure rate.
testmz Performs the nonparametric test of Maller and Zhou (1992).

Table 1: Summary of the functions in the npcure package.

categorical variables could be dealt with as in other kernel smoothing procedures. A simple approach
is to split the sample into a number of subsets according to the covariate values. When the size of the
subsamples is not too small, valid unconditional estimates of the cure probability and latency can be
computed. Another alternative is the use of special kernels that can handle any covariate types (see
Racine and Li, 2004).

Several features are shared by the functions in the package. All functions return an object of S3
class ‘npcure’, formally a list of components. Among these components are the primary outputs of the
functions, like the computed estimates for probcure() and latency(), the selected bandwidths for
probcurehboot() and latencyhboot(), or the p-values of the tests for testcov() and testmz(). The
covariate values, observed times, and uncensoring indicators are passed to the functions via the x, t,
and d arguments, respectively. Typically, a set of names is passed, which are interpreted as column
names of a data frame specified by the dataset argument. However, dataset may also be left as NULL,
the default, in which case the objects named in x, t, and d must live in the working directory. More
details on these and other arguments are given in the following.

Estimation of the cure rate

The estimation of the cure rate using the nonparametric estimator in (1) is implemented in the
probcure() function:

probcure(x, t, d, dataset = NULL, x0, h, local = TRUE, conflevel = 0L,
bootpars = if (conflevel == 0 && !missing(h)) NULL else controlpars())

The x0 argument specifies the covariate values where conditional estimates of the cure rate are to
be computed. The bandwidths required by the estimator are passed to the h argument. The local
argument is a logical value determining whether the bandwidths are interpreted as local (local =
TRUE) or global (local = FALSE) bandwidths. Notice that if local = TRUE, then h and x0 must have the
same length. Actually, the h argument may be missing, in which case the local bootstrap bandwidth
computed by the probcurehboot() function is used. This last function implements the procedure for
selecting the bandwidth h∗x described in the section "Bandwidth selection", and its usage is:

probcurehboot(x, t, d, dataset, x0, bootpars = controlpars())

The bootpars argument controls the details of the computation of the bootstrap bandwidth (see section
"Bandwidth selection"). In typical use, it is intended to receive the list returned by the controlpars()
function. The components of this list are described in Table 2.

The function probcure() also allows constructing point confidence intervals (CI) for the cure rate.
These CIs exploit the asymptotic normality of the estimator (Xu and Peng, 2014), using the bootstrap
to obtain an estimate of the standard error of the estimated cure rate. The bootstrap resamples are
generated by the same procedure described in the section "Bandwidth selection". Denoting by z1−α/2
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Argument Description

B Number of bootstrap resamples (by default, 999).
hbound A vector giving the minimum and maximum, respectively, of the initial grid

of bandwidths as multiples of the standardized interquartile range (IQR) of
the covariate values (by default, c(0.1,3)).

hl Length of the initial grid of bandwidths (by default, 100).
hsave A logical specifying if the grid of bandwidths is saved (by default FALSE).
nnfrac Fraction of the sample size determining the order k of the nearest neighbor

used when computing the pilot bandwidth gx in (7) (by default, 0.25).
fpilot Either NULL, the default, or a function name. If NULL, the pilot bandwith is

computed by the package function hpilot(). If not NULL, it is the name of
an alternative, user-defined function for computing the pilot.

qt In bandwidth selection with latencyhboot(), order of the quantile of the
observed times specifying the upper bound of the integral in the computa-
tion of the MISE∗ in (6) (by default, 0.75).

hsmooth Order of a moving average computed to optionally smooth the selected
bandwidths. By default is 1, meaning that no smoothing is done.

Table 2: Summary of the arguments of the controlpars() function.

the 1 − α/2 quantile of a standard normal and by ŝeB (1 − p̂h(x)) the estimate of the standard error of
1 − p̂h(x) with B bootstrap resamples, a (1 − α) 100% CI for 1 − p(x) is computed as:

1 − p̂h(x)∓ z1− α
2
ŝeB (1 − p̂h(x)) . (12)

The confidence level of the CI is specified through the conflevel argument as a number between
0 and 1. With the special value 0, the default, no CI is computed. Other parameters related to the
bootstrap CIs can be passed to the bootpars argument, typically via the output of the controlpars()
function. These parameters relate to the number of bootstrap resamples and the computation of the
pilot bandwidth, and are specified, respectively, by the B and nnfrac arguments described in Table 2.

The usage of these functions is illustrated with a simulated dataset generated from a model where
the cure probability is a logistic function of the covariate:

library("npcure")
n <- 50
x <- runif(n, -2, 2)
y <- rweibull(n, shape = 0.5 * (x + 4), scale = 1)
c <- rexp(n, rate = 1)
p <- exp(2 * x)/(1 + exp(2 * x))
u <- runif(n)
t <- ifelse(u < p, pmin(y, c), c)
d <- ifelse(u < p, ifelse(y < c, 1, 0), 0)
data <- data.frame(x = x, t = t, d = d)

In the next code example, point and 95% CI estimates of the cure probability are obtained with
probcure() at a grid of covariate values ranging from −1.5 to 1.5. For the estimation, the local
bootstrap bandwidths previously computed by probcurehboot() are passed to the h argument. The
bandwidths, which have been further smoothed with a moving average of 15 bandwidths, are
contained in the hsmooth component of the output of probcurehboot(). For the bootstrap, 2000
resamples are generated.

x0 <- seq(-1.5, 1.5, by = 0.1)
hb <- probcurehboot(x, t, d, data, x0 = x0,

bootpars = controlpars(B = 2000, hsmooth = 15))
q1 <- probcure(x, t, d, data, x0 = x0, h = hb$hsmooth, conflevel = 0.95,

bootpars = controlpars(B = 2000))
q1

#> Bandwidth type: local
#>
#> Conditional cure estimate:
#> h x0 cure lower 95% CI upper 95% CI
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#> 0.6212329 -1.5 1.000000000 0.98450759 1.00000000
#> 0.6523881 -1.4 1.000000000 0.87087244 1.00000000
#> 0.6533320 -1.3 1.000000000 0.86080078 1.00000000
#> 0.6606362 -1.2 1.000000000 0.83135572 1.00000000
#> 0.6710717 -1.1 1.000000000 0.82267310 1.00000000
#> 0.6912311 -1.0 0.972213147 0.78259082 1.00000000
#> ...

More compactly, the same bootstrap bandwidths would be selected and the same estimates
obtained if h were left unset when calling probcure():

q2 <- probcure(x, t, d, data, x0 = x0, conflevel = 0.95,
bootpars = controlpars(B = 2000, hsmooth = 15))

Figure 1 shows a plot of the true cure rate function and its point and 95% CI estimates at the
covariate values saved in x0. The plot can be reproduced by executing the next code. The components
of the q1 object accessed by the code are x0, keeping the vector of covariate values, q, containing
the point estimates of the cure rate, and conf, a list with the lower (component lower) and upper
(component upper) limits of the CIs for the cure rate.

plot(q1$x0, q1$q, type = "l", ylim = c(0, 1), xlab = "Covariate X",
ylab = "Cure probability")

lines(q1$x0, q1$conf$lower, lty = 2)
lines(q1$x0, q1$conf$upper, lty = 2)
lines(q1$x0, 1 - exp(2 * q1$x0)/(1 + exp(2 * q1$x0)), col = 2)
legend("topright", c("Estimate", "95% CI limits", "True"),

lty = c(1, 2, 1), col = c(1, 1, 2))
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Figure 1: Left panel: estimation of the cure rate. Right panel: estimation of the latency for x = 0.

Estimation of the latency function

The latency estimator in (3) is implemented in the latency() function:

latency(x, t, d, dataset = NULL, x0, h, local = TRUE, testimate = NULL,
conflevel = 0L, bootpars = if (conflevel == 0) NULL else controlpars(),
save = TRUE)

The function’s interface is similar to that of probcure(), with all the arguments, except for
testimate, having exactly the same interpretation. The testimate argument determines the times
t at which the function S0 (t|x) is estimated. It defaults to NULL, which results in the latency being
estimated at times given by the t argument.

Also, as was the case for probcure(), latency() allows getting bootstrap CIs for the latency
function by specifying their level with the conflevel argument. These CIs also rely on the asymptotic
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normality of the latency estimator Ŝ0,b (t|x) in (3) (López-Cheda et al., 2017b). A (1 − α) 100% CI for
S0,b (t|x) is computed as:

Ŝ0,b (t|x)∓ z1− α
2
ŝeB
(
Ŝ0,b (t|x)

)
, (13)

where ŝeB
(
Ŝ0,b (t|x)

)
is a bootstrap estimate of the standard error of Ŝ0,b (t|x), the bootstrap resamples

being generated as described in the section "Bandwidth selection".

Also, as with probcure(), the user can specify a local or global bandwidth with the combined use
of the h and local arguments. When h is left unspecified, a local bootstrap bandwidth is indirectly
computed by the latencyhboot() function:

latencyhboot(x, t, d, dataset = NULL, x0, bootpars = controlpars())

This function provides an implementation of the bandwidth selector b∗x introduced in the section
"Bandwidth selection". It is homologous to probcurehboot(), with which it shares a common interface.
The only noticeable difference is that now the qt argument of controlpars() (see Table 2) can be used
to set u, the upper bound of the integral that must be calculated when computing the bootstrap MISE
in (6).

Using the same simulated data as before, the next code illustrates the computation of point and
95% CI estimates (based on 500 bootstrap resamples) of the latency for covariate values 0 and 0.5, and
with local bandwidths equal to 0.8 and 0.5, respectively. Notice that, since the testim argument is
unset, the estimates are computed at the times t:

S0 <- latency(x, t, d, data, x0 = c(0, 0.5), h = c(0.8, 0.5),
conflevel = 0.95, bootpars = controlpars(B = 500))

To estimate the latency using the bootstrap bandwidth selector, latencyhbooot() can be called
before calling latency(). In the following code, the component h of the output of latencyhbooot(),
where the selected local bandwidths are contained, is passed to the h argument of latency():

b <- latencyhboot(x, t, d, data, x0 = c(0, 0.5))
S0 <- latency(x, t, d, data, x0 = c(0, 0.5), h = b$h, conflevel = 0.95)
S0

#> Bandwidth type: local
#>
#> Covariate (x0): 0.0 0.5
#> Bandwidth (h): 4.531978 2.527206
#>
#> Conditional latency estimate:
#>
#> x0 = 0
#> time latency lower 95% CI upper 95% CI
#> 0.004599127 1.0000000 1.00000000 1.0000000
#> 0.042088293 1.0000000 1.00000000 1.0000000
#> 0.042271452 1.0000000 1.00000000 1.0000000
#> 0.059671372 1.0000000 1.00000000 1.0000000
#> 0.067375891 1.0000000 1.00000000 1.0000000
#> 0.098569312 1.0000000 1.00000000 1.0000000
#> ...
#>
#> x0 = 0.5
#> time latency lower 95% CI upper 95% CI
#> 0.004599127 1.0000000 1.00000000 1.0000000
#> 0.042088293 1.0000000 1.00000000 1.0000000
#> 0.042271452 1.0000000 1.00000000 1.0000000
#> 0.059671372 1.0000000 1.00000000 1.0000000
#> 0.067375891 1.0000000 1.00000000 1.0000000
#> 0.098569312 1.0000000 1.00000000 1.0000000
#> ...

An alternative, more succinct way to proceed is to leave h unset, since in that case, latencyhboot()
is indirectly called:

S0 <- latency(x, t, d, data, x0 = c(0, 0.5), conflevel = 0.95)

Figure 1 shows the estimated and true latencies for covariate value x = 0. Next, the code to
obtain the plot is reproduced, and it is helpful in illustrating the structure of the output list returned
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by latency(). The testim component has the times at which the estimates are computed. The S
component is a list having a named item for each covariate value. Each element contains the latency
estimates for a covariate value, and the name is constructed from the covariate value by prefixing it
with an x. The conf component is also a named list, the names being constructed as those of the S
component. Each one of these items contains, structured as a list, the lower (lower component) and
upper (upper component) limits of the CIs. Finally, x0 keeps the covariate values as a separate element.

plot(S0$testim, S0$S$x0, type = "s", xlab = "Time", ylab = "Latency",
ylim = c(0, 1))

lines(S0$testim, S0$conf$x0$lower, type = "s", lty = 2)
lines(S0$testim, S0$conf$x0$upper, type = "s", lty = 2)
lines(S0$testim, pweibull(S0$testim, shape = 0.5 * (S0$x0[1] + 4),

scale = 1, lower.tail = FALSE), col = 2)
legend("topright", c("Estimate", "95% CI limits", "True"),

lty = c(1, 2, 1), col = c(1, 1, 2))

Significance test for the cure rate

The npcure package also provides an implementation of the nonparametric covariate significance tests
for the cure rate discussed in the section "Covariate significance tests":

testcov(x, t, d, dataset = NULL, bootpars = controlpars(), save = FALSE)

The x argument is the covariate whose effect on the cure rate is to be tested. The function’s output
is a list whose main components are CM and KS. Each of them, in turn, is a list containing the test
statistic (stat) and p-value (pvalue) of the CM and KS tests, respectively.

The result of the test carried out with our simulated data and 2500 bootstrap resamples is:

testcov(x, t, d, data, bootpars = controlpars(B = 2500))

#> Covariate test
#>
#> Covariate: x
#> test statistic p.value
#> Cramer-von Mises 0.4537077 0.0592
#> Kolmogorov-Smirnov 1.2456568 0.0708

Non-numeric covariates can also be tested. For example, for z, a nominal covariate added to the
simulated data, the result is:

data$z <- rep(factor(letters[1:5]), each = 10)
testcov(z, t, d, data, bootpars = controlpars(B = 2500))

#> Covariate test
#>
#> Covariate: z
#> test statistic p.value
#> Cramer-von Mises 0.2513218 0.6356
#> Kolmogorov-Smirnov 0.7626470 0.5340

Estimation of the conditional survival function

The npcure package also includes the beran() function, which computes the generalized PL estimator
of the conditional survival function, S (t|x), by Beran (1981). The beran() function in our package
may be used together with the berancv() function:

berancv(x, t, d, dataset, x0, cvpars = controlpars())

This function computes the local CV bandwidth selector of Geerdens et al. (2017). It can be directly
called by the user, but in practical work should be more usual an indirect call from the beran()
function, which, as said before, computes the generalized PL estimator of S (t|x):

beran(x, t, d, dataset, x0, h, local = TRUE, testimate = NULL, conflevel = 0L,
cvbootpars = if (conflevel == 0 && !missing(h)) NULL else controlpars())
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The arguments of these two functions have the same meaning as their homonyms in the latency()
and latencyhboot() functions, cvpars and cvbootpars playing the role of bootpars in these last
functions. As in latency(), if no bandwidth is provided by the user via h, then the local CV bandwidth
in Geerdens et al. (2017) is computed by berancv().

For example, the code below computes the Beran estimator for the covariate values 0 and 0.5
using local CV bandwidths. The default behavior of berancv() is modified by the auxiliary function
controlpars(). In detail, the local CV bandwidth search is performed in a grid of bandwidths, which
is saved (hsave = TRUE) and consists of 200 bandwidths (hl = 200) ranging from 0.2 to 2 times the
standardized IQR of the covariate (hbound = c(0.2,2)). Point and 95% CI estimates of the conditional
survival function S (t|x) are computed by beran() with the selected bandwidths:

x0 <- c(0, 0.5)
hcv <- berancv(x, t, d, data, x0 = x0,

cvpars = controlpars(hbound = c(0.2, 2), hl = 200, hsave = TRUE))
S <- beran(x, t, d, data, x0 = x0, h = hcv$h, conflevel = 0.95)
S

#> Bandwidth type: local
#>
#> Covariate (x0): 0.0 0.5
#> Bandwidth (h): 1.598875 1.104106
#>
#> Beran's conditional survival estimate:
#>
#> x0 = 0
#> time survival lower 95% CI upper 95% CI
#> 0.004599127 1.0000000 1.0000000 1.0000000
#> 0.042088293 1.0000000 1.0000000 1.0000000
#> 0.042271452 1.0000000 1.0000000 1.0000000
#> 0.059671372 1.0000000 1.0000000 1.0000000
#> 0.067375891 1.0000000 1.0000000 1.0000000
#> 0.098569312 1.0000000 1.0000000 1.0000000
#> ...
#>
#> x0 = 0.5
#> time survival lower 95% CI upper 95% CI
#> 0.004599127 1.0000000 1.0000000 1.0000000
#> 0.042088293 1.0000000 1.0000000 1.0000000
#> 0.042271452 1.0000000 1.0000000 1.0000000
#> 0.059671372 1.0000000 1.0000000 1.0000000
#> 0.067375891 1.0000000 1.0000000 1.0000000
#> 0.098569312 1.0000000 1.0000000 1.0000000
#> ...

The next code shows an equivalent way of obtaining the same estimates:

S <- beran(x, t, d, data, x0 = x0, conflevel = 0.95,
cvbootpars = controlpars(hbound = c(0.2, 2), hl = 200, hsave = TRUE))

Figure 2 displays point and 95% CI estimates of the survival curve for covariate value 0.5. It has
been obtained by executing:

plot(S$testim, S$S$x0.5, type = "s", xlab = "Time", ylab = "Survival",
ylim = c(0, 1))

lines(S$testim, S$conf$x0.5$lower, type = "s", lty = 2)
lines(S$testim, S$conf$x0.5$upper, type = "s", lty = 2)
p0 <- exp(2 * x0[2])/(1 + exp(2 * x0[2]))
lines(S$testim, 1 - p0 + p0 * pweibull(S$testim,

shape = 0.5 * (x0[2] + 4), scale = 1, lower.tail = FALSE), col = 2)
legend("topright", c("Estimate", "95% CI limits", "True"),

lty = c(1, 2, 1), col = c(1, 1, 2))

Test for enough follow-up

The nonparametric estimators of the cure rate and latency functions given in (1) and (3), respectively,
require assumption (4) for their consistency. In other words, the follow-up must be long enough for
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Figure 2: Beran’s estimate of the conditional survival function for x = 0.5.

cures to happen so that the censored times after the largest uncensored observation can be assumed to
correspond to cured subjects.

The procedure to test the hypothesis (4) proposed by Maller and Zhou (1992) is performed by the
testmz() function:

testmz(t, d, dataset)

The function returns a list (with class attribute ‘npcure’) whose main component, containing the
p-value of the test, is pvalue. The further component aux is, in turn, a list of components statistic,
which contains the test statistic, n, the sample size, delta, giving the difference between the largest
observed time T(n) and the largest uncensored time T1

max, and interval, which has the range between
max(0, T1

max− delta) and T1
max.

With our simulated data, the result of the test is:

testmz(t, d, data)

#> Maller-Zhou test
#>
#> statistic n p.value
#> 43 50 2.024892e-43

5 Example

To illustrate the nonparametric modeling of the mixture cure model with the npcure package, we
consider the bone marrow transplantation data in Klein and Moeschberger (2005), available as the bmt
dataset of the R package KMsurv (Klein et al., 2012). The data comes from a multi-center study carried
out between 1984 and 1989, involving 137 patients with acute myelocytic leukemia (AML) or acute
lymphoblastic leukemia (ALL), aged from 7 to 52. Bone marrow transplant (BMT) is the standard
treatment for acute leukemia. Transplantation can be considered a failure when leukemia recurs or
the patient dies. Consequently, the failure time is defined as the time (days) to relapse or death. The
variables collecting this information are:

t2 Disease-free survival time in days (time to relapse, death, or end of study)
d3 Disease-free survival indicator (1: Dead or relapsed, 0: Alive and disease-free)

The probability of cure after BMT is high, especially if BMT is performed while the patient remains
in the chronic phase (Devergie et al., 1987). Recovery after BMT is a complex process depending on a
large set of risk factors, whose status is coded by the following variables:
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ta Time to acute graft-versus-host disease (GVHD).
tc Time to chronic GVHD.
tp Time to return of platelets to normal levels.
z1 Patient age (years).
z2 Donor age (years).
z7 Waiting time to transplant (days).
group Disease group (1: ALL, 2: AML low risk, 3: AML high risk).
da Acute GVHD indicator (1: Developed, 0: Never developed).
dc Chronic GVHD indicator (1: Developed, 0: Never developed).
dp Platelet recovery indicator (1: Returned to normal, 0: Never returned to normal).
z3 Patient gender (1: Male, 0: Female).
z4 Donor gender (1: Male, 0: Female).
z5 Patient cytomegalovirus (CMV) status (1: Positive, 0: Negative).
z6 Donor CMV status (1: Positive, 0: Negative).
z8 FAB (1: FAB grade 4 or 5 and AML, 0: Otherwise).
z9 Hospital (1: Ohio State University, 2: Alferd, 3: St. Vincent, 4: Hahnemann).
z10 Methotrexate (MTX) used for prophylaxis of GVHD (1: Yes, 0: No).

Before applying the estimation methods of the npcure package, it should be checked whether the
follow-up time was long enough to make it sure that condition (4) holds. This can be subjectively
assessed by visualizing a plot of the KM estimate of the unconditional survival function, S(t). The
estimated survival curve in Figure 3 suggests the existence of a non-zero asymptote at the right tail.
The test of Maller and Zhou (1992) confirms that the follow-up period is adequate to ensure the validity
of the nonparametric estimation procedures available in the package:

data("bmt", package = "KMsurv")
testmz(t2, d3, bmt)

#> Maller-Zhou test
#>
#> statistic n p.value
#> 11 137 1.047242e-05
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Figure 3: Estimated disease-free survival.

Estimation of the probability of cure

We start by estimating the cure probability as a function of age (z1) and waiting time to transplant
(z7), respectively. Cure probabilities are estimated at a grid of 100 values between the 5th and 95th
quantiles of the values of z1 and z7. The code for z1 is (for z7, it is similar):

x0 <- seq(quantile(bmt$z1, 0.05), quantile(bmt$z1, 0.95), length.out = 100)
q.age <- probcure(z1, t2, d3, bmt, x0 = x0, conflevel = 0.95,

bootpars = controlpars(hsmooth = 10))
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Both estimated cure rates are displayed in Figure 4, where a kernel estimate of the covariate density
has been added for reference:

par(mar = c(5, 4, 4, 5) + 0.1)
plot(q.age$x0, q.age$q, type = "l", ylim = c(0, 1),

xlab = "Patient age (years)", ylab = "Cure probability")
lines(q.age$x0, q.age$conf$lower, lty = 2)
lines(q.age$x0, q.age$conf$upper, lty = 2)
par(new = TRUE)
d.age <- density(bmt$z1)
plot(d.age, xaxt = "n", yaxt = "n", xlab = "", ylab = "", col = 2,

main = "", zero.line = FALSE)
mtext("Density", side = 4, col = 2, line = 3)
axis(4, ylim = c(0, max(d.age$y)), col = 2, col.axis = 2)
legend("topright", c("Estimate", "95% CI limits", "Covariate density"),

lty = c(1, 2, 1), col = c(1, 1, 2), cex = 0.8)

The cure probability seems to be nearly constant or, at most, to decrease slightly with patient age
and as the waiting time to transplant increases.
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Figure 4: Estimation of the cure probability conditional on age (left panel) and waiting time to
transplant (right panel). Nonparametric estimates of the covariate density are plotted for reference.

Testing the effect of one covariate on the probability of cure

The significance of the effect of patient age (z1) and waiting time to transplant (z7) on the probability
of cure can be tested with the testcov() function:

testcov(z1, t2, d3, bmt, bootpars = controlpars(B = 2500))

#> Covariate test
#>
#> Covariate: z1
#> test statistic p.value
#> Cramer-von Mises 0.1103200 0.8204
#> Kolmogorov-Smirnov 0.7308477 0.7900

testcov(z7, t2, d3, bmt, bootpars = controlpars(B = 2500))

#> Covariate test
#>
#> Covariate: z7
#> test statistic p.value
#> Cramer-von Mises 0.7921912 0.0968
#> Kolmogorov-Smirnov 1.6116129 0.1008

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 36

The effect of age on the cure probability is not statistically significant with neither the CM nor the
KS tests (pCM = 0.820 and pKS = 0.790, where the subscripts identify the p-value in an obvious way).
As for the effect of waiting time to transplant, it reaches a borderline significance (pCM = 0.097 and
pKS = 0.101).

Cure probability can also be compared between groups defined by a categorical covariate. We
illustrate this case by considering gender (z3) and the use of MTX for prophylaxis of GVHD (z10). For
improving readability, we first label the groups:

bmt$z3 <- factor(bmt$z3, labels = c("Male", "Female"))
bmt$z10 <- factor(bmt$z10, labels = c("MTX", "No MTX"))
summary(bmt[, c("z3", "z10")])

#> z3 z10
#> Male :57 MTX :97
#> Female:80 No MTX:40

The estimated survival functions are displayed in Figure 5. The code for gender (z3) is:

library("survival")
Sgender <- survfit(Surv(t2, d3) ~ z3, data = bmt)
Sgender

#> Call: survfit(formula = Surv(t2, d3) ~ z3, data = bmt)
#>
#> n events median 0.95LCL 0.95UCL
#> z3=Male 57 36 318 172 NA
#> z3=Female 80 47 606 418 NA

plot(Sgender, col = 1:2, mark.time = FALSE, xlab = "Time (days)",
ylab = "Disease-free survival")

legend("topright", legend = c("Male", "Female"), title = "Gender",
lty = 1, col = 1:2)
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Figure 5: Survival curves of patients conditional on gender (left panel) and use of MTX for prophylaxis
of GVHD (right panel).

The estimated probability of cure for each group defined by gender (z3) is obtained by computing
for each stratum the unconditional cure rate estimator of Laska and Meisner (1992). This estimator of
the probability of cure is the value of the KM curve at T1

max (i.e., it is the minimum of the KM estimate):

qgender <- c(min(Sgender[1]$surv), min(Sgender[2]$surv))
qgender

#> [1] 0.1899671 0.4065833

The estimated probability of cure is 19.0% for males and 40.7% for females. The cure probabilities
according to the use or not of MTX as GVHD prophylactic (z10) are:
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Smtx <- survfit(Surv(t2, d3) ~ z10, data = bmt)
qmtx <- c(min(Smtx[1]$surv), min(Smtx[2]$surv))
qmtx

#> [1] 0.3679977 0.3482143

The cure rate of patients treated with MTX is estimated to be 36.8%, slightly higher than 34.8%, the
estimate for patients not treated with MTX.

The effect of these two binary variables on the cure probability is tested with the testcov()
function similarly as it was done with continuous covariates:

testcov(z3, t2, d3, bmt, bootpars = controlpars(B = 2500))

#> Covariate test
#>
#> Covariate: z3
#> test statistic p.value
#> Cramer-von Mises 0.5947305 0.0900
#> Kolmogorov-Smirnov 1.1955919 0.0892

testcov(z10, t2, d3, bmt, bootpars = controlpars(B = 2500))

#> Covariate test
#>
#> Covariate: z10
#> test statistic p.value
#> Cramer-von Mises 1.018441 0.0692
#> Kolmogorov-Smirnov 1.199340 0.0668

The differences in the probability of cure between males and females, and between patients with
and without MTX treatment are not statistically significant, although a borderline effect is evidenced
(pCM = 0.090 and pKS = 0.089 for gender, pCM = 0.069 and pKS = 0.067 for MTX).

Estimation of the latency function

The survival of the uncured patients (latency) is estimated for patient age (z1) 25 and 40 years as
follows:

S0 <- latency(z1, t2, d3, bmt, x0 = c(25, 40), conflevel = 0.95,
bootpars = controlpars(B = 500))

Figure 6 displays the survival functions for the two ages, obtained by executing:

plot(S0$testim, S0$S$x25, type = "s", ylim = c(0, 1),
xlab = "Time (days)", ylab = "Latency")

lines(S0$testim, S0$conf$x25$lower, type = "s", lty = 2)
lines(S0$testim, S0$conf$x25$upper, type = "s", lty = 2)
lines(S0$testim, S0$S$x40, type = "s", col = 2)
lines(S0$testim, S0$conf$x40$lower, type = "s", lty = 2, col = 2)
lines(S0$testim, S0$conf$x40$upper, type = "s", lty = 2, col = 2)
legend("topright", c("Age 25: Estimate", "Age 25: 95% CI limits",

"Age 40: Estimate", "Age 40: 95% CI limits"), lty = 1:2,
col = c(1, 1, 2, 2))

An increased survival of younger patients can be observed, but the survival advantage vanishes
after approximately 6 years.

6 Summary

This paper introduces the npcure package. It provides an R implementation of a completely non-
parametric approach for estimation in mixture cure models, along with a nonparametric covariate
significance test for the cure probability. Moreover, the generalized PL estimator of the conditional
survival function with a CV bandwidth selection function is included. Furthermore, the theory under-
lying the implemented methods, presented in Xu and Peng (2014), López-Cheda et al. (2017a), and
López-Cheda et al. (2017b), has been compiled.
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Figure 6: Latency curves of uncured patients 25 and 40 years old.

The npcure package has some limitations. Firstly, it only handles right-censored survival times.
Left-censored data, truncation, or interval-censored data have not been considered in this approach,
and it remains an open problem to be dealt with in the future. Secondly, a conditional estimation can
be performed when only one covariate is involved. The same restriction applies to the implemented
covariate significance test for the cure rate. An important extension would be the development of
estimation and test procedures for the cure rate and latency functions when they depend on a set of
covariates. A major challenge is the way the covariates are handled. In that case, the analysis of a large
number of covariates would suffer from the curse of dimensionality. Dimension reduction techniques
would be required, which leads to a demanding approach that has not been addressed yet, and we
leave for further research.

There is an interesting issue that remains an open problem to be dealt with in future versions of
the package. Traditional cure rate models implicitly assume that there is no additional information
on the cure status of the patients. So, the cure indicator is modeled as a latent variable. However,
examples contradicting this assumption can be found. For instance, in some clinical settings, subjects
who are followed up beyond a threshold period without experiencing the event can be considered as
cured. In other cases, complementary diagnostic tests providing further information about a patient’s
cure status may be available. We aim to develop improved non-parametric methods of estimation and
hypothesis testing that take into account this additional information.
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A Method for Deriving Information from
Running R Code
by Mark P.J. van der Loo

Abstract It is often useful to tap information from a running R script. Obvious use cases include
monitoring the consumption of resources (time, memory) and logging. Perhaps less obvious cases
include tracking changes in R objects or collecting the output of unit tests. In this paper, we demonstrate
an approach that abstracts the collection and processing of such secondary information from the
running R script. Our approach is based on a combination of three elements. The first element is
to build a customized way to evaluate code. The second is labeled local masking and it involves
temporarily masking a user-facing function so an alternative version of it is called. The third element
we label local side effect. This refers to the fact that the masking function exports information to the
secondary information flow without altering a global state. The result is a method for building systems
in pure R that lets users create and control secondary flows of information with minimal impact on
their workflow and no global side effects.

1 Introduction

The R language provides a convenient language to read, manipulate, and write data in the form of
scripts. As with any other scripted language, an R script gives a description of data manipulation
activities, one after the other, when read from top to bottom. Alternatively, we can think of an R
script as a one-dimensional visualization of data flowing from one processing step to the next, where
intermediate variables or pipe operators carry data from one treatment to the next.

We run into limitations of this one-dimensional view when we want to produce data flows that
are somehow ‘orthogonal’ to the flow of the data being treated. For example, we may wish to follow
the state of a variable while a script is being executed, report on progress (logging), or keep track
of resource consumption. Indeed, the sequential (one-dimensional) nature of a script forces one to
introduce extra expressions between the data processing code.

As an example, consider a code fragment where the variable x is manipulated.

x[x > threshold] <- threshold
x[is.na(x)] <- median(x, na.rm=TRUE)

In the first statement, every value above a certain threshold is replaced with a fixed value, and next,
missing values are replaced with the median of the completed cases. It is interesting to know how an
aggregate of interest, say the mean of x, evolves as it gets processed. The instinctive way to do this is
to edit the code by adding statements to the script that collect the desired information.

meanx <- mean(x, na.rm=TRUE)
x[x > threshold] <- threshold
meanx <- c(meanx, mean(x, na.rm=TRUE))
x[is.na(x)] <- median(x, na.rm=TRUE)
meanx <- c(meanx, mean(x, na.rm=TRUE))

This solution clutters the script by inserting expressions that are not necessary for its main purpose.
Moreover, the tracking statements are repetitive, which validates some form of abstraction.

A more general picture of what we would like to achieve is given in Figure 1. The ‘primary data
flow’ is developed by a user as a script. In the previous example, this concerns processing x. When the
script runs, some kind of logging information, which we label the ‘secondary data flow’ is derived
implicitly by an abstraction layer.

Creating an abstraction layer means that concerns between primary and secondary data flows are
separated as much as possible. In particular, we want to prevent the abstraction layer from inspecting
or altering the user code that describes the primary data flow. Furthermore, we would like the user
to have some control over the secondary flow from within the script, for example, to start, stop, or
parameterize the secondary flow. This should be done with minimum editing of the original user
code, and it should not rely on global side effects. This means that neither the user nor the abstraction
layer for the secondary data flow should have to manipulate or read global variables, options, or other
environmental settings to convey information from one flow to the other. Finally, we want to treat
the availability of a secondary data flow as a normal situation. This means we wish to avoid using
signaling conditions (e.g., warnings or errors) to convey information between the flows unless there is
an actual exceptional condition such as an error.
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data process1 data’ process2 data”

data1 data2

Primary data flow

Secondary
data flow

Figure 1: Primary and secondary data flows in an R script. The primary flow follows the execution of
an R script, while in the background a secondary data flow (e.g. logging information) is created.

Prior art

There are several packages that generate a secondary data flow from a running script. One straightfor-
ward application concerns logging messages that report on the status of a running script. To create
a logging message, users edit their code by inserting logging expressions where desired. Logging
expressions are functions calls that help to build expressions, for example, by automatically adding
a timestamp. Configuration options usually include a measure of logging verbosity and setting
an output channel that controls where logging data will be sent. Changing these settings relies on
communication from the main script to the functionality that controls the flow of logging data. In
logger (Daróczi, 2021), this is done by manipulating a variable stored in the package namespace using
special helper functions. The logging package (Frasca, 2019) also uses an environment within the
namespace of the package to manage option settings, while futile.logger (Rowe, 2016) implements a
custom global option settings manager that is somewhat comparable to R’s own options() function.

Packages bench (Hester, 2020b) and microbenchmark (Mersmann, 2019) provide time profiling
of single R expressions. The bench package also includes memory profiling. Their purpose is not
to derive a secondary data flow from a running production script as in Figure 1 but to compare the
performance of R expressions. Both packages export a function that accepts a sequence of expressions
to profile. These functions take control of expression execution and insert time and/or memory
measurements where necessary. Options, such as the number of times each expression is executed, are
passed directly to the respective function.

Unit testing frameworks provide another source of secondary data flows. Here, an R script is used
to prepare, set up, and compare test data, while the results of comparisons are tapped and reported.
Testing frameworks are provided by testthat (Wickham, 2011), RUnit, (Burger et al., 2018), testit Xie
(2021), unitizer (Gaslam, 2021), and tinytest (van der Loo, 2020). The first three packages (testthat,
RUnit, and testit) all export assertion functions that generate condition signals to convey information
about test results. Packages RUnit and testit use sys.source() to run a file containing unit test
assertions and exit on the first error while testthat uses eval() to run expressions, capture conditions,
and test results and reports afterward. The unitizer framework is different because it implements an
interactive prompt to run tests and explore their results. Rather than providing explicit assertions,
unitizer stores results of all expressions that return a visible result and compares their output at
subsequent runs. Interestingly, unitizer allows for optional monitoring of the testing environment.
This includes environment variables, options, and more. This is done by manipulating the code
of (base) R functions that manage these settings and masking the original functions temporarily.
These masking functions then provide parts of the secondary data flow (changes in the environment).
Finally, tinytest is based on the approach that is the topic of this paper, and it will be discussed as an
application below.

Finally, we note the covr package of Hester (2020a). This package is used to keep track of which
expressions of an R package are run (covered) by package tests or examples. In this case, the primary
data flow is a test script executing code (functions, methods) stored in another script, usually in the
context of a package. The secondary flow consists of counts of how often each expression in the
source is executed. The package works by parsing and altering the code in the source file, inserting
expressions that increase appropriate counters. These counters are stored in a variable that is part of
the package’s namespace.

Summarizing, we find that in logging packages, the secondary data flow is invoked explicitly
by users while configuration settings are communicated by manipulating a global state that may or
may not be directly accessible by the user. For benchmarking packages, the expressions are passed
explicitly to an ‘expression runner’ that monitors the effect on memory and passage of time. In
most test packages, the secondary flow is invoked explicitly using special assertions that throw
condition signals. Test files are run using functionality that captures and administrates signals where
necessary. Two of the discussed packages explicitly manipulate existing code before running it to
create a secondary data flow. The covr package does this to update expression counters and the
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unitizer package to monitor changes in the global state.

Contribution of this paper

The purpose of this paper is to first provide some insight into the problem of managing multiple
data flows, independent of specific applications. In the following section, we discuss managing a
secondary data stream from the point of view of changing the way in which expressions are combined
and executed by R.

Next, we highlight two programming patterns that allow one to derive a secondary data stream,
both in non-interactive (while executing a file) and in interactive circumstances. The methods discussed
here do not require explicit inspection or modification of the code that describes the primary data
flow. It is also not necessary to invoke signaling conditions to transport information from or to the
secondary data stream.

We also demonstrate a combination of techniques that allow users to parameterize the secondary
flow without resorting to global variables, global options, or variables within a package’s namespace.
We call this technique ‘local masking’ with ‘local side effects’. It is based on temporarily and locally
masking a user-facing function with a function that does exactly the same except for a side effect that
passes information to the secondary data flow.

As examples, we discuss two applications where these techniques have been implemented. The
first is the lumberjack package (van der Loo, 2021), which allows for tracking changes in R objects as
they are manipulated expression by expression. The second is tinytest (van der Loo, 2020), a compact
and extensible unit testing framework.

Finally, we discuss some advantages and limitations to the techniques proposed.

2 Concepts

In this section we give a high-level overview of the problem of adding a second data flow to an existing
one, and general way to think about a solution. The general approach was inspired by a discussion of
Milewski (2018) and is related to what is sometimes called a bind operator in functional programming.

Consider as an example the following two expressions, labeled e1 and e2.

e1: x <- 10
e2: y <- 2*x

We would like to implement some kind of monitoring as these expressions are evaluated. For this
purpose, it is useful to think of e1 and e2 as functions that accept a set of key-value pairs, possibly alter
the set’s contents, and return it. In R this set of key-value pairs is an environment, and usually, it is the
global environment (the user’s workspace). Starting with an empty environment {} we get:

e1({}) = {("x", 10)}
e2(e1({})) = {("x", 10), ("y", 20)}

In this representation, we can write the result of executing the above script in terms of the function
composition operator ◦:

e2(e1({})) = (e2 ◦ e1)({}).

And in general, we can express the final state U of any environment after executing a sequence of
expressions e1, e2, · · · , ek as:

U = (ek ◦ ek−1 ◦ · · · ◦ e1)({}), (1)

where we assumed without loss of generality that we start with an empty environment. We will refer
to the sequence e1 . . . ek as the ‘primary expressions’ since they define a user’s main data flow.

We now wish to introduce some kind of logging. For example, we want to count the number of
evaluated expressions, not counting the expressions that will perform the count. The naive way to do
this is to introduce a new expression, say n:

n: if (!exists("N")) N <- 1 else N <- N + 1

And we insert this into the original sequence of expressions. This amounts to the cumbersome solution:

U ∪ {("N", k)} = (n ◦ ek ◦ n ◦ ek−1 ◦ n ◦ · · · n ◦ e1)({}), (2)
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where the number of executed expressions is stored in N. We shall refer to n as a ‘secondary expression’,
as it does not contribute to the user’s primary data flow.

The above procedure can be simplified if we define a new function composition operator ◦n as
follows:

a ◦n b = a ◦ n ◦ b.

One may verify the associativity property a ◦n (b ◦n c) = (a ◦n b) ◦n c for expressions a, b, and c, so ◦n
can, indeed, be interpreted as a new function composition operator. Using this operator we get

U ∪ {("N", k − 1)} = (ek ◦n ek−1 ◦n · · · ◦n e1)({}), (3)

which gives the same result as Equation 2 up to a constant.

If we are able to alter function composition, then this mechanism can be used to track all sorts of
useful information during the execution of e1, . . . , ek. For example, a simple profiler is set up by timing
the expressions and adding the following expression to the function composition operator.

s: if (!exists("S")) S <- Sys.time() else S <- c(S, Sys.time())

After running ek ◦s · · · ◦s e1, diff(S) gives the timings of individual statements. A simple memory
profiler is defined as follows.

m: if (!exists("M")) M <- sum(memory.profile()) else M <- c(M, sum(memory.profile()))

After running ek ◦m · · · ◦m e1, M gives the amount of memory used by R after each expression.

We can also track changes in data, but it requires that the composition operator knows the name of
the R object that is being tracked. As an example, consider the following primary expressions.

e1: x <- rnorm(10)
e2: x[x<0] <- 0
e3: print(x)

We can define the following expression for our modified function composition operator.

v: {
if (!exists("V")){
V <- logical(0)
x0 <- x

}
if (identical(x0,x)) V <- c(V, FALSE)
else V <- c(V, TRUE)
x0 <- x

}

After running e3 ◦v e2 ◦v e1, the variable V equals c(TRUE,FALSE), indicating that e2 changed x, and e3
did not.

These examples demonstrate that redefining function composition yields a powerful method
for extracting logging information with (almost) no intrusion on the user’s common workflow. The
simple model shown here does have some obvious setbacks: first, the expressions inserted by the
composition operator manipulate the same environment as the user expressions. The user- and
secondary expressions can therefore interfere with each other’s results. Second, there is no direct
control from the primary sequence over the secondary sequence: the user has no explicit control over
starting, stopping, or parametrizing the secondary data stream. We demonstrate in the next section
how these setbacks can be avoided by evaluating secondary expressions in a separate environment
and by using techniques we call ‘local masking’ and ‘local side-effect’.

3 Creating a secondary data flow with R

R executes expressions one by one in a read-evaluate-print loop (REPL). In order to tap information
from this running loop, it is necessary to catch the user’s expressions and interweave them with our
own expressions. One way to do this is to develop an alternative to R’s native source() function. Recall
that source() reads an R script and executes all expressions in the global environment. Applications
include non-interactive sessions or interactive sessions with repetitive tasks such as running test
scripts while developing functions. A second way to intervene with a user’s code is to develop a
special ‘forward pipe’ operator, akin to R’s |> pipe, the magrittr pipe of Bache and Wickham (2014), or
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the ‘dot-pipe’ of Mount and Zumel (2018). Since a user inserts a pipe between expressions, it is an
obvious place to insert code that generates a secondary data flow.

In the following two subsections we will develop both approaches. As a running example, we will
implement a secondary data stream that counts expressions.

Build your own source()

The source() function reads an R script and executes all expressions in the global environment. A
simple variant of source() that counts expressions as they get evaluated can be built using parse()
and eval().

run <- function(file){
expressions <- parse(file)
runtime <- new.env(parent=.GlobalEnv)

n <- 0
for (e in expressions){
eval(e, envir=runtime)
n <- n + 1

}
message(sprintf("Counted %d expressions",n))
runtime

}

Here, parse() reads the R file and returns a list of expressions (technically, an object of class ‘expression’).
The eval() function executes the expression while all variables created by or needed for execution are
sought in a newly created environment called runtime. We make sure that variables and functions in
the global environment are found by setting the parent of runtime equal to .GlobalEnv. Now, given a
file "script.R".

# contents of script.R
x <- 10
y <- 2*x

An interactive session would look like this.

> e <- run("script.R")
Counted 2 expressions
> e$x
[1] 10

So, contrary to the default behavior of source(), variables are assigned in a new environment. This
difference in behavior can be avoided by evaluating expressions in .GlobalEnv. However, for the next
step, it is important to have a separate runtime environment.

We now wish to give the user some control over the secondary data stream. In particular, we want
the user to be able to choose when run() starts counting expressions. Recall that we demand that
this is done by direct communication to run(). This means that side-effects such as setting a special
variable in the global environment or a global option is out of the question. Furthermore, we want to
avoid code inspection: the run() function should be unaware of what expressions it is running exactly.
We start by writing a function for the user that returns TRUE.

start_counting <- function() TRUE

Our task is to capture this output from run() when start_counting() is called. We do this by masking
this function with another function that does exactly the same, except that it also copies the output
value to a place where run() can find it. To achieve this, we use the following helper function.

capture <- function(fun, envir){
function(...){
out <- fun(...)
envir$counting <- out
out

}
}

This function accepts a function (fun) and an environment (envir). It returns a function that first
executes fun(...), copies its output value to envir, and then returns the output to the user. In an
interactive session, we would see the following.
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> store <- new.env()
> f <- capture(start_counting, store)
> f()
[1] TRUE
> store$counting
[1] TRUE

Observe that our call to f() returns TRUE as expected but also exported a copy of TRUE into store.
The reason this works is that an R function ‘remembers’ where it is created. The function f() was
created inside capture(), and the variable envir is present there. We say that this ‘capturing’ version
of start_counting has a local side-effect: it writes outside of its own scope but the place where it writes
is controlled.

We now need to make sure that run() executes the captured version of start_counting(). This is
done by locally masking the user-facing version of start_counting(). That is, we make sure that the
captured version is found by eval() and not the original version. A new version of run() now looks
as follows.

run <- function(file){
expressions <- parse(file)
store <- new.env()
runtime <- new.env(parent=.GlobalEnv)
runtime$start_counting <- capture(start_counting, store)
n <- 0
for (e in expressions){
eval(e, envir=runtime)
if ( isTRUE(store$counting) ) n <- n + 1

}
message(sprintf("Counted %d expressions",n))
runtime

}

Now, consider the following code, stored in script1.R.

# contents of script1.R
x <- 10
start_counting()
y <- 2*x

In an interactive session, we would see this.

> e <- run("script1.R")
Counted 1 expressions
> e$x
[1] 10
> e$y
[1] 20

Let us go through the most important parts of the new run() function. After parsing the R file, a
new environment is created that will store the output of calls to start_counting().

store <- new.env()

The runtime environment is created as before, but now we add the capturing version of start_counting().

runtime <- new.env(parent=.GlobalEnv)
runtime$start_counting <- capture(start_counting, store)

This ensures that when the user calls start_counting(), the capturing version is executed. We call
this technique local masking since the start_counting() function is only masked during the execution
of run(). The captured version of start_counting()as a side effect stores its output in store. We
call this a ‘local side-effect’ because store is never seen by the user: it is created inside run() and
destroyed when run() is finished.

Finally, all expressions are executed in the runtime environment and counted conditional on the
value of store$counting.

for (e in expressions){
eval(e, envir=runtime)
if ( isTRUE(store$counting) ) n <- n + 1

}
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Summarizing, with this construction, we are able to create a file runner akin to source() that can
gather and communicate useful process metadata while executing a script. Moreover, the user of
the script can convey information directly to the file runner, while it runs, without relying on global
side-effects. This is achieved by first creating a user-facing function that returns the information to be
sent to the file runner. The file runner locally masks the user-facing version with a version that copies
the output to an environment local to the file runner before returning the output to the user.

The approach just described can be generalized to more realistic use cases. All examples mentioned
in the ‘Context’ section —time or memory profiling, or logging changes in data, merely need some
extra administration. Furthermore, the current example emits the secondary data flow as a ‘message’.
In practical use cases, it may make more sense to write the output to a file connection or database
or the make the secondary data stream output of the file runner. In the Applications section, both
applications are discussed.

Build your own pipe operator

Pipe operators have become a popular tool for R users over the last years, and R currently has a pipe
operator (|>) built-in. This pipe operator is intended as a form of ‘syntactic sugar’ that, in some cases,
makes code a little easier to write. A pipe operator behaves somewhat like a left-to-right ‘expression
composition operator’. This, in the sense that a sequence of expressions that are joined by a pipe
operator are interpreted by R’s parser as a single expression. Pipe operators also offer an opportunity
to derive information from a running sequence of expressions.

It is possible to implement a basic pipe operator as follows.

`%p>%` <- function(lhs, rhs) rhs(lhs)

Here, the rhs (right-hand side) argument must be a single-argument function, which is applied to lhs.
In an interactive session we could see this.

> 3 %p>% sin %p>% cos
[1] 0.9900591

To build our expression counter, we need to have a place to store the counter value hidden from
the user. In contrast to the implementation of the file runner in the previous section, each use of %p>%
is disconnected from the other, and there seems to be no shared space to increase the counter at each
call. The solution is to let the secondary data flow travel with the primary flow by adding an attribute
to the data. We create two user-facing functions that start or stop logging as follows.

start_counting <- function(data){
attr(data, "n") <- 0
data

}
end_counting <- function(data){
message(sprintf("Counted %d expressions", attr(data,"n")-1))
attr(data, "n") <- NULL
data

}

Here, the first function attaches a counter to the data and initializes it to zero. The second function
reports its value, decreased by one, so the stop function itself is not included in the count. We also
alter the pipe operator to increase the counter if it exists.

`%p>%` <- function(lhs, rhs){
if ( !is.null(attr(lhs,"n")) ){
attr(lhs,"n") <- attr(lhs,"n") + 1

}
rhs(lhs)

}

In an interactive session, we could now see the following.

> out <- 3 %p>%
+ start_counting %p>%
+ sin %p>%
+ cos %p>%
+ end_counting
Counted 2 expressions
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> out
[1] 0.9900591

Summarizing, for small interactive tasks, a secondary data flow can be added to the primary one
by using a special kind of pipe operator. Communication between the user and the secondary data
flow is implemented by adding or altering attributes attached to the R object.

Generalizations of this technique come with a few caveats. First, the current pipe operator only
allows right-hand side expressions that accept a single argument. Extension to a more general case
involves inspection and manipulation of the right-hand side’s abstract syntax tree and is out of scope
for the current work. Second, the current implementation relies on the right-hand side expressions to
preserve attributes. A general implementation will have to test that the output of rhs(lhs) still has the
logging attribute attached (if there was any) and re-attach it if necessary.

4 Application 1: tracking changes in data

The lumberjack package (van der Loo, 2021) implements a logging framework to track changes in
R objects as they get processed. The package implements both a pipe operator, denoted %L>%, and a
file runner called run_file(). The main communication devices for the user are two functions called
start_log() and dump_log().

We will first demonstrate working with the lumberjack pipe operator. The function start_log()
accepts an R object and a logger object. It attaches the logger to the R object and returns the augmented
R object. A logger is a reference object1 that exposes at least an $add() method and a $dump() method.
If a logger is present, the pipe operator stores a copy of the left-hand side. Next, it executes the
expression on the right-hand side with the left-hand side as an argument and stores the output. It
then calls the add() method of the logger with the input and output so that the logger can compute
and store the difference. The dump_log() function accepts an R object, calls the $dump() method on
the attached logger (if there is any), removes the logger from the object and returns the object. An
interactive session could look as follows.

> library(lumberjack)
> out <- women %L>%
> start_log(simple$new()) %L>%
> transform(height = height * 2.54) %L>%
> identity() %L>%
> dump_log()
Dumped a log at /home/mark/simple.csv
> read.csv("simple.csv")
step time expression changed

1 1 2019-08-09 11:29:06 transform(height = height * 2.54) TRUE
2 2 2019-08-09 11:29:06 identity() FALSE

Here, simple$new() creates a logger object that registers whether an R object has changed or not.
There are other loggers that compute more involved differences between in- and output. The $dump()
method of the logger writes the logging output to a csv file.

For larger scripts, a file runner called run_file() is available in lumberjack. As an example,
consider the following script. It converts columns of the built-in women data set to SI units (meters and
kilogram) and then computes the body-mass index of each case.

# contents of script2.R
start_log(women, simple$new())
women$height <- women$height * 2.54/100
women$weight <- women$weight * 0.453592
women$bmi <- women$weight/(women$height)^2

In an interactive session, we can run the script and access both the logging information and retrieve
the output of the script.

> e <- run_file("script2.R")
Dumped a log at /home/mark/women_simple.csv
> read.csv("women_simple.csv")
step time expression changed

1 1 2019-08-09 13:11:25 start_log(women, simple$new()) FALSE

1A native R Reference Class, an ‘R6’ object (Chang, 2020), or any other reference type object implementing the
proper API.
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2 2 2019-08-09 13:11:25 women$height <- women$height * 2.54/100 TRUE
3 3 2019-08-09 13:11:25 women$weight <- women$weight * 0.453592 TRUE
4 4 2019-08-09 13:11:25 women$bmi <- women$weight/(women$height)^2 TRUE
> head(e$women,3)
height weight bmi

1 1.4732 52.16308 24.03476
2 1.4986 53.07026 23.63087
3 1.5240 54.43104 23.43563

The lumberjack file runner locally masks start_log() with a function that stores the logger and
the name of the tracked R object in a local environment. A copy of the tracked object is stored locally
as well. Expressions in the script are executed one by one. After each expression, the object in the
runtime environment is compared with the stored object. If it has changed, the $add() method of the
logger is called, and a copy of the changed object is stored. After all expressions have been executed,
the $dump() method is called, so the user does not have to do this explicitly.

A user can add multiple loggers for each R object and track multiple objects. It is also possible
to dump specific logs for specific objects during the script. All communication necessary for these
operations runs via the mechanism explained in the ‘build your own source()’ section.

5 Application 2: unit testing

The tinytest package (van der Loo, 2020) implements a unit testing framework. Its core function is a
file runner that uses local masking and local side effects to capture the output of assertions that are
inserted explicitly by the user. As an example, we create tests for the following function.

# contents of bmi.R
bmi <- function(weight, height) weight/(height^2)

A simple tinytest test file could look like this.

# contents of test_script.R
data(women)
women$height <- women$height * 2.54/100
women$weight <- women$weight * 0.453592
BMI <- with(women, bmi(weight,height) )

expect_true( all(BMI >= 10) )
expect_true( all(BMI <= 30) )

The first four lines prepare some data, while the last two lines check whether the prepared data meets
our expectations. In an interactive session, we can run the test file after loading the bmi() function.

> source("bmi.R")
> library(tinytest)
> out <- run_test_file('test_script.R')
Running test_script.R................. 2 tests OK
> print(out, passes=TRUE)
----- PASSED : test_script.R<7--7>
call| expect_true(all(BMI >= 10))

----- PASSED : test_script.R<8--8>
call| expect_true(all(BMI <= 30))

In this application, the file runner locally masks the expect_*() functions and captures their
result through a local side effect. As we are only interested in the test results, the output of all other
expressions is discarded.

Compared to the basic version described in the ‘build your own source()’ section, this file runner
keeps some extra administration, such as the line numbers of each masked expression. These can be
extracted from the output of parse(). The package comes with a number of assertions in the form of
expect_*() functions. It is possible to extend tinytest by registering new assertions. These are then
automatically masked by the file runner. The only requirement on the new assertions is that they
return an object of the same type as the built-in assertions (an object of class ‘tinytest’).
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6 Discussion

The techniques demonstrated here have two major advantages. First, it allows for a clean and side-
effect free separation between the primary and secondary data flows. As a result, the secondary data
flow is composed with the primary data flow. In other words: a user that wants to add a secondary
data flow to an existing script does not have to edit any existing code. Instead, it is only necessary
to add a bit of code to specify and initialize the secondary stream, which is a big advantage for
maintainability. Second, the current mechanisms avoid the use of condition signals. This also leads to
code that is easier to understand and navigate because all code associated with the secondary flow
can be limited to the scope of a single function (here: either a file runner or a pipe operator). Since
the secondary data flow is not treated as an unusual condition (exception), the exception signaling
channel is free for transmitting truly unusual conditions such as errors and warnings.

There are also some limitations inherent to these techniques. Although the code for the secondary
data flow is easy to compose with code for the primary data flow, it is not as easy to compose different
secondary data flows. For example, one can use only one file runner to run an R script and only a
single pipe operator to combine two expressions.

A second limitation is that this approach does not recurse into the primary expressions. For
example, the expression counters we developed only count user-defined expressions. They can not
count expressions that are called by functions called by the user. This means that something like a
code coverage tool such as covr is out of scope.

A third and related limitation is that the resolution of expressions may be too low for certain
applications. For example in R, ‘if’ is an expression (it returns a value when evaluated) rather than a
statement (like for). This means that parse() interprets a block such as

if ( x > 0 ){
x <- 10
y <- 2*x

}

as a single expression. If higher resolution is needed, this requires explicit manipulation of the user
code.

Finally, the local masking mechanism excludes the use of the namespace resolution operator. For
example, in lumberjack, it is not possible to use lumberjack::start_log() since, in that case, the
user-facing function from the package is executed and not the masked function with the desired local
side-effect.

7 Conclusion

In this paper we demonstrated a set of techniques that allow one to add a secondary data flow to an
existing user-defined R script. The core idea is that we manipulate way expressions are combined
before they are executed. In practice, we use R’s parse() and eval() to add secondary data stream
to user code, or build a special ‘pipe’ operator. Local masking and local side effects allow a user to
control the secondary data flow without global side-effects. The result is a clean separation of concerns
between the primary and secondary data flow, that does not rely on condition handling, is void of
global side-effects, and that is implemented in pure R.
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penPHcure: Variable Selection in
Proportional Hazards Cure Model with
Time-Varying Covariates
by Alessandro Beretta and Cédric Heuchenne

Abstract We describe the penPHcure R package, which implements the semiparametric proportional-
hazards (PH) cure model of Sy and Taylor (2000) extended to time-varying covariates and the variable
selection technique based on its SCAD-penalized likelihood proposed by Beretta and Heuchenne
(2019a). In survival analysis, cure models are a useful tool when a fraction of the population is likely to
be immune from the event of interest. They can separate the effects of certain factors on the probability
of being susceptible and on the time until the occurrence of the event. Moreover, the penPHcure
package allows the user to simulate data from a PH cure model, where the event-times are generated
on a continuous scale from a piecewise exponential distribution conditional on time-varying covariates,
with a method similar to Hendry (2014). We present the results of a simulation study to assess the
finite sample performance of the methodology and illustrate the functionalities of the penPHcure
package using criminal recidivism data.

1 Introduction

In contrast to other statistical methods, survival analysis models are designed to model the time to
an event of interest (e.g., death or occurrence of a disease in medical studies). A typical feature of
time-to-event data is the presence of right censoring, an incomplete information problem that arises
when a subject is lost to follow-up or does not experience the event before the end of the study. In
these cases, it is unknown whether the subject will eventually experience the event and when it will
occur, given that it can occur. The most common assumption of standard survival analysis models is
that the whole population will sooner or later experience the event of interest. However, in practice,
this may not be the case because a fraction of the population may be immune (i.e., not susceptible) to
this event. Cure models, also known as split population duration models or limited-failure population models,
were developed to handle this kind of situation. They allow us to investigate the effects of some
covariates (e.g., type of treatment, stage of the tumor, sex, or age) on the probability to be susceptible
to the event of interest (i.e., incidence), and on the survival time conditional on being susceptible (i.e.,
latency).

Originally, cure models were introduced in the medical literature by Boag (1949) and Berkson
and Gage (1952), but they have been used in several other disciplines during the years. In reliability
engineering, Meeker (1987) investigates the failure of solid-state electronic components (e.g., integrated
circuits). In social science, Schmidt and Witte (1989) investigate the timing of return to prison for a
sample of prison releases, and they use it to make predictions of whether or not individuals return to
prison. In finance, Cole and Gunther (1995) analyze the determinants of commercial bank failures in
the United States; in credit scoring, Tong et al. (2012) predict defaults on a portfolio of UK personal
loans. In political science, Svolik (2008) studies the likelihood that a democracy consolidates and the
timing of authoritarian reversals in democracies that are not consolidated. In marketing, Polo et al.
(2011) investigate the drivers of customer retention in a liberalizing market, using data for a sample of
650 consumers in the Spanish mobile phone industry. In the literature, several variants of cure models
have been proposed (see Amico and Van Keilegom (2018) for a comprehensive survey), which belong
to two main families: mixture cure models and promotion time cure models.

In this article, we present the penPHcure package (Beretta and Heuchenne, 2019b), which im-
plements the semiparametric proportional-hazards (PH) mixture cure model of Sy and Taylor (2000)
extended to time-varying covariates, where the incidence and latency distributions are modeled by a
logistic regression and a Cox’s PH model (Cox, 1972), respectively. The penPHcure package contains
two main functions: penpHcure, to estimate the regression coefficients, their confidence intervals using
the basic/percentile bootstrap method, and to perform variable selection using the SCAD-penalized
likelihood technique proposed by Beretta and Heuchenne (2019a); and penpHcure.simulate to simu-
late data from a PH cure model, where the event-times are generated on a continuous scale from a
piecewise exponential distribution conditional on time-varying covariates, using a method similar to
the one described in Hendry (2014).

At the time of writing this article, we are unaware of other R packages for estimation of semi-
parametric PH mixture cure models with time-varying covariates and, above all, that enable the
user to perform variable selection. In the context of cure models for right-censored data, available
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R packages include: the flexsurvcure package (Amdahl, 2019) for estimation of parametric mixture
and non-mixture cure models with time-invariant covariates using time-to-event distributions from
the flexsurv package (Jackson, 2016); the nltm package (Garibotti et al., 2019) for estimation of the
semiparametric PH cure model with time-invariant covariates of Tsodikov et al. (2003), as well as other
nonlinear transformation models for analyzing survival data using the method of Tsodikov (2003);
and the smcure package (Cai et al., 2012) for estimation of the semiparametric PH cure model and the
accelerated failure time cure model with time-invariant covariates and the spduration package (Beger
et al., 2018) that implements a parametric cure model with time-varying covariates using Weibull
and Log-Logistic latency distributions. Compared to spduration, the penPHcure package has some
advantages: the latency distribution is modeled by a more flexible semiparametric Cox’s PH model;
the response variable and the time to the event of interest are continuous; and, above all, it allows
the user to simultaneously select variables and estimate their parameters using a variable selection
technique based on SCAD penalties.

The remainder of this article is structured as follows:

• Methodology. We present the PH cure model with time-varying covariates implemented in the
penPHcure function when the argument pen.type is set equal to "none" (default);

– Variable selection. We present the variable selection technique based on SCAD penalties
implemented in the penPHcure function when pen.type=="SCAD";

– Data generation. We describe the algorithm implemented in the penPHcure.simulate
function, which generates data from a PH cure model with time-varying covariates.

• Simulation study. We analyze the finite sample performance of the PH cure model estimates and
its variable selection technique implemented in the penPHcure function.

• An application to Criminal Recidivism data. We provide an example of practical use of the
penPHcure function to analyze a real data set.

2 Methodology

Let Y be a Bernoulli random variable indicating whether an individual is susceptible (Y = 1) or
immune (Y = 0) to the event of interest with probability p = P(Y = 1). Let T be the time to event,
defined only when Y = 1. Assuming that a fraction of the population is immune to the event of
interest, the marginal survival function of T is defined as

S(t) = (1 − p) + pS(t|Y = 1),

where p is the incidence (i.e., probability of being susceptible) and S(t|Y = 1) is the latency (i.e.,
survival function conditional on being susceptible).

The incidence is modeled by a logistic regression model:

p(x) = P(Y = 1|x) = exp(x′b)
1 + exp(x′b)

,

where x is a vector of time-fixed covariates (including the intercept) and b a vector of unknown
coefficients. Whereas the latency is modeled by a Cox’s PH model:

S(t|Y = 1, z̄(t)) = exp
(
−

∫ t

0
h0(u)ez′(u)βdu

)
,

where z(t) is a vector of time-varying covariates (we denote by z̄(t) the full history of the covariates up
to time t), β is a vector of unknown coefficients, and h0(t) is an arbitrary baseline conditional hazard
function.

Let O = {(ti, δi, z̄i(ti), xi); i = 1, ..., n} denote the observed data, where ti is the event/censoring
time and δi is the censoring indicator, which takes value 1 if ti is uncensored and 0 otherwise. Since
we know that yi = 1 when δi = 1, but yi is unobserved when δi = 0, we can estimate the unknown
parameters θ = (b, β, h0) using the Expectation-Maximization (EM) algorithm (Dempster et al., 1977).
The complete-data likelihood can be written as

LC (b, β, h0) =
n

∏
i=1

p(xi)
yi [1 − p(xi)]

(1−yi)

︸ ︷︷ ︸
L1(b)

×
n

∏
i=1

[
h0(ti)ez′i(ti)β

]δiyi
[

e−
∫ ti

0 h0(u)e
z′i (u)β du

]yi

︸ ︷︷ ︸
L2(β,h0)

, (1)
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i.e., the product between the incidence component L1 depending on a set of time-fixed covariates xi,
and the latency component L2 depending on a set of time-varying covariates z′i(t).

Given some starting values θ(0), the m-th iteration of the EM algorithm consists of two steps:

E step. Compute the expectation of the complete-data likelihood with respect to the conditional

distribution of the yi’s given the current parameter estimates θ̂
(m−1) and the observed data O.

This expectation is obtained by replacing the yi’s in (1) by their expectation

π
(m)
i = E

[
Yi

∣∣∣θ̂(m−1), O
]
= δi + (1 − δi)

p(xi)S(t|Y = 1, z̄i(t))
1 − p(xi) + p(xi)S(t|Y = 1, z̄i(t))

.

Note that we removed the dependence of the theoretical functions on the estimated parameters
to simplify the notation.

M step. Maximize the expected complete-data likelihood with respect to b, β, and the function h0.

Given π(m) = {π
(m)
1 , ..., π

(m)
n }, the incidence component L1 in (1) is maximized using the

Newton-Raphson method as in the classical logistic regression model. Whereas the latency
component L2 in (1) is maximized using a profile likelihood approach. The latter involves two
steps: (i) the baseline conditional hazard function is estimated nonparametrically by

ĥ0(t) =
1(

t(j) − t(j−1)

)
∑i∈Rj

π
(m)
i ez′i(t(j))β

, for t ∈ (t(j−1), t(j)], (2)

where t(1) ≤ ... ≤ t(k) are the k ordered event times and Rj is the risk set at t−
(j) (i.e., the set of all

individuals who did not experience the event of interest and have not been censored just prior
to time t(j)); and then (ii) the function h0 in L2 is replaced by its estimator given in (2) to obtain
the following partial likelihood, which does not depend on the function h0 anymore,

L̃2

(
β
∣∣∣π(m)

i

)
=

k

∏
j=1

ezi(t(j))β

∑i∈Rj
π
(m)
i ez′i(t(j))β

. (3)

Finally, the latency component is estimated by maximizing (3) with respect to β. In case of tied
event-times, (2) and (3) can be rewritten using the Breslow (1974) or Efron (1977) approximation
as in the standard Cox’s PH model.

The EM algorithm terminates whenever
∥∥∥b̂

(m) − b̂
(m−1)

∥∥∥
2
< ϵ and

∥∥∥β̂
(m) − β̂

(m−1)
∥∥∥

2
< ϵ, where

ϵ is a tolerance threshold (by default 10−6).

Variable selection

When the number of available covariates is large, fitting all possible subsets to find the most relevant
covariates would be too time consuming. Beretta and Heuchenne (2019a) proposed a regularization
method based on the maximization of a penalized version of the complete-data log-likelihood

ℓP
C (θ; λ1, λ2) = ℓ1 (b)− n

q1+1

∑
j=2

pλ1

(
|bj|

)
︸ ︷︷ ︸

ℓP
1 (b;λ1)

+ ℓ2 (β, h0)− n
q2

∑
l=1

pλ2 (|βl |)︸ ︷︷ ︸
ℓP

2 (β,h0;λ2)

,

where ℓ denotes a log-likelihood and pλ(.) a SCAD penalty function, which role is to shrink the
small coefficients toward zero. We assume that the q1 and q2 covariates in the incidence and latency
component, respectively, have been standardized, such that the coefficients in b and β are on the same
scale. The Smoothly Clipped Absolute Deviation (SCAD) penalty function (Fan and Li, 2001) is given
by

pλ(|β j|) =


λ|β j|, if |β j| ≤ λ
(a2−1)λ2−(|β j |−aλ)2

2(a−1) , if λ < |β j| ≤ aλ

(a+1)λ2

2 , if |β j| > aλ

,

for some a > 2 and λ > 0. As explained by Fan and Li (2001, 2002) in the context of linear regression,
generalized linear models, Cox’s PH model, and frailty models, the SCAD estimator has three desir-
able properties: unbiasedness (do not penalize to much large coefficients), sparsity, and continuity.
Moreover, with a proper choice of the tuning parameters (λ, a), it also possesses what is known as
the “oracle property”, meaning that the SCAD estimator is asymptotically equivalent to the oracle
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estimator (i.e., an estimator with only the relevant variables with nonzero coefficients).

For fixed values of the tuning parameters (λ1, λ2, a1, a2), estimates of θ can be obtained using an
EM algorithm close to the one described in the previous section. The only difference lies in the M-step.
Given that the penalized log-likelihoods ℓP

1 (b; λ1) and ℓ̃P
2 (β; λ2), where ℓ̃P

2 (β; λ2) is the logarithm of
(3), are non-concave and non-differentiable at the origin, b and β are now estimated using the MM
algorithm of Hunter and Li (2005) based on a perturbed Local Quadratic Approximation (LQA) of the
penalty function. By default, when the argument pen.type of the function penPHcure is set equal to
"SCAD", the initial values for b and β are vectors with all elements equal to zero. Otherwise, the user
can specify other values (e.g., the estimated coefficients of the model with all covariates) using the
argument SV.

Regarding the choice of the tuning parameters, following the suggestion of Fan and Li (2001), we
keep a1 = a2 = 3.7, and given a set of possible values for (λ1, λ2), we select the ones that minimize
the following Akaike (AIC) or Bayesian (BIC) Information Criteria:

AIC (λ1, λ2) = −2ℓ
(
θ̂λ1,λ2

)
+ 2ν; and

BIC (λ1, λ2) = −2ℓ
(
θ̂λ1,λ2

)
+ ln(n)ν,

where ℓ
(
θ̂λ1,λ2

)
is the observed data log-likelihood evaluated at the penalized MLE θ̂λ1,λ2 and ν is the

number of nonzero coefficients, identified as the number of coefficients with an absolute value greater
than a given threshold (by default 10−6).

Data generation

Let S = {s1, s2, ..., sJ} be a partition of the time scale forming J + 1 intervals (0, s1], (s1, s2], ..., (sJ−1, sJ ],
(sJ , ∞]. Define a vector of time-varying covariates piecewise constant in each interval: z(t) = zj,
for t ∈ (sj−1, sj]. Consider a transformation g, such that g(0) = 0, g(t) is strictly increasing for
t > 0, and g−1(t) is differentiable. In the implementation of the penPHcure.simulate function, we use
g(t) = t1/γ, where the parameter γ can be specified by the user via the argument gamma, which by
default is equal to 1. According to Hendry (2014), if we generate a random variable V as a piecewise
exponential distribution with density function given by

fV(t) =
j−1

∏
l=1

exp{−λl [g
−1(sl)− g−1(sl−1)]}λj exp{−λj[t − g−1(sj−1)]}, for t ∈ (g−1(sj−1), g−1(sj)],

where λj = exp(z′jβ) is the constant hazard in the interval (g−1(sj−1), g−1(sj)], then g(V) follows
a Cox’s PH model with time-varying covariates with a baseline hazard function given by h0(t) =
d
dt [g

−1(t)]. This method is part of the algorithm implemented in the penPHcure.simulate function
to simulate data from a PH cure model with time-varying covariates (see Table 1 for a detailed
description).

Require: N, sample size; S, partition of the time scale; g(t), variable transformation; b,
incidence coefficients; β, latency coefficients.
for i = 1, ..., N do

1. Generate a vector xi from an arbitrary distribution;
2. Generate yi from a Bernoulli distribution with probability p(xi);
3. Generate zi = {zi,1, zi,2, ...zi,J} from an arbitrary distribution;
4. Generate vi from a piecewise exponential distribution with density fV(t);
5. Compute wi = g(vi) ;
6. Generate ci from an arbitrary distribution;
if yi = 0 or wi > ci then

ti = ci;
δi = 0;

else
ti = wi;
δi = 1;

end if
end for
return {(ti, δi, zi, xi); i = 1, ..., N}

Table 1: Data generation algorithm: PH cure model with time-varying covariates
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3 Simulation study

In this section, we present the results of a simulation study conducted to assess the finite sample
performance of the PH cure model estimation and its variable selection technique implemented in
the penPHcure function. The event-times follow a Cox’s PH model with baseline hazard function
h0(t) = 3t2 and 8 time-varying covariates. These covariates are constant within J = 30 equally-spaced
intervals (0, s1], (s1, s2], ..., (sJ−1, sJ ], where s1 = 0.2 and sJ = 6. They follow a multivariate normal
distribution zi,j ∼ N(0, Σ), where Σp,q = 0.5|p−q|, for p, q = 1, ..., 8. The censoring times follow an
exponential distribution truncated above 6 and with parameter λC. The cure indicators are generated
from a logistic regression model with 8 time-fixed covariates that follow a multivariate normal
distribution xi ∼ N(0, Σ), where Σp,q = 0.5|p−q|, for p, q = 1, ..., 8. Finally, the regression coefficients
vectors are set equal to β0 = (−0.7, 0, 1, 0,−0.5, 0.75, 0, 0)′ and b0 = (b0, 1.5, 0,−0.75, 0,−1.5, 0, 0.75, 0)′.

We consider 6 simulation settings, with different levels of censoring and proportions of non-
susceptible individuals (expressed as a fraction of the sample size), depending on different values
of b0 and λC (see Table 2). For each of these settings, we generated 500 replications using the
penPHcure.simulate function for different sample sizes N = {250, 500, 1000}. Then, for all simulated
datasets, we use the penPHcure function to (i) fit a standard PH cure model with all covariates (FULL),
(ii) fit a standard PH cure model with the covariates associated to the non-zero coefficients only (ORA-
CLE), and (iii) to perform variable selection using the regularization method with SCAD penalties and
tuning parameters chosen according to the BIC criterion. The possible values of the tuning parameters
(λ1, λ2) are obtained with the function exp(seq(-6,-1,length.out = 10)), whereas (a1, a2) are kept
equal to 3.7. Furthermore, we use the coxph function in the survival package (Therneau, 2015) to fit
the classical Cox’s PH model with the covariates associated to the non-zero coefficients only (COX).

Censoring Cure λC b0

Low (40%) High (30%) 0.02 1.45
Low (40%) Medium (20%) 0.3 2.35

Medium (60%) High (45%) 0.35 0.35
Medium (60%) Medium (30%) 0.75 1.45

High (80%) High (60%) 0.95 -0.7
High (80%) Medium (40%) 1.55 0.7

Table 2: Simulation settings (censoring and cure are expressed as fractions of all individuals).

The performance is measured in terms of Mean Estimation Error (MEE) and average number of
correct and incorrect zeros identified by the variable selection technique (SCAD). In particular, the

estimation error for the incidence component is computed as E
[
( p̂(x)− p0(x))

2
]
, where p̂(x) and

p0(x) are the estimated and true probabilities of being susceptible. Whereas the estimation error

for the latency component is computed as E
[(

Ŝ(T|Y = 1)− S0(T|Y = 1)
)2
]
, where Ŝ(T|Y = 1) and

S0(T|Y = 1) are the estimated and true survival functions conditional on being susceptible.

In Figures 1 and 2, we provide the MEEs for the incidence and latency components, respectively,
while in Figure 3, we provide the average number of correct and incorrect zeros. From those figures,
we can see that the PH cure model estimation and its variable selection technique implemented in the
penPHcure function perform reasonably well. For an increase of the sample size or a decrease of the
level of censoring, the MEE decreases, and the number of correct (resp. incorrect) zeros converges to 4
(resp. 0). The MEEs of the ORACLE model are always the lowest ones, but we notice that the ones of
the SCAD method tend towards them as the sample size increases. It is important to note that, for a
fixed level of censoring, we observe higher MEEs in the case of a lower fraction of cured individuals.
The worst results are obtained in situations of high censoring and low cure rates, but it is enough to
increase the sample size to obtain better results. This is evidence of the fact that a cure model should
always be applied to data with a sufficient number of non-susceptible individuals. Last but not the
least important, we note that the use of the classical Cox’s PH model (COX) leads to very high errors.
This was expected since the model is wrongly specified as it ignores the existence of cured subjects.

Finally, in Table 3, we also present the coverage probabilities of the estimated 95% confidence
intervals for the ORACLE model using the basic and percentile bootstrap methods with 500 resamples.
In most cases, the basic bootstrap method outperforms the percentile bootstrap method, especially for
the smallest sample sizes, with coverage probabilities closer to the 95% nominal level.

The R code used to obtain the results in Figures 1 to 3 (resp. Table 3) are provided in Section 2
(resp. Section 3) of the supplementary material (‘beretta-heuchenne.R’). Moreover, in the file ‘beretta-
heuchenne-suppl.pdf’, we provide a table with all the results contained in Figures 1 to 3.
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Figure 1: Results of the simulations: mean estimation errors (incidence component).

Figure 2: Results of the simulations: mean estimation errors (latency component).

Figure 3: Results of the simulations: average number of correct/incorrect zeros identified by the
variable selection technique (SCAD).
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cens cure N Method b0 b1 b2 b3 b4 β1 β2 β3 β4

0.40 0.30 250 basic 0.97 0.97 0.98 0.97 0.97 0.96 0.97 0.96 0.94
perc 0.9 0.91 0.94 0.91 0.94 0.93 0.94 0.95 0.94

500 basic 0.97 0.95 0.95 0.94 0.96 0.96 0.96 0.96 0.96
perc 0.91 0.91 0.94 0.92 0.94 0.94 0.91 0.95 0.95

1000 basic 0.95 0.96 0.95 0.97 0.97 0.93 0.95 0.95 0.96
perc 0.94 0.94 0.93 0.95 0.97 0.93 0.95 0.95 0.95

0.40 0.20 250 basic 0.95 0.96 0.99 0.96 0.97 0.96 0.97 0.97 0.96
perc 0.89 0.9 0.94 0.91 0.93 0.94 0.96 0.96 0.96

500 basic 0.98 0.97 0.97 0.97 0.98 0.95 0.96 0.96 0.96
perc 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.93 0.93

1000 basic 0.97 0.96 0.96 0.95 0.95 0.94 0.93 0.96 0.95
perc 0.95 0.94 0.94 0.93 0.94 0.94 0.94 0.96 0.95

0.60 0.45 250 basic 0.98 0.95 0.96 0.96 0.97 0.98 0.98 0.97 0.97
perc 0.95 0.91 0.93 0.93 0.94 0.93 0.94 0.94 0.94

500 basic 0.98 0.95 0.94 0.97 0.96 0.94 0.94 0.96 0.95
perc 0.96 0.93 0.94 0.92 0.93 0.94 0.92 0.95 0.95

1000 basic 0.95 0.96 0.96 0.95 0.95 0.95 0.94 0.93 0.95
perc 0.95 0.94 0.94 0.93 0.94 0.94 0.92 0.94 0.93

0.60 0.30 250 basic 0.96 0.94 0.98 0.94 0.99 0.97 0.96 0.96 0.96
perc 0.89 0.9 0.91 0.89 0.93 0.94 0.94 0.95 0.95

500 basic 0.96 0.97 0.98 0.95 0.97 0.96 0.96 0.95 0.95
perc 0.94 0.91 0.94 0.93 0.93 0.95 0.96 0.95 0.95

1000 basic 0.96 0.96 0.96 0.95 0.96 0.96 0.95 0.95 0.96
perc 0.95 0.94 0.94 0.92 0.94 0.94 0.94 0.94 0.95

0.80 0.60 250 basic 0.99 0.97 0.98 0.97 0.97 0.97 0.96 0.97 0.97
perc 0.94 0.91 0.92 0.91 0.92 0.94 0.92 0.96 0.94

500 basic 0.98 0.95 0.97 0.95 0.97 0.97 0.96 0.98 0.98
perc 0.94 0.93 0.95 0.93 0.94 0.95 0.94 0.95 0.96

1000 basic 0.96 0.95 0.96 0.94 0.96 0.96 0.95 0.94 0.96
perc 0.93 0.95 0.94 0.93 0.95 0.95 0.94 0.93 0.93

0.80 0.40 250 basic 0.98 0.95 0.99 0.98 1 0.97 0.96 0.99 0.99
perc 0.92 0.88 0.91 0.91 0.93 0.95 0.93 0.97 0.95

500 basic 0.97 0.95 0.97 0.96 0.98 0.96 0.96 0.97 0.96
perc 0.94 0.9 0.93 0.91 0.93 0.94 0.94 0.96 0.94

1000 basic 0.96 0.96 0.97 0.95 0.95 0.98 0.95 0.93 0.96
perc 0.96 0.95 0.95 0.94 0.93 0.94 0.94 0.93 0.93

Table 3: Results of the simulations: coverage probabilities.

4 An application to Criminal Recidivism data

In this section, we illustrate the use of the penPHcure R package using a Criminal Recidivism dataset,
which contains a sample of 432 inmates released from Maryland state prisons and followed for one
year after release (Rossi et al., 1980). The aim of this study was to investigate the relationship between
the time to first arrest after release and some covariates observed during the follow-up period. In
particular, to study the effect of providing financial aid at the moment of release. The original source
of the data is the Rossi dataset in the RcmdrPlugin.survival package (Fox and Carvalho, 2012), which
has been converted into a counting process format and included in the penPHcure package.

Let us load and illustrate the dataset:

> library(penPHcure)
> data("cpRossi", package = "penPHcure")
> head(cpRossi)
id tstart tstop arrest fin age race wexp mar paro prio educ emp

1 1 0 20 yes no 27 black no no yes 3 3 no
2 2 0 9 no no 18 black no no yes 8 4 no
3 2 9 14 no no 18 black no no yes 8 4 yes
4 2 14 17 yes no 18 black no no yes 8 4 no
5 3 0 16 no no 19 other yes no yes 13 3 no
6 3 16 17 no no 19 other yes no yes 13 3 yes
> str(cpRossi)
'data.frame': 1405 obs. of 13 variables:
$ id : int 1 2 2 2 3 3 3 4 4 4 ...
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$ tstart: int 0 0 9 14 0 16 17 0 4 21 ...
$ tstop : int 20 9 14 17 16 17 25 4 21 31 ...
$ arrest: Factor w/ 2 levels "no","yes": 2 1 1 2 1 1 2 1 1 1 ...
$ fin : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 2 2 2 ...
$ age : int 27 18 18 18 19 19 19 23 23 23 ...
$ race : Factor w/ 2 levels "black","other": 1 1 1 1 2 2 2 1 1 1 ...
$ wexp : Factor w/ 2 levels "no","yes": 1 1 1 1 2 2 2 2 2 2 ...
$ mar : Factor w/ 2 levels "yes","no": 2 2 2 2 2 2 2 1 1 1 ...
$ paro : Factor w/ 2 levels "no","yes": 2 2 2 2 2 2 2 2 2 2 ...
$ prio : int 3 8 8 8 13 13 13 1 1 1 ...
$ educ : Factor w/ 3 levels "3","4","5": 1 2 2 2 1 1 1 3 3 3 ...
$ emp : Factor w/ 2 levels "no","yes": 1 1 2 1 1 2 1 1 2 1 ...

The object cpRossi is a data.frame in counting process format with 1405 observations for 432
individuals on 13 variables. The id variable provides the unique identification number for every
individual in the study. The variables tstart and tstop denote the time interval of the observation
(measured in weeks). The variable arrest denotes whether the individual has been arrested during
the 1-year follow-up period. The remaining explanatory variables are described hereafter.

• fin. Financial aid received after release: yes or no;

• age. Age in years at the time of release;

• race. Race of the individual: black or other;

• wexp. Full-time work experience before incarceration: yes or no;

• mar. Married at the time of release: yes or no;

• paro. Released on parole: yes or no;

• prio. Number of convictions prior to incarceration;

• educ. Level of education: <=9th degree (“3”), 10th or 11th degree (“4”), or >=12th degree (“5”);

• emp. Working full time during the observed time interval: yes or no. This is the only variable
which is varying over time (e.g., the individual with id = 2 did not work full time during the
first 9 weeks after release, then he did for 5 weeks, and, finally, he has been arrested after 3
weeks without working full time).

Using the penPHcure function, by default, we can fit the standard PH cure model. First, we use
a formula object with the response on the left of the tilde operator and the explanatory variables
to be included in the latency component on the right. The response is a survival object returned
by the Surv(tstart,tstop,arrest) function. Then, using the argument cureform, we specify the
explanatory variables to be included in the incidence component. By default, these covariates are
set equal to the last observation, but in this case, we set the argument which.X = "mean" to compute
the time-weighted average over the full history. Finally, setting the argument inference = TRUE,
we conduct inference about the parameter estimates via bootstrapping (by default, 100 bootstrap
resamples). The user can increase/decrease the number of bootstrap resamples with the argument
nboot.

> set.seed(123) # for reproducibility
> fit <- penPHcure(Surv(tstart,tstop,arrest)~fin+age+race+wexp+mar+paro+prio+educ+emp,
+ cureform = ~fin+age+race+wexp+mar+paro+prio+educ+emp,
+ data = cpRossi,which.X = "mean",inference = TRUE)

Initializing PH cure model with time-varying covariates...

Number of individuals: 432
Censoring proportion: 0.736
Tied failure times: TRUE
Number of unique failure times: 49
Number of covariates in the survival component: 10
Number of covariates in the cure component: 10

Checking starting values...

Fitting standard PH cure model with time-varying covariates... Please wait...

Performing inference via bootstrapping... Please wait ...
|==============================================================================| 100%

DONE!
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This call to the penPHcure function returned an object of class "PHcure", and we can print a
summary of the results using the summary method. By default, confidence intervals are computed
using the basic bootstrap method (the alternative is percentile bootstrap) and a confidence level of 95%.
In order to control these features, the user can provide the arguments conf.int and conf.int.level,
respectively.

> summary(fit)

------------------------------------------------------
+++ PH cure model with time-varying covariates +++
------------------------------------------------------
Sample size: 432
Censoring proportion: 0.7361111
Number of unique event times: 49
Tied failure times: TRUE

log-likelihood: -643.65

------------------------------------------------------
+++ Cure (incidence) coefficient estimates +++
+++ and 95% confidence intervals * +++
------------------------------------------------------

Estimate 2.5% 97.5%
(Intercept) 1.136709 -34.041743 9.769052
finyes -0.455199 -2.299870 12.188817
age -0.067715 -0.382429 0.413001
raceother -0.100950 -2.988104 35.336024
wexpyes 0.251663 -3.257339 2.193371
marno 0.261947 -15.041406 35.102574
paroyes -0.041289 -3.156395 1.659637
prio 0.068443 -0.285553 0.237089
educ4 -0.570782 -2.614311 2.532353
educ5 -1.163257 -39.473732 34.360612
empyes -0.860659 -3.299354 1.216299

------------------------------------------------------
+++ Survival (latency) coefficient estimates +++
+++ and 95% confidence intervals * +++
------------------------------------------------------

Estimate 2.5% 97.5%
finyes 0.062630 -1.427436 1.446067
age 0.046192 -0.067209 0.176043
raceother -0.759985 -2.770654 0.720247
wexpyes -0.552549 -1.672866 0.576657
marno 0.123655 -2.327914 1.600195
paroyes 0.040388 -0.816177 1.110058
prio 0.048407 -0.107942 0.195763
educ4 0.588156 -0.545885 1.881803
educ5 0.838098 -2.527512 5.118107
empyes -1.431782 -1.980471 -0.781978

------------------------------------------------------
* Confidence intervals computed by the basic
bootstrap method, with 100 replications.

------------------------------------------------------

As you can see, only one covariate (emp) in the latency component is statistically significant (the
95% confidence interval does not include zero). The negative sign of the estimated coefficient implies
that the individuals working full time after release have a lower risk of being rearrested (among the
individuals susceptible to be rearrested). The lack of significance of the other covariates might be
explained by the small sample size, the high level of censoring (only 114 out of 432 individuals have
been rearrested), or by potential confounding factors.

We now perform variable selection with the proposed SCAD-penalized likelihood method to
check whether other covariates may be relevant to explain incidence and latency. First, we specify
the possible values of the tuning parameters (using the argument pen.tuneGrid) and set the starting
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values equal to the coefficient estimates from the unpenalized model (using the argument SV). Then,
we still use the penPHcure function, but we now include the argument pen.type = "SCAD".

> pen.tuneGrid <- list(CURE = list(lambda = seq(0.01,0.12,by=0.01),
+ a = 3.7),
+ SURV = list(lambda = seq(0.01,0.12,by=0.01),
+ a = 3.7))
> SV <- list(b=fit$b,beta=fit$beta)
> tuneSCAD <- penPHcure(Surv(tstart,tstop,arrest)~fin+age+race+wexp+mar+paro+prio+educ+emp,
+ cureform = ~fin+age+race+wexp+mar+paro+prio+educ+emp,
+ data = cpRossi,which.X = "mean",pen.type = "SCAD",
+ pen.tuneGrid = pen.tuneGrid,SV = SV)

Initializing PH cure model with time-varying covariates...

Number of individuals: 432
Censoring proportion: 0.736
Tied failure times: TRUE
Number of unique failure times: 49
Number of covariates in the survival component: 10
Number of covariates in the cure component: 10

Checking starting values...

Tuning SCAD-penalized PH cure model with time-varying covariates... Please wait...

iter aCURE aSURV lambdaCURE lambdaSURV AIC BIC df
1 3.70 3.70 0.01 0.01 1319.1625 1384.2573 16
2 3.70 3.70 0.01 0.02 1319.1625 1384.2573 16
3 3.70 3.70 0.01 0.03 1316.0665 1360.8192 11
4 3.70 3.70 0.01 0.04 1318.0458 1358.7300 10
5 3.70 3.70 0.01 0.05 1318.0457 1358.7300 10

... ... (omitted rows) ... ... (omitted rows) ... ...

140 3.70 3.70 0.12 0.08 1325.5349 1333.6718 2
141 3.70 3.70 0.12 0.09 1325.5349 1333.6718 2
142 3.70 3.70 0.12 0.10 1325.5349 1333.6718 2
143 3.70 3.70 0.12 0.11 1325.5349 1333.6718 2
144 3.70 3.70 0.12 0.12 1325.5349 1333.6718 2

DONE!

This time, the call to the penPHcure function returned an object of class "penPHcure". We can print
a summary of the results using the summary method, and, by default, the fitted model with the lowest
BIC criterion is returned.

> summary(tuneSCAD)

------------------------------------------------------
+++ PH cure model with time-varying covariates +++
+++ [ Variable selection ] +++
------------------------------------------------------
Sample size: 432
Censoring proportion: 0.7361111
Number of unique event times: 49
Tied failure times: TRUE
Penalty type: SCAD
Selection criterion: BIC

------------------------------------------------------
+++ Tuning parameters +++
------------------------------------------------------
Cure (incidence) --- lambda: 0.09

a: 3.7
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Survival (latency) - lambda: 0.05
a: 3.7

BIC = 1329.481

------------------------------------------------------
+++ Cure (incidence) +++
+++ [ Coefficients of selected covariates ] +++
------------------------------------------------------

Estimate
(Intercept) 1.776907
age -0.076498

------------------------------------------------------
+++ Survival (latency) +++
+++ [ Coefficients of selected covariates ] +++
------------------------------------------------------

Estimate
prio 0.101202
empyes -1.537286

The Bayesian Information Criterion is minimized for λ1 = 0.09 and λ1 = 0.05. In this case, the
covariate age is selected in the incidence component. The negative sign of the estimated coefficient
implies that younger individuals are more susceptible to be rearrested. The covariates prio and emp
are selected in the latency component. The positive sign of the estimated coefficient (prio) implies that
a higher number of convictions prior to incarceration increases the risk of being rearrested (among the
individuals susceptible to be rearrested).

Let us now have a look at the fitted model with the lowest AIC criterion:

> summary(tuneSCAD,crit.type = "AIC")

------------------------------------------------------
+++ PH cure model with time-varying covariates +++
+++ [ Variable selection ] +++
------------------------------------------------------
Sample size: 432
Censoring proportion: 0.7361111
Number of unique event times: 49
Tied failure times: TRUE
Penalty type: SCAD
Selection criterion: AIC

------------------------------------------------------
+++ Tuning parameters +++
------------------------------------------------------
Cure (incidence) --- lambda: 0.06

a: 3.7

Survival (latency) - lambda: 0.03
a: 3.7

AIC = 1310.79

------------------------------------------------------
+++ Cure (incidence) +++
+++ [ Coefficients of selected covariates ] +++
------------------------------------------------------

Estimate
(Intercept) 1.829260
finyes -0.585638
age -0.067130
educ5 -0.887636

------------------------------------------------------
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+++ Survival (latency) +++
+++ [ Coefficients of selected covariates ] +++
------------------------------------------------------

Estimate
raceother -0.586626
prio 0.103746
empyes -1.552737

The Akaike Information Criterion is minimized for λ1 = 0.06 and λ1 = 0.03. As expected the AIC
criterion selected a less penalized and more complex model. In the incidence component, also the
covariates fin and educ have been selected. The negative signs imply that individuals who received
financial aid or with a high level of education (>=12th degree) are less susceptible to be rearrested. In
the latency component, also the covariate race has been selected. The negative coefficient implies that
individuals of a race other than black have a lower risk of being rearrested (among the individuals
susceptible to be rearrested).

5 Conclusion

In survival analysis studies, it may be the case that a fraction of the population is likely to be not
susceptible to the event of interest. In this article, we presented the penPHcure R package, which
implements the semiparametric proportional-hazards (PH) cure model of Sy and Taylor (2000) ex-
tended to time-varying covariates. This model can measure the effects of some covariates on the
probability of being susceptible and on the time until the occurrence of the event. The penPHcure
package is composed of two main functions: penpHcure, to estimate the regression coefficients, their
confidence intervals using the basic/percentile bootstrap method and to perform variable selection
using the SCAD-penalized likelihood technique proposed by Beretta and Heuchenne (2019a); and
penpHcure.simulate to simulate data from a PH cure model with time-dependent covariates. We first
explained the methodology behind these functions and presented the results of a simulation study to
assess its finite-sample performance. Then, we illustrated the use of the penPHcure function through
an example based on the Criminal Recidivism dataset.

6 Availability

The latest release and a development version of the penPHcure package are respectively avilable on
CRAN and at https://github.com/a-beretta/penPHcure.
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JMcmprsk: An R Package for Joint
Modelling of Longitudinal and Survival
Data with Competing Risks
by Hong Wang, Ning Li, Shanpeng Li, and Gang Li

Abstract In this paper, we describe an R package named JMcmprsk, for joint modelling of longitudinal
and survival data with competing risks. The package in its current version implements two joint
models of longitudinal and survival data proposed to handle competing risks survival data together
with continuous and ordinal longitudinal outcomes respectively (Elashoff et al., 2008; Li et al., 2010).
The corresponding R implementations are further illustrated with real examples. The package also
provides simulation functions to simulate datasets for joint modelling with continuous or ordinal
outcomes under the competing risks scenario, which provide useful tools to validate and evaluate
new joint modelling methods.

1 Introduction

Joint modeling of longitudinal and survival data has drawn a lot of attention over the past two decades.
Much of the research has been focused on data with a single event time and a single type of failure,
usually under the assumption of independent censoring of event times (Tsiatis and Davidian, 2004).
However, in some situations interest lies with competing risks data, where there is more than one
possible cause of an event or where the censoring is informative (Williamson et al., 2008). Typically, a
standard linear mixed model or its extensions are used for the longitudinal submodel. Cause-specific
hazards model with either unspecified or spline baseline hazards are studied for the competing risk
submodels. Various types of random effects are assumed to account for the association between these
submodels.

Despite various theoretical and methodological developments (Hickey et al., 2018b; Papageorgiou
et al., 2019), there are still limited software packages to deal with specific problems in the analysis
of follow-up data in clinical studies. To our knowledge, currently, there are three related CRAN R
packages, namely JM (Rizopoulos, 2012), joineR (Williamson et al., 2008), and lcmm (Proust-Lima
et al., 2017), which support the modeling of longitudinal and survival data with competing risks.

The JM package provides support for competing risks via the "CompRisk" option in the jointModel()
function. In JM, a linear mixed-effects submodel is modeled for the longitudinal part and a relative
risk submodel is assumed for each competing event. In the current version (1.4-8), only the piecewise
proportional hazards model, where the log baseline hazard is approximated using B-splines, is sup-
ported for the survival component. The joineR package fits the joint model (Williamson et al., 2008)
for joint models of longitudinal data and competing risks using the joint() function. In their model,
the time-to-event data is modeled using a cause-specific Cox proportional hazards regression model
with time-varying covariates. The longitudinal outcome is modeled using a linear mixed effects model.
The association is captured by a zero-mean shared latent Gaussian process. Parameters in the model
are estimated using an Expectation Maximization(EM) algorithm. The lcmm package implements the
support for competing risks joint modeling in the Jointlcmm() function. Radically different from the
above two R packages, the lcmm package uses a less well-known framework called the joint latent class
model (Proust-Lima et al., 2014), which assumes that dependency between the longitudinal markers
and the survival risk can be captured by a latent class structure entirely. However, the lcmm package
is mainly designed for prediction purpose and may not be suited to evaluate specific assumptions
regarding the characteristics of the marker trajectory that are the most influential on the event risk
(Proust-Lima et al., 2014).

In all these packages, a time-independent shared random effects vector is usually assumed in
modeling the longitudinal and survival data. However, they are not capable of fitting more flexible
models with separate random effects in these submodels (Elashoff et al., 2008; Li et al., 2010). In
many biomedical applications, sometimes, it is necessary to have a model which takes into account
longitudinal ordinal outcomes for the longitudinal part. Yet, due to the complex nature of joint
modeling, most of the available software does not support longitudinal ordinal variables (Armero
et al., 2016; Ferrer, 2017). We thus decided to fill this gap and implemented a joint model which
supports ordinal disease markers based on our previous work (Li et al., 2010).

Both JM and joineR packages depend heavily on the R nlme and survival packages. In JM, the
linear mixed-effects submodel and the survival submodel are first fitted using lme() and coxph() R
function in these packages before a joint modeling process. In joineR, lme() and coxph() functions
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are applied to obtain initial values for parameters in the joint model, which are further estimated by
an EM algorithm. The major advantage of using available packages such as survival and nlme lies
that joint modeling R packages can be built quickly with adequate efficiency as most of these base R
packages have been optimized for speed. However, if required functionality is not available in these
packages, as is the case of Elashoff et al. (2008) and Li et al. (2010), implementing new joint modeling
methods is a non-trivial task.

Compared with JM and joineR packages, the JMcmprsk package introduced here can be regarded
as a "stand-alone" R package, which does not required initial estimates for the linear mixed effects
model or survival submodel to compute parameters of the joint model in question. In particular, the
JMcmprsk package is built within the Rcpp (Eddelbuettel et al., 2011) and GSL(The GNU Scientific
Library)(Galassi et al., 2002) framework, which make R functions have access to a wide range of fast
numerical routines such as Monte Carlo integration, numerical integration and differentiation.

2 Joint Models with Competing Risks

A joint model for competing risk data consists of two linked components: the longitudinal submodel,
which takes care of repeatedly measured information and the survival submodel, which deals with
multiple failure times. The combination of different longitudinal and survival components leads to a
variety of joint models (Hickey et al., 2018a).

In the current version of JMcmprsk, we have implemented two joint models for competing risk
data, namely joint modeling with continuous longitudinal outcomes (Elashoff et al., 2008), and joint
modeling with ordinal longitudinal outcomes (Li et al., 2010). Both models have adopted a cause-
specific Cox submodel with a frailty term for multiple survival endpoints. The difference between
these two models lies in the longitudinal part. The former model applies a linear mixed submodel
for the continuous longitudinal outcome, while the latter model includes a partial proportional odds
submodel for the ordinal longitudinal outcome.

Different from previous approaches (Rizopoulos, 2012; Williamson et al., 2008), we assume a
flexible separate random effects structure for the longitudinal submodel and the survival submodel.
Furthermore, the association between both submodels is modeled by the assumption that the random
effects in two submodels jointly have a multivariate normal distribution.

Model 1: Joint modeling with continuous longitudinal outcomes

Let Yi(t) be the longitudinal outcome measured at time t for subject i, i = 1, 2, · · · , n and n is the total
number of subjects in study. Let Ci = (Ti, Di) denote the competing risks data on subject i, where
Ti is the failure time or censoring time, and Di takes value in {0, 1, · · · , g}, with Di = 0 indicating a
censored event and Di = k showing that subject i fails from the kth type of failure, where k = 1, · · · , g.

The joint model is specified in terms of the following two linked submodels:

Yi(t) = X(1)
i (t)⊤β + X̃(1)

i (t)⊤bi + ϵi(t),

λk(t) = λ0k(t) exp(X(2)
i (t)⊤γk + νkui), for k = 1, · · · , g,

where X(1)
i (t), X(2)

i (t) denote the covariates for the fixed-effects β and γk, X̃(1)
i (t) denotes the covari-

ates for the random-effects bi and ϵi(t) ∼ N(0, σ2) for all t ≥ 0. The parameter ν1 is set to 1 to ensure
identifiability. We assume that bi is independent of ϵi(t) and that ϵi(t1) is independent of ϵi(t2) for any
t1 ̸= t2. We further assume the random effects bi and ui jointly have a multivariate normal distribution,
denoted by θi ∼ N(0, Σ), where Σ = (Σb, Σ⊤

bu; Σbu, σu).

Denote Ψ as the unknown parameters from the joint models. We propose to obtain the maximum
likelihood estimate of Ψ through an EM algorithm. The complete data likelihood is

L(Ψ; Y, C, θ)

∝ Πn
i=1

[
Πni

j=1
1√

2πσ2
exp(− 1

2σ2 (Yij − X(1)
i (tij)

⊤β − X̃(1)
i (tij)

⊤bi)
2)
]

×Πg
k=1λk(Ti)

I(Di=k) exp
{
−

∫ Ti

0

g

∑
k=1

λk(t)dt
}

× 1√
(2π)d|Σ|

exp(−1
2

θ⊤i Σ−1θi).
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In the E-step, we need to calculate the expected value of all the functions of θ. Since the integral
over the random effects does not have a closed-form solution, an iterative numerical method has to be
employed.

In JMcmprsk, the integral over time is approximated using a Gauss-Kronrod quadrature and the
computation of the integral over the individual random effects is achieved using a Gauss-Hermite
quadrature. The quadrature approximates the integral using a weighted sum of function values at
specified points within the domain of integration; the Gaussian quadrature is based on the use of
polynomial functions. A standard option here is the Gaussian quadratic rules. In the M-step, Ψ is
updated by maximizing the functions obtained from the E-step.

Model 2: Joint modeling with ordinal longitudinal outcomes

Let Yij denote the jth response measured on subject i, where i = 1, · · · , n, j = 1, · · · , ni, and Yij takes
values in {1, · · · , K}. The competing risks failure times on subject i is (Ti, Di), and the notations have
the same meaning as in Model 1.

We propose the following partial proportional odds model for Yij

P(Yij ≤ k|Xij, X̃ij, Wij, bi) =
1

1 + exp(−θk − Xijβ − X̃ijαk − W⊤
ij bi)

,

where k = 1, · · · , K − 1, Xij and X̃ij are p × 1 and s × 1 vectors of covariates for the fixed-effect β and
αk, with α1 = 0, and X̃ij is a subset of Xij for which the proportional odds assumption may not be
satisfied. The q × 1 vector bi represents random effects of the associated covariates Wij.

The distribution of the competing risks failure times (Ti, Di) are assumed to take the form of the
following cause-specific hazards frailty model:

λd(t|Zi(t), ui) = λ0d(t) exp(Zi(t)⊤γd + νdui), for d = 1, · · · , g,

where the l × 1 vector γd and νd are the cause-specific coefficients for the covariates Zi(t) and the
random effects ui, respectively.

The parameter ν1 is set to 1 to ensure identifiability. We assume the random effects bi and ui jointly
have a multivariate normal distribution, denoted by ai ∼ N(0, Σ).

Denote Ψ as the unknown parameters from the joint models. We propose to obtain the maximum
likelihood estimate of Ψ through an EM algorithm. The complete data likelihood is

L(Ψ; Y, C, a)

∝ Πn
i=1

[
Πni

j=1ΠK
k=1{πij(k)− πij(k − 1)}I(Yij=k)

]
×Πg

d=1λd(Ti)
I(Di=d) exp

{
−

∫ Ti

0

d

∑
k=1

λd(t)dt
}

× 1√
(2π)q+1|Σ|

exp(−1
2

a⊤i Σ−1ai).

where πij(k) stands for the probability that Yij ≤ k given the covariates and the random effects. The
implementation of EM algorithm in this case is similar to the procedure of Model 1.

3 Package structure and functionality

The R package JMcmprsk implements the above two joint models on the basis of R package Rcpp
(Eddelbuettel et al., 2011) and GSL library(Galassi et al., 2002) and is hosted at CRAN. After setting
the GSL environment by following the instructions in the INSTALL file from the package, we can issue
the following command in the R console to install the package:

> install.packages("JMcmprsk")

There are two major functions included in the JMcmprsk package: the function that fits continuous
outcomes jmc() and the function that fits ordinal outcomes jmo().
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jmc() function

As an illustrative example of jmc(), we consider Scleroderma Lung Study (Tashkin et al., 2006), a
double-blinded, randomized clinical trial to evaluate the effectiveness of oral cyclophosphamide
(CYC) versus placebo in the treatment of lung disease due to scleroderma. This study consists of
158 patients and the primary outcome is forced vital capacity (FVC, as % predicted) determined at
3-month intervals from the baseline. The event of interest is the time-to-treatment failure or death.
We consider two covariates, baseline %FVC (FVC0) and baseline lung fibrosis (FIB0) and two risks,
informative and noninformative. The model setups are as follows:

%FVCij = β0 + β1tij + β2FVC0i + β3FIB0i + β4CYCi

+β5FVC0i × CYCi + β6FIB0i × CYCi + β7tij × CYCi + bitij + ϵ,

and the cause-specific hazards frailty models are

λ1(t) = λ01(t) exp(γ11FVC0i + γ12FIB0i + γ13CYCi + γ14FVC0i × CYCi + γ15FIB0i × CYCi + ui)

λ2(t) = λ02(t) exp(γ21FVC0i + γ22FIB0i + γ23CYCi + γ24FVC0i × CYCi + γ25FIB0i × CYCi + ν2ui),

We first load the package and the data.

library(JMcmprsk)
set.seed(123)
data(lung)
yread <- lung[, c(1,2:11)]
cread <- unique(lung[, c(1, 12, 13, 6:10)])

The number of rows in "yread" is the total number of measurements for all subjects in the study. For
"cread", the survival/censoring time is included in the first column, and the failure type coded as
0 (censored events), 1 (risk 1), or 2 (risk 2) is given in the second column. Two competing risks are
assumed.

Then, "yread" and "cread" are used as the longitudinal and survival input data for the model
specified by the function jmc() as shown below:

jmcfit <- jmc(long_data = yread, surv_data = cread, out = "FVC",
FE = c("time", "FVC0", "FIB0", "CYC", "FVC0.CYC",

"FIB0.CYC", "time.CYC"),
RE = "linear", ID = "ID",cate = NULL, intcpt = 0,
quad.points = 20, quiet = TRUE, do.trace = FALSE)

where out is the name of the outcome variable in the longitudinal sub-model, FE the list of covariates
for the fixed effects in the longitudinal sub-model, RE the types/vector of random effects in the
longitudinal sub-model, ID the column name of subject id, cate the list of categorical variables for the
fixed effects in the longitudinal sub-model, intcpt the indicator of random intercept coded as 1 (yes,
default) or 0(no). The option quiet is used to print the progress of function, the default is TRUE (no
printing).

A concise summary of the results can be obtained using jmcfit as shown below:

>jmcfit
Call:
jmc(long_data = yread, surv_data = cread, out = "FVC",
FE = c("time", "FVC0", "FIB0", "CYC", "FVC0.CYC", "FIB0.CYC", "time.CYC"),
RE = "linear", ID = "ID", cate = NULL, intcpt = 0, quad.points = 20, quiet = FALSE)

Data Summary:
Number of observations: 715
Number of groups: 140

Proportion of competing risks:
Risk 1 : 10 %
Risk 2 : 22.86 %

Numerical intergration:
Method: standard Guass-Hermite quadrature
Number of quadrature points: 20

Model Type: joint modeling of longitudinal continuous and competing risks data
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Model summary:
Longitudinal process: linear mixed effects model
Event process: cause-specific Cox proportional hazard model with unspecified baseline hazard

Loglikelihood: -3799.044

Longitudinal sub-model fixed effects: FVC ~ time + FVC0 + FIB0 + CYC + FVC0.CYC + FIB0.CYC + time.CYC

Estimate Std. Error 95% CI Pr(>|Z|)
Longitudinal:
Fixed effects:
intercept 66.0415 0.7541 ( 64.5634, 67.5196) 0.0000
time -0.0616 0.0790 (-0.2165, 0.0932) 0.4353
FVC0 0.9017 0.0365 ( 0.8302, 0.9732) 0.0000
FIB0 -1.7780 0.5605 (-2.8767,-0.6793) 0.0015
CYC 0.0150 0.9678 (-1.8819, 1.9119) 0.9876
FVC0.CYC 0.1380 0.0650 ( 0.0106, 0.2654) 0.0338
FIB0.CYC 1.7088 0.7643 ( 0.2109, 3.2068) 0.0254
time.CYC 0.1278 0.1102 (-0.0883, 0.3438) 0.2464

Random effects:
sigma^2 22.7366 0.6575 ( 21.4478, 24.0253) 0.0000

Survival sub-model fixed effects: Surv(surv, failure_type) ~ FVC0 + FIB0 + CYC + FVC0.CYC + FIB0.CYC

Estimate Std. Error 95% CI Pr(>|Z|)
Survival:
Fixed effects:
FVC0_1 0.0187 0.0326 (-0.0452, 0.0826) 0.5660
FIB0_1 0.1803 0.3521 (-0.5098, 0.8705) 0.6086
CYC_1 -0.6872 0.7653 (-2.1872, 0.8128) 0.3692
FVC0.CYC_1 -0.0517 0.0746 (-0.1979, 0.0945) 0.4880
FIB0.CYC_1 -0.4665 1.1099 (-2.6419, 1.7089) 0.6743
FVC0_2 -0.0677 0.0271 (-0.1208,-0.0147) 0.0123
FIB0_2 0.1965 0.3290 (-0.4484, 0.8414) 0.5503
CYC_2 0.3137 0.4665 (-0.6007, 1.2280) 0.5013
FVC0.CYC_2 0.1051 0.0410 ( 0.0248, 0.1854) 0.0103
FIB0.CYC_2 0.1239 0.4120 (-0.6836, 0.9314) 0.7636

Association parameter:
v2 1.9949 2.3093 (-2.5314, 6.5212) 0.3877

Random effects:
sigma_b11 0.2215 0.0294 ( 0.1638, 0.2792) 0.0000
sigma_u 0.0501 0.0898 (-0.1259, 0.2260) 0.5772

Covariance:
sigma_b1u -0.0997 0.0797 (-0.2560, 0.0565) 0.2109

The resulting table contains three parts, the fixed effects in longitudinal model, survival model
and random effects. It gives the estimated parameters in the first column, the standard error in the
second column, and 95% confidence interval and p-value for these parameters in the third and fourth
columns. In our example, there is only one random effect. If there is more than one random effect, the
output will include sigmab11, sigmab12, sigmab22, sigmab1u, sigmab2u, and so on.

The supporting function coef() can be used to extract the coefficients of the longitudinal/survival
process by specifying the argument coeff, where"beta" and "gamma" denotes the longitudinal and
survival submodel fixed effects, respectively.

beta <- coef(jmcfit, coeff = "beta")
>beta
intercept time.1 FVC0 FIB0 CYC FVC0.CYC FIB0.CYC

66.04146267 -0.06164756 0.90166283 -1.77799172 0.01503104 0.13798885 1.70883750
time.CYC

0.12776670

gamma <- coef(jmcfit, coeff = "gamma")
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>gamma
FVC0 FIB0 CYC FVC0.CYC FIB0.CYC

[1,] 0.01871359 0.1803249 -0.6872099 -0.05172157 -0.4664724
[2,] -0.06772664 0.1965190 0.3136709 0.10509986 0.1239203

The supporting function summary() can be used to extract the point estimate, the standard error,
95%CI, and p-values of the coefficients of both sub-models with the option coeff to specify which
submodel fixed effects one would like to extract, and digits, the number of digits to be printed out.
We proceed below to extract the fixed effects for both submodels:

>summary(jmcfit, coeff = "longitudinal", digits = 4)
Longitudinal coef SE 95%Lower 95%Upper p-values

1 intercept 66.0415 0.7541 64.5634 67.5196 0.0000
2 time -0.0616 0.0790 -0.2165 0.0932 0.4353
3 FVC0 0.9017 0.0365 0.8302 0.9732 0.0000
4 FIB0 -1.7780 0.5605 -2.8767 -0.6793 0.0015
5 CYC 0.0150 0.9678 -1.8819 1.9119 0.9876
6 FVC0.CYC 0.1380 0.0650 0.0106 0.2654 0.0338
7 FIB0.CYC 1.7088 0.7643 0.2109 3.2068 0.0254
8 time.CYC 0.1278 0.1102 -0.0883 0.3438 0.2464

>summary(jmcfit, coeff = "survival", digits = 4)
Survival coef exp(coef) SE(coef) 95%Lower 95%Upper p-values

1 FVC0_1 0.0187 1.0189 0.0326 -0.0452 0.0826 0.5660
2 FIB0_1 0.1803 1.1976 0.3521 -0.5098 0.8705 0.6086
3 CYC_1 -0.6872 0.5030 0.7653 -2.1872 0.8128 0.3692
4 FVC0.CYC_1 -0.0517 0.9496 0.0746 -0.1979 0.0945 0.4880
5 FIB0.CYC_1 -0.4665 0.6272 1.1099 -2.6419 1.7089 0.6743
6 FVC0_2 -0.0677 0.9345 0.0271 -0.1208 -0.0147 0.0123
7 FIB0_2 0.1965 1.2172 0.3290 -0.4484 0.8414 0.5503
8 CYC_2 0.3137 1.3684 0.4665 -0.6007 1.2280 0.5013
9 FVC0.CYC_2 0.1051 1.1108 0.0410 0.0248 0.1854 0.0103
10 FIB0.CYC_2 0.1239 1.1319 0.4120 -0.6836 0.9314 0.7636

We proceed to test the global hypothesis for the longitudinal and the survival submodels using
linearTest().

>linearTest(jmcfit, coeff="beta")
Chisq df Pr(>|Chi|)

L*beta=Cb 1072.307 7 0.0000
>linearTest(jmcfit, coeff="gamma")

Chisq df Pr(>|Chi|)
L*gamma=Cg 11.06558 10 0.3524

The results suggest that the hypothesis β1 = β2 = · · · = β7 = 0 is rejected, and the hypothesis
γ11 = γ12 = · · · = γ15 = γ21 = γ22 = · · · = γ25 = 0 is not rejected at the significance level of 0.05.

linearTest() can also be used to test any linear hypothesis about the coefficients for each sub-
model. For example, if one wants to test H0 : β1 = β2 in the longitudinal submodel, then we start with
a linear contrast Lb and pass it to linearTest().

Lb <- matrix(c(1, -1, 0, 0, 0, 0, 0), ncol = length(beta)-1, nrow = 1)
>linearTest(jmcfit, coeff="beta", Lb = Lb)

Chisq df Pr(>|Chi|)
L*beta=Cb 124.8179 1 0.0000

Note that we do not include intercept for linear hypotheses testing. It is seen that the hypothesis
β1 = β2 is rejected at level 0.05 in the above example.

Similarly, a linear hypotheses testing can also be done in the survival submodel using linearTest().
For example, if we want to test H0 : γ11 = γ21, then we start with another linear contrast Lg and pass
it to linearTest().

Lg <- matrix(c(1, 0, 0, 0, 0, -1, 0, 0, 0, 0), ncol = length(gamma), nrow = 1)
>linearTest(jmcfit, coeff="gamma", Lg = Lg)

Chisq df Pr(>|Chi|)
L*gamma=Cg 4.301511 1 0.0381
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It is seen that the hypothesis γ11 = γ21 is rejected at level 0.05.

For categorical variables, jmc() function will create the appropriate dummy variables automatically
as needed within the function. The reference group in a categorical variable is specified as the one that
comes first alphabetically. Below is another example:

First, we add two categorical variables "sex" and "race" to the longitudinal data set "yread", in
which "sex" is coded as "Female" or "Male", and race is coded as "Asian", "White", "Black", or "Hispanic".

#make up two categorical variables and add them into yread
set.seed(123)
sex <- sample(c("Female", "Male"), nrow(cread), replace = TRUE)
race <- sample(c("White", "Black", "Asian", "Hispanic"),

nrow(cread), replace = TRUE)
ID <- cread$ID
cate_var <- data.frame(ID, sex, race)
if (require(dplyr)) {
yread <- dplyr::left_join(yread, cate_var, by = "ID")

}

Second, we rerun the model with the two added categorical variables.

# run jmc function again for yread file with two added categorical variables
res2 <- jmc(long_data = yread, surv_data = cread,

out = "FVC", cate = c("sex", "race"),
FE = c("time", "FVC0", "FIB0", "CYC", "FVC0.CYC",

"FIB0.CYC", "time.CYC"),
RE = "time", ID = "ID", intcpt = 0,
quad.points = 20, quiet = FALSE)

res2

We can obtain the estimated coefficients of the longitudinal process using coef().

> coef(res2, coeff = "beta")
intercept time FVC0 FIB0 CYC FVC0.CYC FIB0.CYC time.CYC

67.05760799 -0.07340060 0.91105151 -1.75007966 0.02269507 0.13045588 1.58807248 0.15876200
Male Black Hispanic White

-0.77110697 -0.94635182 -0.45873814 -1.19910638

jmo() function

The implementation of jmo() is very similar to that of jmc(). As an illustrative example, we use the
data from (rt PA Stroke Study, 1995). In this study, 624 patients are included, and the patients treated
with rt-PA were compared with those given placebo to look for an improvement from baseline in the
score on the modified Rankin scale, an ordinal measure of the degree of disability with categories
ranging from no symptoms, no significant disability to severe disability or death, which means in
this example, Yij takes K = 4 ordinal values. The following covariates are considered: treatment
group (rt-PA or placebo), modified Rankin scale prior stroke onset, time since randomization (dummy
variables for 3, 6 and 12 months), and the three subtypes of acute stroke (small vessel occlusive disease,
large vessel atherosclerosis or cardioembolic stroke, and unknown reasons). Similarly, we also consider
the informative and noninformative risks. The model setups are as follows:

P(Yij ≤ k) = [1 + exp(−θk − (β1Group + β2Modified Rankin scale prior onset + β3time3

+β4time6 + β5time12 + β6Small vessel + β7Large vessel or cardioembolic stroke

+β8Small vessel*group + β9Large vessel or cardioembolic stroke*group)

−(αk1Small vessel + αk2Large vessel or cardioembolic stroke)− bi)]
−1,

where k = 1, · · · , K − 1.

λ1(t) = λ01(t) exp(γ11Group + γ12Modified Rankin scale prior onset

+γ13Small vessel + γ14Large vessel or cardioembolic stroke

+γ15Small vessel*group + γ16Large vessel or cardioembolic stroke*group + ui)

λ2(t) = λ02(t) exp(γ21Group + γ22Modified Rankin scale prior onset

+γ23Small vessel + γ24Large vessel or cardioembolic stroke

+γ25Small vessel*group + γ26Large vessel or cardioembolic stroke*group + ν2ui)
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We first load the package and the data.

library(JMcmprsk)
set.seed(123)
data(ninds)
yread <- ninds[, c(1, 2:14)]
cread <- ninds[, c(1, 15, 16, 6, 10:14)]
cread <- unique(cread)

and the other arrangements are the same with those in jmc(),

jmofit <- jmo(yread, cread, out = "Y",
FE = c("group", "time3", "time6", "time12", "mrkprior",

"smlves", "lvORcs", "smlves.group", "lvORcs.group"),
cate = NULL,RE = "intercept", NP = c("smlves", "lvORcs"),
ID = "ID",intcpt = 1, quad.points = 20,
max.iter = 1000, quiet = FALSE, do.trace = FALSE)

where NP is the list of non-proportional odds covariates and FE the list of proportional odds covariates.

To see a concise summary of the result, we can type:

>jmofit
Call:
jmo(long_data = yread, surv_data = cread, out = "Y",
FE = c("group", "time3", "time6", "time12", "mrkprior", "smlves", "lvORcs", "smlves.group", "lvORcs.group"),
RE = "intercept", NP = c("smlves", "lvORcs"), ID = "ID", cate = NULL, intcpt = 1,
quad.points = 20, max.iter = 1000, quiet = FALSE, do.trace = FALSE)

Data Summary:
Number of observations: 1906
Number of groups: 587

Proportion of competing risks:
Risk 1 : 32.88 %
Risk 2 : 4.26 %

Numerical intergration:
Method: Standard Guass-Hermite quadrature
Number of quadrature points: 20

Model Type: joint modeling of longitudinal ordinal and competing risks data

Model summary:
Longitudinal process: partial proportional odds model
Event process: cause-specific Cox proportional hazard model with unspecified baseline hazard

Loglikelihood: -2292.271

Longitudinal sub-model proportional odds: Y ~ group + time3 + time6 + time12 + mrkprior + smlves +
lvORcs + smlves.group + lvORcs.group
Longitudinal sub-model non-proportional odds: smlves_NP + lvORcs_NP

Estimate Std. Error 95% CI Pr(>|Z|)
Longitudinal:
Fixed effects:
proportional odds:
group 1.6053 0.1905 ( 1.2319, 1.9786) 0.0000
time3 2.5132 0.1934 ( 2.1341, 2.8923) 0.0000
time6 2.6980 0.1962 ( 2.3134, 3.0825) 0.0000
time12 2.9415 0.2004 ( 2.5486, 3.3344) 0.0000
mrkprior -2.1815 0.2167 (-2.6063,-1.7567) 0.0000
smlves 6.4358 0.4228 ( 5.6072, 7.2644) 0.0000
lvORcs -1.2907 0.2861 (-1.8515,-0.7300) 0.0000
smlves.group 0.4903 0.7498 (-0.9793, 1.9598) 0.5132
lvORcs.group -3.2277 0.4210 (-4.0528,-2.4026) 0.0000
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Non-proportional odds:
smlves_NP_2 0.2725 0.4485 (-0.6066, 1.1515) 0.5435
lvORcs_NP_2 -0.4528 0.2466 (-0.9362, 0.0305) 0.0663
smlves_NP_3 1.7844 1.0613 (-0.2958, 3.8645) 0.0927
lvORcs_NP_3 -0.1364 0.4309 (-0.9809, 0.7081) 0.7516
Logit-specific intercepts:
theta1 -6.2336 0.1722 (-6.5712,-5.8960) 0.0000
theta2 -4.1911 0.1561 (-4.4971,-3.8851) 0.0000
theta3 3.9806 0.1896 ( 3.6091, 4.3522) 0.0000

Survival sub-model fixed effects: Surv(surv, comprisk) ~ group + mrkprior + smlves + lvORcs +
smlves.group + lvORcs.group

Estimate Std. Error 95% CI Pr(>|Z|)
Survival:
Fixed effects:
group_1 -0.4630 0.2434 (-0.9400, 0.0140) 0.0571
mrkprior_1 0.5874 0.1371 ( 0.3187, 0.8560) 0.0000
smlves_1 -2.5570 0.7223 (-3.9728,-1.1413) 0.0004
lvORcs_1 0.5992 0.2485 ( 0.1120, 1.0863) 0.0159
smlves.group_1 -0.4990 1.4257 (-3.2934, 2.2955) 0.7264
lvORcs.group_1 1.1675 0.4692 ( 0.2479, 2.0871) 0.0128
group_2 0.2087 0.4834 (-0.7388, 1.1562) 0.6659
mrkprior_2 0.0616 0.4277 (-0.7766, 0.8998) 0.8854
smlves_2 0.7758 0.6217 (-0.4428, 1.9943) 0.2121
lvORcs_2 -0.3256 0.5120 (-1.3291, 0.6778) 0.5247
smlves.group_2 -0.0437 1.1573 (-2.3120, 2.2245) 0.9699
lvORcs.group_2 0.0991 1.0718 (-2.0015, 2.1998) 0.9263

Association prameter:
v2 0.0101 0.1595 (-0.3025, 0.3227) 0.9496

Random effects:
sigma_b11 55.6404 5.6560 ( 44.5547, 66.7261) 0.0000
sigma_u 6.6598 1.7196 ( 3.2894, 10.0303) 0.0001

Covariance:
sigma_b1u -19.2452 0.7730 (-20.7602,-17.7302) 0.0000

The usage of function coef() is similar to those in Model 1. More specifically, coef() can extract
the coefficients of non-proportional odds fixed effects and logit-specific intercepts. For example,

alpha <- coef(jmofit, coeff = "alpha")
>alpha

smlves_NP lvORcs_NP
[1,] 0.2724605 -0.4528214
[2,] 1.7843743 -0.1363731

theta <- coef(jmofit, coeff = "theta")
> theta
[1] -6.233618 -4.191114 3.980638

The usage of function summary() is the same as in Model 1. It extracts the point estimate, standard
error, 95%CI, and p-values of the coefficients of both submodels as demonstrated below:

> summary(jmofit, coeff = "longitudinal")
Longitudinal coef SE 95%Lower 95%Upper p-values

1 group 1.6053 0.1905 1.2319 1.9786 0.0000
2 time3 2.5132 0.1934 2.1341 2.8923 0.0000
3 time6 2.6980 0.1962 2.3134 3.0825 0.0000
4 time12 2.9415 0.2004 2.5486 3.3344 0.0000
5 mrkprior -2.1815 0.2167 -2.6063 -1.7567 0.0000
6 smlves 6.4358 0.4228 5.6072 7.2644 0.0000
7 lvORcs -1.2907 0.2861 -1.8515 -0.7300 0.0000
8 smlves.group 0.4903 0.7498 -0.9793 1.9598 0.5132
9 lvORcs.group -3.2277 0.4210 -4.0528 -2.4026 0.0000
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10 smlves_NP_2 0.2725 0.4485 -0.6066 1.1515 0.5435
11 lvORcs_NP_2 -0.4528 0.2466 -0.9362 0.0305 0.0663
12 smlves_NP_3 1.7844 1.0613 -0.2958 3.8645 0.0927
13 lvORcs_NP_3 -0.1364 0.4309 -0.9809 0.7081 0.7516
14 theta1 -6.2336 0.1722 -6.5712 -5.8960 0.0000
15 theta2 -4.1911 0.1561 -4.4971 -3.8851 0.0000
16 theta3 3.9806 0.1896 3.6091 4.3522 0.0000

> summary(jmofit, coeff = "survival")
Survival coef exp(coef) SE(coef) 95%Lower 95%Upper p-values

1 group_1 -0.4630 0.6294 0.2434 -0.9400 0.0140 0.0571
2 mrkprior_1 0.5874 1.7993 0.1371 0.3187 0.8560 0.0000
3 smlves_1 -2.5570 0.0775 0.7223 -3.9728 -1.1413 0.0004
4 lvORcs_1 0.5992 1.8206 0.2485 0.1120 1.0863 0.0159
5 smlves.group_1 -0.4990 0.6072 1.4257 -3.2934 2.2955 0.7264
6 lvORcs.group_1 1.1675 3.2140 0.4692 0.2479 2.0871 0.0128
7 group_2 0.2087 1.2321 0.4834 -0.7388 1.1562 0.6659
8 mrkprior_2 0.0616 1.0636 0.4277 -0.7766 0.8998 0.8854
9 smlves_2 0.7758 2.1722 0.6217 -0.4428 1.9943 0.2121
10 lvORcs_2 -0.3256 0.7221 0.5120 -1.3291 0.6778 0.5247
11 smlves.group_2 -0.0437 0.9572 1.1573 -2.3120 2.2245 0.9699
12 lvORcs.group_2 0.0991 1.1042 1.0718 -2.0015 2.1998 0.9263

Analogous to jmcfit, linearTest() can be used to the global hypothesis for the longitudinal and
the survival submodels.

> linearTest(jmofit,coeff="beta")
Chisq df Pr(>|Chi|)

L*beta=Cb 1096.991 9 0.0000
> linearTest(jmofit,coeff="gamma")

Chisq df Pr(>|Chi|)
L*gamma=Cg 47.15038 12 0.0000
> linearTest(jmofit,coeff="alpha")

Chisq df Pr(>|Chi|)
L*alpha=Ca 8.776262 4 0.0669

According to the p-values, the hypothesis β1 = β2 = · · · = β9 = 0 is rejected, γ11 = γ12 = · · · =
γ16 = γ21 = γ22 = · · · = γ26 = 0 is rejected, but α11 = α12 = α21 = α22 = 0 is not rejected at the
significance level of 0.05.

Similarly, linearTest() can be used to test a linear hypothesis for non-proportional odds fixed
effects in the longitudinal submodel. For example, if we want to test H0 : α11 = α21, then we can
simply type:

La <- matrix(c(1, 0, -1, 0), ncol = length(alpha), nrow = 1)
> linearTest(jmofit, coeff = "alpha", La = La)

Chisq df Pr(>|Chi|)
L*alpha=Ca 1.929563 1 0.1648

It is seen that the hypothesis α11 = α21 is not rejected at level 0.05.

Likewise, jmo() function allows for categorical variables. Moreover, categorical variables are
allowed for setting up non-proportional odds covariates. As an illustration, here we consider the "sex"
and "race" variables and use them as two of the non-proportional odds covariates. Below is another
example:

#Create two categorical variables and add them into yread
ID <- cread$ID
set.seed(123)
sex <- sample(c("Female", "Male"), nrow(cread), replace = TRUE)
race <- sample(c("White", "Black", "Asian", "Hispanic"), nrow(cread), replace = TRUE)
cate_var <- data.frame(ID, sex, race)
if (require(dplyr)) {

yread <- dplyr::left_join(yread, cate_var, by = "ID")
}

res2 <- jmo(yread, cread, out = "Y",
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FE = c("group", "time3", "time6", "time12", "mrkprior",
"smlves", "lvORcs", "smlves.group", "lvORcs.group"), cate = c("race", "sex"),

RE = "intercept", NP = c("smlves", "lvORcs", "race", "sex"), ID = "ID",intcpt = 1,
quad.points = 20, max.iter = 10000, quiet = FALSE, do.trace = FALSE)

res2
Call:
jmo(long_data = yread, surv_data = cread, out = "Y",
FE = c("group", "time3", "time6", "time12", "mrkprior", "smlves", "lvORcs", "smlves.group", "lvORcs.group"),
RE = "intercept", NP = c("smlves", "lvORcs", "race", "sex"), ID = "ID", cate = c("race", "sex"),
intcpt = 1, quad.points = 20, max.iter = 10000, quiet = FALSE, do.trace = FALSE)

Data Summary:
Number of observations: 1906
Number of groups: 587

Proportion of competing risks:
Risk 1 : 32.88 %
Risk 2 : 4.26 %

Numerical intergration:
Method: Standard Guass-Hermite quadrature
Number of quadrature points: 20

Model Type: joint modeling of longitudinal ordinal and competing risks data

Model summary:
Longitudinal process: partial proportional odds model
Event process: cause-specific Cox proportional hazard model with unspecified baseline hazard

Loglikelihood: -2271.831

Longitudinal sub-model proportional odds: Y ~ group + time3 + time6 + time12 + mrkprior + smlves +
lvORcs + smlves.group + lvORcs.group + Black + Hispanic + White + Male
Longitudinal sub-model non-proportional odds: smlves_NP + lvORcs_NP + Black_NP + Hispanic_NP +
White_NP + Male_NP

Estimate Std. Error 95% CI Pr(>|Z|)
Longitudinal:
Fixed effects:
proportional odds:
group 1.1430 0.1989 ( 0.7532, 1.5328) 0.0000
time3 2.4607 0.1963 ( 2.0758, 2.8455) 0.0000
time6 2.6310 0.1986 ( 2.2416, 3.0203) 0.0000
time12 2.8717 0.2111 ( 2.4579, 3.2854) 0.0000
mrkprior -2.3329 0.1855 (-2.6965,-1.9693) 0.0000
smlves 3.9941 0.4413 ( 3.1292, 4.8589) 0.0000
lvORcs -0.9469 0.3219 (-1.5778,-0.3160) 0.0033
smlves.group -4.3940 0.7560 (-5.8758,-2.9123) 0.0000
lvORcs.group -3.6954 0.4768 (-4.6299,-2.7608) 0.0000
Black 0.8235 0.3162 ( 0.2038, 1.4433) 0.0092
Hispanic -0.0218 0.3289 (-0.6665, 0.6229) 0.9471
White 0.0523 0.3457 (-0.6253, 0.7299) 0.8797
Male -0.3528 0.2323 (-0.8080, 0.1025) 0.1288
Non-proportional odds:
smlves_NP_2 0.3314 0.4310 (-0.5133, 1.1761) 0.4419
lvORcs_NP_2 -0.3148 0.2696 (-0.8432, 0.2136) 0.2429
Black_NP_2 0.3781 0.2936 (-0.1973, 0.9535) 0.1978
Hispanic_NP_2 -0.0303 0.3176 (-0.6528, 0.5923) 0.9241
White_NP_2 -0.3802 0.3034 (-0.9748, 0.2144) 0.2102
Male_NP_2 0.0531 0.2221 (-0.3822, 0.4884) 0.8110
smlves_NP_3 2.2743 1.0748 ( 0.1677, 4.3809) 0.0343
lvORcs_NP_3 0.0033 0.4632 (-0.9045, 0.9111) 0.9943
Black_NP_3 -0.2274 0.5419 (-1.2896, 0.8349) 0.6748
Hispanic_NP_3 -0.5070 0.5087 (-1.5040, 0.4901) 0.3190
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White_NP_3 0.4205 0.5722 (-0.7010, 1.5420) 0.4624
Male_NP_3 -0.8489 0.3911 (-1.6155,-0.0824) 0.0300
Logit-specific intercepts:
theta1 -6.0565 0.2868 (-6.6186,-5.4945) 0.0000
theta2 -4.0881 0.2379 (-4.5545,-3.6217) 0.0000
theta3 4.1340 0.3437 ( 3.4602, 4.8077) 0.0000

Survival sub-model fixed effects: Surv(surv, comprisk) ~ group + mrkprior + smlves + lvORcs +
smlves.group + lvORcs.group

Estimate Std. Error 95% CI Pr(>|Z|)
Survival:
Fixed effects:
group_1 -0.2815 0.2545 (-0.7802, 0.2173) 0.2687
mrkprior_1 0.6404 0.1549 ( 0.3367, 0.9440) 0.0000
smlves_1 -1.8107 0.8252 (-3.4280,-0.1934) 0.0282
lvORcs_1 0.4894 0.2450 ( 0.0092, 0.9696) 0.0458
smlves.group_1 1.2608 1.6390 (-1.9517, 4.4733) 0.4417
lvORcs.group_1 1.4503 0.4901 ( 0.4898, 2.4108) 0.0031
group_2 0.2073 0.4831 (-0.7396, 1.1542) 0.6678
mrkprior_2 0.0617 0.4343 (-0.7896, 0.9129) 0.8871
smlves_2 0.7871 0.6026 (-0.3940, 1.9683) 0.1915
lvORcs_2 -0.3266 0.5085 (-1.3233, 0.6701) 0.5207
smlves.group_2 -0.0374 1.1600 (-2.3110, 2.2362) 0.9743
lvORcs.group_2 0.0952 1.0591 (-1.9807, 2.1711) 0.9284

Association prameter:
v2 0.0036 0.1577 (-0.3056, 0.3128) 0.9818

Random effects:
sigma_b11 49.0241 5.0606 ( 39.1053, 58.9430) 0.0000
sigma_u 6.3475 1.5884 ( 3.2343, 9.4607) 0.0001

Covariance:
sigma_b1u -17.6331 0.7415 (-19.0864,-16.1797) 0.0000

coef(res2, coeff = "beta")
group time3 time6 time12 mrkprior smlves lvORcs

1.14302264 2.46065107 2.63095850 2.87165209 -2.33288371 3.99407491 -0.94689649
smlves.group lvORcs.group Black Hispanic White Male
-4.39403193 -3.69535020 0.82353645 -0.02181286 0.05232005 -0.35276916

Older versions of jmc() and jmo()

In the previous versions of JMcmprsk, both the previous jmc() and jmo() functions require the
longitudinal input data "yfile" to be in a specific format regarding the order of the outcome variable
and the random and fixed effects covariates. It also requires users to create an additional "mfile" for
the longitudinal data. At the suggestions of the reviewers, in the most recent version, we focus and
develop user-friendly versions of these functions.

However, for both package consistency and user’s convenience, we still keep older versions of
these functions in the package, and rename these functions to jmc_0() and jmo_0(), respectively.
Supporting functions of jmo() and jmc(), such as coef(), summary(), linearTest(), also apply to
jmc_0() and jmo_0() functions.

Here, we show the usage of jmc_0() with some simulated data and the "lung" data used in
presenting jmc() functions.

If the data are provided as files, the function jmc_0() has the following usage:

library(JMcmprsk)
yfile=system.file("extdata", "jmcsimy.txt", package = "JMcmprsk")
cfile=system.file("extdata", "jmcsimc.txt", package = "JMcmprsk")
mfile=system.file("extdata", "jmcsimm.txt", package = "JMcmprsk")
jmc_0fit = jmc_0(p=4, yfile, cfile, mfile, point=20, do.trace = FALSE)

with p the dimension of fixed effects (including the intercept) in yfile, the option point is the
number of points used to approximate the integral in the E-step, default is 20, and do.trace is used to
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control whether the program prints the iteration details. Additionally, the option type_file controls
the type of data inputs.

If data frames or matrices are provided as inputs, we set the above type_file option as type_file
= FALSE in the jmc_0() function:

library(JMcmprsk)
data(lung)
lungY <- lung[, c(2:11)]
lungC <- unique(lung[, c(1, 12, 13, 6:10)])
lungC <- lungC[, -1]
## return a vector file with the number of repeated measurements as lungM
lungM <- data.frame(table(lung$ID))
lungM <- as.data.frame(lungM[, 2])
jmc_0fit2=jmc_0(p=8, lungY, lungC, lungM, point=20, do.trace = FALSE, type_file = FALSE)

Computational Complexity

To understand the computational complexity of both jmc() and jmo() models, we carried out a variety
of simulations with different sample size and different proportions of events. However, there was no
clear trend observed between the proportions of events and running times. Hence, only one event
distribution with different sample sizes are given here for illustration purpose. According to Figures 1
and 2, we can easily see that the run time grows much faster as sample size increases, which implies
that the computational complexity does not follow a linear order. In this case, it will limit joint models
to handling large and even moderate sample size data. To make the joint modeling more scalable, it is
necessary to carry out a novel algorithm to reduce its computational complexity to a linear order.

Figure 1: Run time comparison under different sample sizes for jmc() function (from 500 to 5000).
Data setup: p = 4, nq = 6, 10.4% censoring, 51.4% risk 1, and 38.2% risk 2. The run time under each
sample size was based on one random sample.

Data Simulation

A simulation can generate datasets with exact ground truth for evaluation. Hence, the simulation of
longitudinal and survival data with multiple failures associated with random effects is an important
measure to assess the performance of joint modeling approaches dealing with competing risks. In
JMcmprsk, simulation tools are based on the data models proposed in Elashoff et al. (2008) and Li et al.
(2010), which can be used for testing joint models with continuous and ordinal longitudinal outcomes,
respectively.

The main function for simulation data continuous longitudinal outcomes and survival data with
multiple event outcomes is called SimDataC(), which has the following usage:

SimDataC(k_val, p1_val, p1a_val, p2_val, g_val, truebeta, truegamma,
randeffect, yfn, cfn, mfn)

We briefly explain some of the important options. k_val denotes the number of subjects in study;
p1_val and p1a_val denote the dimension of fixed effects and random effects in longitudinal mea-
surements, respectively; p2_val and g_val denotes the dimension of fixed effects and number to
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Figure 2: Run time comparison under different sample sizes for jmo() function (from 500 to 5000).
Data setup: p = 4, nq = 10, 22.4% censoring, 57.2% risk 1, and 20.4% risk 2. The run time under each
sample size was based on one random sample.

competing risks in survival data; truebeta and truegamma represent the true values of fixe effects in
the longitudinal and the survival submodels, respectively. randeffect sets the true values for random
effects in longitudinal and competing risks parts, namely in the order of σ,σb,ν2, and σu.

The following example generates the datasets used in simulation study in Elashoff et al. (2008):

require(JMcmprsk)
set.seed(123)
yfn="jmcsimy1.txt";
cfn="jmcsimc1.txt";
mfn="jmcsimm1.txt";
k_val=200;p1_val=4;p1a_val=1; p2_val=2;g_val=2;
truebeta=c(10,-1,1.5,0.6);truegamma=c(0.8,-1,0.5,-1); randeffect=c(5,0.5,0.5,0.5);
#writing files
SimDataC(k_val, p1_val, p1a_val, p2_val, g_val,truebeta,

truegamma, randeffect, yfn, cfn, mfn)

The output of function SimDataC() contains additional censoring rate information and newly generated
files names for further usage.

$`censoring_rate`
[1] 0.21
$rate1
[1] 0.45
$rate2
[1] 0.34
$yfn
[1] "jmcsimy1.txt"
$cfn
[1] "jmcsimc1.txt"
$mfn
[1] "jmcsimm1.txt"

The main function for data simulation with ordinal longitudinal outcomes and survival data with
multiple event outcomes is called SimDataO(), the usage of which is very similar to SimDataC():

SimDataO(k_val, p1_val, p1a_val, p2_val, g_val, truebeta, truetheta,
truegamma, randeffect, yfn, cfn, mfn)

All options have the same meanings as in SimDataC(), while SimDataO() has one more option
truetheta, which sets the true values of the non-proportional odds longitudinal coefficients sub-
set.

The following example generates the datasets used in simulation study in Li et al. (2010):

require(JMcmprsk)
set.seed(123)
yfn="jmosimy1.txt";
cfn="jmosimc1.txt";
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mfn="jmosimm1.txt";
k_val=500;p1_val=3;p1a_val=1; p2_val=2;g_val=2;
truebeta=c(-1,1.5,0.8);truetheta=c(-0.5,1);truegamma=c(0.8,-1,0.5,-1); randeffect=c(1,0.5,0.5);
#writing files
SimDataO(k_val, p1_val, p1a_val, p2_val, g_val,

truebeta, truetheta, truegamma, randeffect, yfn, cfn, mfn)

The output of the above function is

$`censoring_rate`
[1] 0.218
$rate1
[1] 0.414
$rate2
[1] 0.368
$yfn
[1] "jmosimy1.txt"
$cfn
[1] "jmosimc1.txt"
$mfn
[1] "jmosimm1.txt"

4 Conclusions and Future Work

In this paper, we have illustrated the capabilities of package JMcmprsk for fitting joint models of time-
to-event data with competing risks for two types of longitudinal data. We also present simulation tools
to generate joint model datasets under different settings. Several extensions of JMcmprsk package are
planned to further expand on what is currently available. First, as the integral over the random effects
becomes computationally burdensome in the case of high dimensionality, Laplace approximations or
other Gauss-Hermite quadrature rules would be applied to the E-M step to speed up the computation
procedure. Second, with the increasing need for predictive tools for personalized medicine, dynamic
predictions for the aforementioned joint models will be added. Third, other new joint models such as
joint analysis for bivariate longitudinal ordinal outcomes will be included.
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exPrior: An R Package for the Formulation
of Ex-Situ Priors
by Falk Heße, Karina Cucchi, Nura Kawa, and Yoram Rubin

Abstract The exPrior package implements a procedure for formulating informative priors of geo-
statistical properties for a target field site, called ex-situ priors and introduced in Cucchi et al. (2019).
The procedure uses a Bayesian hierarchical model to assimilate multiple types of data coming from
multiple sites considered as similar to the target site. This prior summarizes the information contained
in the data in the form of a probability density function that can be used to better inform further
geostatistical investigations at the site. The formulation of the prior uses ex-situ data, where the data
set can either be gathered by the user or come in the form of a structured database. The package is
designed to be flexible in that regard. For illustration purposes and for easiness of use, the package is
ready to be used with the worldwide hydrogeological parameter database (WWHYPDA) Comunian
and Renard (2009).

1 Introduction

Characterizing the subsurface of our planet is an important task in fields such as geology, hydrogeology,
and soil sciences. Yet compared to many other fields, the characterization of the subsurface is always
burdened by large uncertainties. These uncertainties are caused by the general lack of data and the
large spatial variability of many subsurface properties. The need to represent this uncertainty has led to
the development of the field of geostatistics, wherein parameter values are treated as random variables
defined by their probability distribution function (PDF). Today, the field of geostatistics has reached a
mature state with many textbooks on the topic (Pyrcz and Deutsch, 2002; Rubin, 2003; Kitanidis, 2008)
and a solid number of software tools being available for practitioners (for an overview, see, e.g. Rubin
et al. (2018)). For the R language (R Core Team, 2014), a solid ecosystem for geostatistical analysis
has evolved in the last years (Slater et al., 2019). Packages like geoR (Ribeiro and Diggle, 2001), gstat
(Pebesma, 2004), georob (Papritz et al., 2014), and RGeostats (MINES ParisTech / ARMINES, 2019)
provide a large collection of tools for geostatistical analysis. Moreover, geostatistical databases can be
conveniently accessed with packages like aqp (Beaudette et al., 2013) and textbooks on geostatistics
are starting to provide all their examples in R code (Diggle and Ribeiro, 2007; Banerjee et al., 2014).

Bayesian statistics provides the most appropriate framework to characterize uncertainty in general
(Heße et al., 2019a). Bayesian methods are able to combine and assimilate data from disparate sources
and jointly represent the different forms of uncertainty. As a result, Bayesian methods are nowadays
increasingly employed in geostatistics and software implementations come as either standalone
versions (Vrugt et al., 2009; Rubin et al., 2010) or R packages like spBayes (Finley et al., 2015), R-INLA
(Lindgren and Rue, 2015), spTimer (Bakar and Sahu, 2015), BayesNSGP (Risser and Turek, 2020), and
anchoredDistr (Savoy et al., 2017).

Yet, there is no package to date, which would provide such tools with the necessary foundation,
i.e. prior distributions for the modeled quantities. Since the prior is the first step of any Bayesian
analysis, its overall importance can hardly be overstated. Moreover, the ability of prior distributions
to represent available background information in a given field makes them an important source
of information that should not be neglected. Integrating them into a Bayesian workflow should
be straightforward since most packages for Bayesian inference allow users to specify their prior
distributions. In addition, the use of informative prior distributions in this field is easy to motivate.
First, the parameters of geostatistical models are typically not simple convenience parameters but
are part of physically-based partial differential equations. As a result, they correspond to real-world,
physical measurements, making it possible to calibrate their prior distributions against empirical
frequencies. Second, geostatistical models are usually site specific, making it conceptually easy to
discriminate between the case-specific data, which should be used to compute the likelihood, and
background data, which could be used to compute the prior distribution. In geostatistics, they are
often called in-situ and ex-situ data, respectively. Calibrating the prior against ex-situ data only,
therefore guarantees a clear separation between likelihood and prior.

To provide practitioners therefore with a tool for prior derivation, this paper introduces the R
package exPrior (Heße et al., 2019b). It implements the derivation of ex-situ priors, i.e., statistical
distributions of subsurface properties at a given site from ex-situ data collected at similar sites,
following the Bayesian hierarchical model developed by Cucchi et al. (2019). The implementation
is based on the nimble package (de Valpine et al., 2017) itself based on the BUGS language (Lunn
et al., 2009). The objective of the exPrior package is to provide a ready-to-use software tool for
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assimilating ex-situ data into ex-situ priors. This will encourage the use of informative distributions
for practitioners in geosciences that might not be experts in Bayesian hierarchical models and may find
it therefore difficult to work with them otherwise. The focus of this package is on the Gaussian process
(GP) modelling paradigm. Although criticism exists, it is by far the most widely used paradigm, and a
wide range range of software tools exist for the modeling of GPs (Pebesma, 2004). Functions in exPrior
provide wrappers around nimble functions implementing the Bayesian data assimilation framework.
Non-expert practitioners can therefore apply this method without needing to implement the model
itself. Moreover, the package is tightly integrated with two other R packages that help to expand
its functionality. First, the geostatDB package (Heße et al., 2019c) provides access to a large data
set from the worldwide hydrogeological parameter database (WWHYPDA) Comunian and Renard
(2009). Second, the siteSimilarity package (Kawa et al., 2020) allows for clustering of similar sites and
therefore facilitates a further reduction of uncertainty.

Due to the background of the authors, the examples and data are drawn from stochastic hydro-
geology, i.e., the field of geostatistics concerned with the statistical characterization of groundwater
systems. Yet, the presented package is not confined to this field, and simply using other data or making
slight revisions to the hierarchical model will quickly make the workflow amendable to other fields of
geostatistics as well.

To familiarize the reader with the package, we start in the following by explaining the workflow
for formulating informative prior distributions, where the prior distribution at an unexplored site is
based on data collected from other sites. After that, we explain the package by detailing its structure
and functionalities. Finally, we present several examples of prior derivation based on synthetic data
and on an established database for hydrogeological parameters (Comunian and Renard, 2009).

2 Ex-Situ Priors

Let us assume that we want to model a specific geostatistical variable x at a target site S0. Examples
would be hydraulic conductivity, porosity, or permeability. To account for the unavoidable uncertainty,
this variable should be modeled as a random variable X (Pyrcz and Deutsch, 2002; Rubin, 2003;
Kitanidis, 2008). The simplest way to characterize this variable statistically is through its distribution
p(x). Yet, this would leave out any spatial correlations, so most geostatistical analyses try to account
for them by using spatial random field models, typically a GP (Rasmussen and Williams, 2006; Gelfand
and Schliep, 2016). Since such models are fully defined by their parameter vector θ, the aim of
Bayesian inference is to use available, in-situ data yin and derive the posterior distribution over these
parameters p(θ|yin). This posterior represents a compromise between likelihood p(yin|θ) and the prior
distribution p(θ), with the likelihood representing the impact of the in-situ data. This, however, leaves
open the specification of the prior distribution.

By definition, the prior distribution characterizes the knowledge about target parameters before
observing in-situ data yin. Therefore, yin cannot be used for the definition of the prior (Berger, 2006).
On the other hand, using no data and making the prior distribution as vague as possible seems far
too prudent since this would ignore the wealth of background knowledge which exists for virtually
any geostatistical variable. Such background knowledge can come from data collected at other sites
Si, i ∈ 1 . . . I (see schematic in Figure 1). To distinguish them from the site-specific, in-situ data yin,
we use the term ex-situ data yex. Our prior pdf for the parameters at a new site S0 could therefore be
based on these ex-situ data p(θ|yex). To determine this p(θ|yex), we propose the use of a dedicated
statistical model (more on this below). By virtue of this model, the transfer of information from known
donor sites Si to a new site S0 is a case of Bayesian prediction

p(θ|yex) =
∫

ϑ
p(θ|ϑ)p(ϑ|yex)dϑ. (1)

According to Eq. 1, the prior distribution p(θ|yex) for a new site S0 is the posterior predictive
distribution of all Si w.r.t. S0 (see schematic in Figure 1). Mathematically, this means p(θ|yex) is derived
by weighing each single predictive distribution p(θ|ϑ) with its corresponding posterior distribution
p(ϑ|yex) and marginalizing over the parameters ϑ. Please note the difference between the model for X
at site S0, say a GP defined by θ, and the model used for the transfer of data between sites defined by
ϑ. Since geostatistical data are hierarchical in nature, this model should be hierarchical too (Kruschke,
2010; Gelfand, 2012; Gelman et al., 2013).

Formulation of the hierarchical model

In geostatistics, a common way to conceptualize a hierarchical ordering of the data is by using two
levels (see schematic in Figure 1). The first level represents the population of the (spatially distributed)
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Figure 1: Schematic of the transfer of data from a number of donor sites Si to a new site S0. Measure-
ment locations are denoted by circles. The statistical model used for the transfer is denoted by its
parameter vector ϑ.

local data yi,j available on every given site Si whereas the second level represents the global population
of all available sites. In such a two-level hierarchical model, this relationship is represented such
that the set of parameters ϑ is split up into two subsets ϑ = (ϕ, η) for level 1 and 2 respectively. The
hierarchical relationship between these two levels is represented by factorizing their joint probability
through the definition of conditional probability p(ϕ, η) = p(ϕ|η)p(η). The general formulation of the
two-level model would then look like the following:

yi,j ∼ p(y|ϕi), (2a)

ϕi ∼ p(ϕ|η), (2b)

η ∼ p(η). (2c)

This means that each datum yi,j is drawn from a distribution with parameters ϕi, which are specific
to site Si only. This distribution, therefore, represents the local variability of the data found within
a given site or intra-site variability (Eq. 2a). These local parameters ϕi are, in turn, drawn from a
distribution specified by the global parameters called hyperparameters η. These hyperparameters,
therefore, represent the global variability between sites or inter-site variability (Eq. 2b).

This general formulation allows to flexibly choose parametric models used for all distributions.
Since p(y|ϕi) represents the data, this distribution should fit the empirically observed frequencies of
y. Depending on the geostatistical parameter of interest, a user can use, e.g., the normal, log-normal,
multivariate normal, or truncated normal distributions to model parameter behavior. Choosing the
distributions of the hierarchical model itself, i.e., p(ϕ|η) and p(η) is less straightforward and should
reflect of mixture of the domain knowledge and statistical expertise. To exemplify this procedure, let
us look at measurements of hydraulic conductivity. These data are often modeled with a log-normal
distribution (Hoeksema and Kitanidis, 1985), while p(ϕ|η) can be modeled as a normal distribution
(Gelman et al., 2013). The parametric form of p(η) should be specified as vague priors initially, with
the posteriors being determined by the data yex. Transforming our data into their log-normal form, as
often done, the resulting hierarchical model would then be

yi,j ∼ N (µi, σ2), (3a)

µi ∼ N (α, τ), (3b)

(σ2, α, τ) ∼ p(σ2)p(α)p(τ). (3c)
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In this example, we assumed that the variance σ2 at each site is the same, making the local and
global parameters identical. This assumption is, of course, a simplification but allows to reduce the
number of parameters to be inferred.

Generation of the ex-situ prior distribution

Once the target variable is specified, and the ex-situ data yex collected, three steps are necessary to
actually calculate the prior distribution. First, the user has to decide on the parametric model for the
distributions and therefore fully specify the hierarchical model according to Eq. 2. Next, the posterior
distributions of the parameters p(ϕ, η|yex) are inferred. In exPrior, this is done using the Markov chain
Monte Carlo (MCMC) implementation of NIMBLE. Finally, the ex-situ prior can be determined as the
posterior predictive distribution (see Equation 1).

To familiarize ourselves with this procedure, let us look at these three steps in more detail.

Specifying a hierarchical model The specification of the hierarchical model in exPrior is done in
BUGS code wrapped within the NIMBLE function nimbleCode(). The results are R objects from the
BUGS models. In NIMBLE, every model is represented as a Directed Acyclic Graph (DAG), where
each declaration in the model is a node which can be either deterministic or stochastic. Nodes are
represented as vertices of a DAG, with edges connecting nodes implying dependence relationships.

normal

yi,j ∼ N (µi,σ
2)

normal

µi ∼ N (α, τ)

α ∼ p(α)τ ∼ p(τ) σ
2 ∼ p(σ2) tau alpha sigma

mu[i]

y[i,j]

Figure 2: Schematic of the example model showing the statistical model on the left as defined in
see Eq. 3 and the corresponding DAG on the right. The arrows show the hierarchical relationships
between the variables. Both the ex-situ data yi,j, and the site-specific mean µi are drawn from normal
distributions. The hyperparameters η = (τ, α, σ2) are given initially vague hyperpriors to be updated
later by the ex-situ data.

To exemplify this, let us consider the aforementioned model for the log-hydraulic conductivity.
As mentioned, the data at each site are modeled as being drawn from a normal distribution with
every site having the same variance σ2 but site-specific means. This mean value is again drawn from
a normal distribution. Accordingly, α is the global mean of the local means, and τ2 represents the
global variability of the local means. Since no data are used at this point, the hyperpriors of the
hyperparameters η = (α, τ, σ) should be non-informative.

The model is therefore declared with five variables: alpha, tau, sigma, mu, and y. Once compiled,
the model contains multiple nodes: one node for each hyperparameter alpha, tau, and sigma, I nodes
for the site-specific means mu[i], and ∑i Ji nodes for the site measurements y[i,j]. In this model,
the dependent nodes are the ex-situ data yi,j, the µi values are estimated from these deterministic yi,j.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=exPrior
https://CRAN.R-project.org/package=exPrior


CONTRIBUTED RESEARCH ARTICLE 87

Similarly, the α and τ are estimated from the µi. In cases where the data are provided to genExPrior()
in the form of moments (more on this later), mu[i] is deterministic, as the site-specific means are
already provided in numeric form and not considered to be realizations from any distribution. The
following pseudocode illustrates how the model is declared:

## declaration of a hierarchical model in nimbleCode

# 1. declare prior distributions for hyperparameters
hyperparameters ~ disn(...)

# 2. declare distributions for site-specific means
for i in 1:I {
mu[i] ~ disn(hyperparam1, hyperparam2, ...) # distribution of mean mu at site i

# 3. declare distributions for measurements
for j in 1:J {
y[i,j] ~ disn(mu[i], hyperparam3, ...)
}

}

This pseudocode model denotes the mathematical formulation of the hierarchical model in
BUGS code, where the parameter for site-specific means µi is mu[i], and site-specific variances
σ2

i is sigma2[i]. First, hyperparameters alpha and tau are assigned non-informative hyperpriors.
Next, the code loops through each site and assigns the mean mu[i] a distribution whose parameters are
hyperparameters. Finally, each of the J measurements y[i,j] at each site i is assigned a distribution
with parameters mu[i] and hyperparameters.

The flexibility of this formulation allows the data yex to be assimilated in a full MCMC hierarchical
model, as explained in the next section.

Estimating posterior values of parameters in the hierarchical model Parameters in the hierarchical
model are estimated from the data provided by the user, using MCMC. Once the model and the vari-
ables are declared, the hierarchical model is compiled using nimble::compileNimble(). The MCMC
object is configured, built, and compiled using nimble::configureMCMC(), nimble::buildMCMC(), and
nimble::compileNimble(), respectively and run using the run method of the compiled object. This
method calculates an MCMC chain, the result of the estimation step. To improve numerical efficiency,
NIMBLE includes a library of algorithms and a compiler that generates C++ for declared models and
functions. Once a model is declared, nimbleCode is generated as C++ code, compiled, and reloaded
into R.

The values in the compiled model are declared with data that are supplied by the user when
running the function. For example, if a user inputs a data frame of measurements, each of the y[i,j]
is defined with its corresponding data point. If a user provides moments, then each of the mu[i]
is defined with its provided value. Once a model is compiled, genExPrior() envokes the MCMC
sampler, which estimates the posterior distributions of the parameters.

Predicting the prior Now that the ex-situ data are assimilated, our hierarchical model is fully
conditioned on all available data. Normally, this would conclude a Bayesian inference. Yet as explained
above, the posterior distribution has to be used to compute the predictive posterior distribution of the
target variable at a new site (see Eq 1). In exPrior, this is simply done by drawing realizations of the
target variable from distributions specified by the hierarchical model and parameterized by values
sampled from the MCMC chains from the previous step. The final predictive posterior distribution is
then estimated using kernel density estimation.

3 Associated packages

To support the functionality of exPrior, we provide two additional R packages on the GitHub account.
First, the geostatDB package provides real-world data on subsurface measurements, which can
therefore be used directly for the derivation of informed prior distributions. Second, the siteSimilarity
package allows users to determine a cluster of similar sites to focus on the most relevant data only and
therefore reducing the overall uncertainty. Since both these packages provide benefits independently
of exPrior, they will remain independent for the foreseeable future.
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Real-world data: The geostatDB package

In this package, we provide real-world, geostatistical data from the WorldWide HYdrogeological
Parameters DAtabase WWHYPDA (Comunian and Renard, 2009). This database has been designed
to store values of the most important properties of earth materials and has been developed with the
purpose of offering a complement of information in hydrogeological studies where there is a lack of
data. To the best of the authors’ knowledge, the WWHYPDA is the largest open-source database of
hydrogeological parameters. Currently it contains a total of 20,523 subsurface measurements of 6
geostatistical parameters spanning 128 sites. A complete description and schematic of the database in
its original form can be found in Comunian and Renard (2009).

Due to its size, as well as to facilitate further additions to the database, we use a dedicated
R package geostatDB to host the data from WWHYPDA. This package is not yet on CRAN, but
the latest release version can be found on https://github.com/GeoStat-Bayesian/geostatDB (Heße
et al., 2019c). To exemplify the usage and impact of real-world data, we furnished exPrior with an
example data set on porosity values from sandy aquifers. Its usage is described in Section 2.4.2 below.

geostatDB itself includes the WWHYPDA as an SQLite database, converted from the online
MySQL database. The reasons for using SQLite are efficiency and accessibility. First, both SQL
and SQLite databases can be easily read into R, while maintaining their original structure. SQLite
specifically can be included in R packages without the need for a server, making it accessible to the
user. A downside of this decision is that a user who updates the SQLite database in geostatDB does
so without making changes to the original database, hosted on https://www.wwwhypda.org. Thus,
those who wish to contribute to the WWHYPDA are currently encouraged to do so by submitting data
online.

It is important to note that data quality steps need to be implemented before applying the statistical
algorithm to this database. Figure 3 contains two visualizations that describe the data present in
the WWHYPDA, created in R. This visualization was done using the function getData() from the
geostatDB package. The code can be found in the associated vignette of the package at https:
//github.com/GeoStat-Bayesian/geostatDB/blob/master/vignettes/explore_data.Rmd.

The notion of site similarity: The siteSimilarity package

In order to reduce the uncertainty in the prior distribution as much as possible, it is beneficial to focus
only on data coming from sites which are similar to the one under investigation. It is therefore crucial
to have a sound notion of site similarity. The siteSimilarity package uses hierarchical agglomerative
clustering to categorize sites into clusters based on observable characteristics, such as environment
type or rock type. Using the schematic in Figure 1, only those sites similar to site S0 would be used as
donor sites. Currently, the clustering achieves only a modest reduction in uncertainty when using a
leave-one-out validation. This is caused by the overall limited number of sites, which, after clustering,
get even more reduced. Yet the algorithm already provides the user with a tangible benefit, which is
projected to increase as more and larger data sets with more sites become available.

4 Examples

Having now formally explained the workflow and associated packages of exPrior, we will illustrate
said workflow with a series of examples. Starting with an easy inference problem, we will then explain
how to use the included data, how to account for autocorrelation, and finally how to use soft data, in
particular bounds, for the inference.

Please note that all examples given in the following only refer to the distribution of the expected
quantity itself, e.g., porosity. This does, however, not mean that the parameters of a GP cannot be
inferred since µ and σ are nodes in the hierarchical model and can be derived from it. On the other
hand, higher-order statistics, like correlation length or anisotropy, are usually considered homogeneous
across a given site and are consequentially not hierarchical. They can, therefore, be inferred using the
classical estimation procedure.

The following four examples correspond to four vignettes, which can be found on the GitHub
account of the exPrior package at https://github.com/GeoStat-Bayesian/exPrior/blob/master/
vignettes.

The general workflow, which is followed in all of these examples, is visualized in Figure 4. First, a
user has to represent the ex-situ data in the form of an R dataframe object. These data can be manually
entered, like explained in Section 2.4.1, taken from the included data, like explained in Section 2.4.2, or
being supplied though some additional database. Next, the user would enter as an R vector object
a range of values at which to estimate the prior distribution. This range is typically the minimum
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Figure 3: The two visualizations are made using the data from the WWHYPDA, obtained using the
function getData() from the geostatDB package. The first figure shows the distribution of porosity
values at several sites, derived using kernel density estimation. The second figure shows a set of
histograms describing the distribution of hydraulic conductivity values for different material types.
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Figure 4: A flowchart showing the workflow of the user of exPrior. A user first expresses ex-situ
data as an R dataframe. The user then determines the range of values at which to compute a prior
(usually the minimum and maximum values of a parameter). Finally, the user uses genExPrior() to
compute the ex-situ prior for a target site. The user has the options of using built-in plotting functions
to visualize results.

and maximum values of the parameter of interest (for example, porosity takes values between 0 and
1). Finally, the user would input the ex-situ data and specified range into the function genExPrior(),
which outputs a prior and the distributions of hyperparameters of the model. The user has the options
of using built-in plotting functions to visualize results.

Example 1: Using exPrior with synthetic data

To familiarize the reader with this general workflow, let us start with a simple example using only a
few synthetic data (on a log 10 scale) from three arbitrarily labeled sites S1, S2, and S3. The source code
for the corresponding vignette can be found at https://github.com/GeoStat-Bayesian/exPrior/
blob/master/vignettes/using_genExPrior.Rmd. The goal is to derive the ex-situ prior for target site
S0 with the following code:

> exdata <- data.frame(val = c(c(-2,-3,-4), c(-2,-1), c(-6,-7,-2,-3)),
+ site_id = c(rep('S1',3), rep('S2',2), rep('S3',4)))
> ex_prior <- genExPrior(exdata = exdata, theta = seq(from=-10, to=10, by=0.1))

By following the above workflow, we started with generating an R dataframe exdata for the
ex-situ data. Then, we entered the range over which to estimate the variable θ as an R vector theta.
The actual computation of the ex-situ prior is finally performed by the function genExPrior(). To
investigate the output of this function, exPrior provides a number of plotting functions.

> plotHyperDist(ex_prior)
> plotExPrior(ex_prior)

In this little example, the first command plotHyperDist plots the posterior distributions of the
hyperparameters α, τ, and σ (see Figure 5 left panel). This captures the impact of the data on the
Bayesian hierarchical model. The second command plotExPrior shows the ex-situ data from the three
sites jointly with the predicted prior distribution for the new site S0 (see Figure 5 right panel). As can
be seen, the essentially flat, uninformative prior got updated into a much sharper, informative prior
representing a much-reduced uncertainty.
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Figure 5: The left panel shows the distributions of the hyperparameters alpha, tau, and sigma. The
right panel shows ex-situ prior computed using the data assimilation framework (blue curve) against
the uninformative prior (black curve).

Example 2: Using exPrior with real-world data

As introduced above, exPrior provides real-world, geostatistical data from the WWHYPDA. Let us
exemplify its use and impact on the inference by first importing the data on porosity. As above, the
associated vignette can be found at https://github.com/GeoStat-Bayesian/exPrior/blob/master/
vignettes/real_world_data.Rmd.

> load(file="data/df_porosity.rda")

These real-world data are now loaded into the workspace and can be used to compute the ex-situ
prior using the ‘exPrior‘ function as describe in above example

> resExPrior = genExPrior(exdata = df_porosity, theta = seq(from=0, to=1, by=0.01))

Here, the range of the theta vector reflects the common-sense intuition that porosity values can
only exist between 0 and 1. This change should also be reflected in the used model

yi,j ∼ Φ(µi, σ2, 0, 1), (4a)

µi ∼ N (α, τ), (4b)

(σ2, α, τ) ∼ p(σ2)p(α)p(τ). (4c)

Equation (4a) makes this change clear, such that the data are drawn from a truncated normal
distribution. Since the boundaries are fixed, the hierarchical model itself still has the same number of
parameters, and the other parts of the model remain the same.

After the completion of exPrior, we can visualize again the posteriors of the model as well as the
prior of θ using plotExPrior.

> plotHyperDist(resExPrior)
> plotExPrior(resExPrior)

Compared to Figure 5, the results in Figure 6 show some relevant differences. In particular, the
hyperpriors seen in the left panel of Figure 6 are much more peaked, resulting in near-certainty
about their value. This is due to the large amount of evidence provided by the data. Since the
parameter distributions on the higher levels in a hierarchical model represent the uncertainty about the
parameters on the lower ones, it can be said that the results of this inference capture the uncertainty of
porosity in sandstone with high certainty. This means that the prior distribution in the right panel of
Figure 6 is very close to the statistical uncertainty for the hypothetical population of all porosity values
in sandstone aquifers in general. As can be seen in this figure, this distribution is strongly peaked

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=exPrior
https://CRAN.R-project.org/package=exPrior
https://github.com/GeoStat-Bayesian/exPrior/blob/master/vignettes/real_world_data.Rmd
https://github.com/GeoStat-Bayesian/exPrior/blob/master/vignettes/real_world_data.Rmd


CONTRIBUTED RESEARCH ARTICLE 92

0.0

2.5

5.0

7.5

10.0

0.000.250.500.751.00
α

p

p(α) p(α|y)

0.0

2.5

5.0

7.5

10.0

12.5

0.00.51.01.52.0
τ

p

p(τ) p(τ|y)

0

300

600

900

0.00.51.01.52.0
σ

p

p(σ) p(σ|y)

0

1

2

3

0.00 0.25 0.50 0.75 1.00
theta

va
lu

e variable
p(θ)

p(θ|y)

Figure 6: Informative (blue) and non-informative (black) priors computed with genExPrior() using
real-world, ex-situ data of porosity in sand stone.

between 0.2 and 0.3. Using this prior therefore provides a practitioner with a sound foundation for the
geostatistical inference of the in-situ porosity.

Example 3: Accounting for spatial autocorrelation in ex-situ data

In most cases, ex-situ data used in the analysis are spatially correlated since measurements are usually
collected in a clustered way (Rubin, 2003; Pyrcz and Deutsch, 2002). The data assimilation model
outlined in 2.2.1 can, in principle, account for patterns of spatial variability by using multivariate
distributions as site-specific distributions. As above, the associated vignette can be found at https:
//github.com/GeoStat-Bayesian/exPrior/blob/master/vignettes/spatial_correlation.Rmd. To
account for this spatial correlation, let us use a revised version of the hierarchical model from Equation
(3)

yi,j ∼ N (µi, Σ), (5a)

µi ∼ N (α, τ), (5b)

Σ = σ2 exp
(
− h

λ

)
, (5c)

(σ2, λ, α, τ) ∼ p(σ2)p(λ)p(α)p(τ). (5d)

The relevant adjustment can be seen in Equation (5a), where the data are no longer modeled to
be drawn from a univariate normal distribution but a multivariate distribution instead. The main
difference is the replacement of the variance σ2 by the covariance Σ. In our example, this covariance is
modeled as an isotropic exponentially decaying function, with a characteristic length scale λ. This
function means that measurements being taken at large distances h are essentially independent,
and no relevant difference to the simple univariate model from Equation (3) would exist. However,
measurements taken at distances h similar or smaller to λ exhibit substantial correlation and must be
assimilated accordingly. Failing to do so would result in an underestimation of the actual uncertainty,
a phenomenon which is known in the literature as pseudoreplication (Hurlbert, 1984; Legendre, 1993).
Due to the additional parameter, the model has now 4 hyperparameters, which need to be inferred.

To exemplify the workflow with this revised hierarchical model, let us use synthetic data coming
again from three different sites only. To generate data with spatial correlation, we used the gstat
package. These synthetic data were then transformed to have different mean values for each site.

> set.seed(1)
> xy <- data.frame("x" = sample(seq(0.00,1.00,0.01),22),
+ "y" = sample(seq(0.00,1.00,0.01),22))
> model = vgm(psill=1, range=1, model='Exp')
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Figure 7: Informative (blue) and non-informative (black) priors computed with genExPrior(). The
left panel shows the prior without accounting for spatial correlation, whereas the right panel shows
the prior accounting for spatial correlation (right panel). The colored bars represent the ex-situ data
from the three different sites.

> g.dummy <- gstat(formula=z~1, locations=~x+y, dummy=TRUE, beta=1, model=model, nmax=20)
> exdata_spatial <- predict(g.dummy, newdata=xy, nsim=1)

To adapt this data frame from gstat to the format needed for exPrior, we have to change one of the
column names and add the site’s id.

> colnames(exdata_spatial)[3] <- "val"
> exdata_spatial\$site_id = c(rep("S1", 10), rep("S2", 5), rep("S3", 7))
> exdata_spatial[ 1:10, 'val'] <- exdata_spatial[ 1:10, 'val'] - 3
> exdata_spatial[11:15, 'val'] <- exdata_spatial[11:15, 'val'] - 2.5
> exdata_spatial[16:22, 'val'] <- exdata_spatial[16:22, 'val'] - 3.5

With these data, we can now generate the ex-situ prior distribution. To tell exPrior to account for
the spatial correlation in the data, we have to toggle the spatialCoordinates flag in the genExPrior()
function to TRUE.

> resExPrior = genExPrior(exdata = exdata, theta = seq(from=-10, to=10, by=0.1),
+ spatialCoordinates = TRUE)
> plotExPrior(resExPrior, plotExData = TRUE)

To compare the effects of accounting for spatial correlation, we provide plots of the ex-situ prior
with spatialCoordinates being both set to FALSE and TRUE (see the left and right panel in Figure 7,
respectively). As can be seen, both priors look overall similar in shape. The main difference is that
the latter shows a somewhat increased uncertainty, i.e., a wider variance, which can be seen by the
increased mode of the distribution. The fact that the more realistic model produces more uncertain
results may seem counterintuitive at first. However, the aim of statistical inference is not to reduce the
uncertainty as much as possible but to correctly capture the uncertainty in the used data and the model.
As mentioned above, this problem of not accounting for possible correlations between measurements
is called pseudoreplication and can have serious consequences by leading to overconfident statistical
analyses.

Example 4: Assimilating Multiple Data Types

As mentioned above, exPrior is written in a flexible manner, such that it can assimilate data that come
in the form of measurements, bounds, or moments (see schematic in Figure 2). To exemplify this
flexibility, let us use in this example synthetic data from three sites labeled S1, S2, and S3. From Site
S1, we have data in the form of bounds, where the minimum value of a hydrogeological property
of S1 is 2, and its maximum value is 4. Site S2 has data in the form of moments, where the first
moment, or site mean, is 2, while the second moment, or site variance, is 0.1. Finally, site S3 has
three measurements. Again, the associated vignette can be found at https://github.com/GeoStat-
Bayesian/exPrior/blob/master/vignettes/multi_type_data.Rmd. The code below shows how to
format the data in R such that it can be read into genExPrior().

> exdata_S1 <- data.frame(val=c(2,4), site_id=rep('S1',2),
+ type=c('bound.min','bound.max'))
> exdata_S2 <- data.frame(val=c(2,0.1), site_id=rep('S2',2),
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Figure 8: The left panel shows the distributions of the hyperparameters alpha, tau, and sigma. The
right panel shows ex-situ data from three synthetic sites S1, S2, and S3. The blue curve is the ex-situ
prior computed using the data assimilation framework, while the black curve is the uninformative
prior.

+ type=c('moment.1','moment.2'))
> exdata_S3 <- data.frame(val=c(2,3,4), site_id=rep('S3',3),
+ type=c('meas','meas','meas'))
> exdata <- rbind(exdata_S1, exdata_S2, exdata_S3)

As in previous examples, the data frame exdata_multitype as well as the vector theta can be
input directly into genExPrior() as such

> resExPrior <- genExPrior(exdata = exdata, theta = seq(from=-10, to=10, by=0.1))

Finally, we can visualize the results resExPrior again using the plotHyperDist and plotExPrior
functions.

> plotHyperDist(resExPrior)
> plotExPrior(resExPrior)

The resulting hyperparameters and ex-situ prior distributions look very similar to the simple
example from Section 2.4.1 (compare Figure 5 to Figure 8). This comparison shows that data in the form
of bounds and moments can have a similar impact on the inference and how they can be assimilated
by exPrior.

5 Summary

In this paper, we have introduced the R package exPrior, which contains methods for assimilating
ex-situ data to generate prior probabilities for geostatistical parameters. We explain the formulation
of a prior distribution as a Bayesian Hierarchical Model (Section 2.2.1) and its implementation using
NIMBLE, an R package created for efficient hierarchical modeling. We illustrate the model through a
number of examples where exPrior can be used, including univariate and multivariate models (Section
2.4.3), as well as the assimilation of multiple data types (2.4.4). The package also contains data from
the WWHYPDA, an open-source, hydrogeological database that provides valuable information for
hydrogeological modeling. The goal of this package is to provide methods to facilitate geostatistical
modeling, as well as to encourage the open-source and open-data movements between scientists.
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Wide-to-tall Data Reshaping Using
Regular Expressions and the nc Package
by Toby Dylan Hocking

Abstract Regular expressions are powerful tools for extracting tables from non-tabular text data.
Capturing regular expressions that describe the information to extract from column names can be
especially useful when reshaping a data table from wide (few rows with many regularly named
columns) to tall (fewer columns with more rows). We present the R package nc (short for named
capture), which provides functions for wide-to-tall data reshaping using regular expressions. We
describe the main new ideas of nc, and provide detailed comparisons with related R packages (stats,
utils, data.table, tidyr, tidyfast, tidyfst, reshape2, cdata).

1 Introduction

Regular expressions are powerful tools for text processing that are available in many programming
languages, including R. A regular expression pattern or regex defines a set of matches in a subject
string. For some example subjects, consider the column names of the famous iris data set in R: Species,
Sepal.Length, Petal.Width, etc. Some example patterns: a dot between square brackets [.] matches
a period, a dot by itself . matches any non-newline character, and a dot followed by a star .* matches
zero or more non-newline characters. Therefore the pattern .*[.].* matches zero or more non-newline
characters, followed by a period, followed by zero or more non-newline characters. It would match
Sepal.Length and Petal.Width, but it would not match Species. For a more detailed discussion of
regular expressions, we refer the reader to help(regex) in R or the book of Friedl (2002).

The focus of this article is patterns with capture groups, which are typically defined using paren-
theses. For example, the pattern (.*)[.](.*) results in the same matches as the pattern in the previous
paragraph, and it additionally allows the user to capture and extract the substrings by group index
(e.g., group 1 matches Sepal, group 2 matches Length).

Named capture groups allow extracting the substring by name rather than by index. Using
names rather than indices is preferable in order to create more readable regular expressions (names
document the purpose of each sub-pattern) and to create more readable R code (it is easier to
understand the intent of named references than numbered references). For example, the pattern
(?<part>.*)[.](?<dimension>.*) documents that the flower part appears before the measurement
dimension; the part group matches Sepal and the dimension group matches Length.

Recently, Hocking (2019a) proposes a new syntax for defining named capture groups in R code.
Using this new syntax, named capture groups are specified using named arguments in R, which
results in code that is easier to read and modify than capture groups defined in string literals. For
example, the pattern in the previous paragraph can be written as part = ".*", "[.]", dimension =
".*". Sub-patterns can be grouped for clarity and/or re-used using lists, and numeric data may be
extracted with user-provided type conversion functions.

The main thesis of this article is that regular expressions can greatly simplify the code required to
specify wide-to-tall data reshaping operations (when the input columns adhere to a regular naming
convention). For one such operation, the input is a “wide” table with many columns, and the desired
output is a “tall” table with more rows, and some of the input columns are converted into a smaller
number of output columns (Figure 1). To clarify the discussion, we first define three terms that we will
use to refer to the different types of columns involved in this conversion:

Reshape columns contain the data which is present in the same amount but in different shapes in
the input and output. There are equivalent terms used in different R packages: varying in
utils::reshape, measure.vars in melt (data.table, reshape2), etc.

Copy columns contain data in the input which are each copied to multiple rows in the output (id.vars
in melt).

Capture columns are only present in the output, and contain data which come from matching a
capturing regex pattern to the input reshape column names.

For example, the wide iris data (W in Figure 1) have four numeric columns to reshape: Sepal.Length,
Sepal.Width, Petal.Length, Petal.Width. For some purposes (e.g., displaying a histogram of each
reshape input column using facets in ggplot2), the desired reshaping operation results in a table with
a single reshape output column (S in Figure 1), two copied columns, and two columns captured from
the names of the reshaped input columns. For other purposes (e.g., scatterplot to compare sepal and
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    cm    Species flower  part    dim
1: 5.1     setosa      1 Sepal Length
2: 3.5     setosa      1 Sepal  Width
3: 1.4     setosa      1 Petal Length
4: 0.2     setosa      1 Petal  Width
5: 7.0 versicolor     51 Sepal Length
6: 3.2 versicolor     51 Sepal  Width
7: 4.7 versicolor     51 Petal Length
8: 1.4 versicolor     51 Petal  Width

  Sepal.Length Sepal.Width Petal.Length Petal.Width    Species flower
1:          5.1         3.5          1.4         0.2     setosa      1
2:          7.0         3.2          4.7         1.4 versicolor     51

  Sepal Petal    Species flower    dim
1:   5.1   1.4     setosa      1 Length
2:   3.5   0.2     setosa      1  Width
3:   7.0   4.7 versicolor     51 Length
4:   3.2   1.4 versicolor     51  Width

  Length Width    Species flower  part
1:    5.1   3.5     setosa      1 Sepal
2:    1.4   0.2     setosa      1 Petal
3:    7.0   3.2 versicolor     51 Sepal
4:    4.7   1.4 versicolor     51 Petal

Convert four
input reshape
columns to
Single output 
reshape column
and two output
capture columns

Convert four input reshape
columns to Multiple (2)
output reshape columns and 
one output capture column

W S

M1

M2 Output reshape column 
for each dim

Output reshape column 
for each part

Column type legend: Name = reshape, Name = copy, Name = capture.

Figure 1: Two rows of the iris data set (W, black) are considered as the input to a wide-to-tall reshape
operation. Four input reshape columns are converted to either a single output reshape column (S,
blue) or multiple (2) output reshape columns (M1, M2, red). Other output columns are either copied
from the non-reshaped input data, or captured from the names of the reshaped input columns.

petal sizes) the desired reshaping operation results in a table with multiple reshape output columns
(M1 with Sepal and Petal columns in Figure 1), two copied columns, and one column captured from
the names of the reshaped input columns.

In this article, our original contribution is the R package nc which provides a new implementation
of the previously proposed named capture regex syntax of Hocking (2019a), in addition to several
new functions that perform wide-to-tall data reshaping using regular expressions. The main new idea
is to use a single named capture regular expression for defining both (1) the subset of reshape input
columns to convert and (2) the additional capture output columns. We will show that this results in a
simple, powerful, non-repetitive syntax for wide-to-tall data reshaping. A secondary contribution of
this article is a detailed comparison of current R functions for wide-to-tall data reshaping in terms
of syntax, computation times, and functionality (Table 1). Note that in this article, we do not discuss
tall-to-wide data reshaping, because regular expressions are not useful in that case.

The organization of this article is as follows. The rest of this introduction provides an overview
of current R packages for regular expressions and data reshaping. The second section describes the
proposed functions of the nc package, and then the third section provides detailed comparisons with
other R packages. The article concludes with a summary and discussion of possible future work.

2 Related work

There are many R functions which can extract tables from non-tabular text using regular expres-
sions. Recommended R package functions include base::regexpr and base::gregexpr as well as
utils::strcapture. CRAN packages which provide various functions for text processing using regu-
lar expressions include namedCapture (Hocking, 2019b), rematch2 (Csárdi, 2017), rex (Ushey et al.,
2017), stringr (Wickham, 2018), stringi (Gagolewski, 2018), tidyr (Wickham and Henry, 2018), and
re2r (Wenfeng, 2017). We refer the reader to our previous research paper for a detailed comparison of
these packages (Hocking, 2019a).

For reshaping data from wide (one row with many columns) to tall (one column with many rows),
there are several different R functions that provide similar functionality. Each function supports a
different set of features (Table 1); each feature/column is explained in detail below:
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pkg::function single multiple regex na.rm types list

nc::capture_melt_multiple no yes capture yes any yes
nc::capture_melt_single yes no capture yes any yes
tidyr::pivot_longer yes yes capture yes any yes
stats::reshape yes if sorted capture no some no
data.table::melt, patterns yes if sorted match yes no yes
tidyfst::longer_dt yes no match yes no yes
tidyr::gather yes no no yes some yes
tidyfast::dt_pivot_longer yes no no yes no yes
cdata::rowrecs_to_blocks yes yes no no no yes
cdata::unpivot_to_blocks yes no no no no yes
reshape2::melt yes no no yes no no
utils::stack yes no no no no no

Table 1: Reshaping functions in R support various features: “single” for converting input columns into
a single output column; “multiple” for converting input columns (either “if sorted” in a regular order,
or “yes” for any order) into multiple output columns of possibly different types; “regex” for regular
expressions to “match” input column names or to “capture” and create new output column names;
“na.rm” for removal of missing values; “types” for converting input column names to non-character
output columns; “list” for output of list columns.

single refers to support for converting input reshape columns of the same type to a single reshape
output column.

multiple refers to support for converting input reshape columns of possibly different types to multiple
output reshape columns; “if sorted” means that conversion works correctly only if the input
reshape columns are sorted in a regular order, e.g., Sepal.Length, Sepal.Width, Petal.Length,
Petal.Width; “yes” means that conversion works correctly even if they are not sorted, e.g.,
Sepal.Length, Sepal.Width, Petal.Width, Petal.Length.

regex refers to support for regular expressions; “match” means a pattern is used to match the input
column names; “capture” means that the specified pattern is used to create new output cap-
ture columns — this is especially useful when the names consist of several distinct pieces of
information, e.g., Sepal.Length; “no” means that regular expressions are not directly supported
(although base::grep can always be used).

na.rm refers to support for removing missing values.

types refers to support for converting captured text to numeric output columns.

list refers to support for output of list columns.

Recommended R package functions include stats::reshape and utils::stack for reshaping
data from wide to tall. Of the features listed in Table 1, utils::stack only supports output with
a single reshape column, whereas stats::reshape supports the following features. For data with
regular input column names (output column, separator, time value), regular expressions can be used
to specify the separator (e.g., in Sepal.Length, Sepal is output column, dot is separator, Length is
time value). Multiple output columns are supported, but incorrect output may be computed if input
columns are not sorted in a regular order. The time value is output to a capture column named time
by default. Automatic type conversion is performed on time values when possible, but custom type
conversion functions are not supported. There is neither support for missing value removal nor list
column output.

The tidyr package provides two functions for reshaping data from wide to tall format: gather
and pivot_longer. The older gather function only supports converting input reshape columns to
a single output reshape column (not multiple). The input reshape columns to convert may not
be directly specified using regular expressions; instead, R expressions such as x:y can be used to
indicate all columns starting from x and ending with y. It does support limited type conversion;
if the convert = TRUE argument is specified, the utils::type.convert function is used to convert
the input column names to numeric, integer, or logical. In contrast, the newer pivot_longer also
supports multiple output reshape columns (even if input reshape columns are unsorted) and regular
expressions for specifying output capture columns (but to specify input reshape columns with a
regex, grep must be used). Arbitrary type conversion is also supported in pivot_longer, via the
names_transform argument, which should be a named list of conversion functions. Both functions
support list columns and removing missing values, although different arguments are used (na.rm for
gather, values_drop_na for pivot_longer).
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The reshape2 and data.table packages each provide a melt function for converting data from
wide to tall (Wickham, 2007; Dowle and Srinivasan, 2019). The older reshape2 version only supports
converting input reshape columns to a single output reshape column, whereas the newer data.table
version also supports multiple output reshape columns. Regular expressions are not supported in
reshape2, but can be used with data.table::patterns to match input column names to convert
(although the output can be incorrect if columns are not sorted in a regular order). Neither function
supports type conversion, and both functions support removing missing values from the output using
the na.rm argument. List column output is supported in data.table but not reshape2. The tidyfast
(Barrett, 2020) and tidyfst (Huang and Zhao, 2020) packages provide reshaping functions that use
data.table::melt internally (but do not support multiple output reshape columns).

The cdata package provides several functions for data reshaping, including rowrecs_to_blocks
and unpivot_to_blocks, which can convert data from wide to tall (Mount and Zumel, 2019). The
simpler of the two functions is unpivot_to_blocks, which supports a single output reshape column
(interface similar to reshape2::melt/tidyr::gather). The user of rowrecs_to_blocks must provide
a control table that describes how the input should be reshaped into the output. It, therefore, supports
multiple output reshape columns for possibly unsorted input columns. Both functions support list
column output, but other features from Table 1 are not supported (regular expressions, missing value
removal, type conversion).

3 Basic features for wide-to-tall data reshaping using regular expressions

The nc package provides new regular expression functionality based on the syntax recently proposed
by Hocking (2019a). During the rest of the article, we give only a brief overview of this syntax; for
a more detailed review, please read the nc package vignettes. In this section, we show how new nc
functions can be used to reshape wide data (with many columns) to tall data (with fewer columns,
and more rows). We begin by considering the two data visualization problems which were mentioned
in the introduction and which involve the familiar iris data set.

Single reshape output column

First, suppose we would like to visualize the univariate distribution of each numeric variable. One
way would be to use a histogram of each numeric variable, with row facets for the flower part and
column facets for the measurement dimension. Our desired output, therefore, needs a single column
with all of the reshaped numeric data to plot (Figure 1, W→S).

We can perform this operation using nc::capture_melt_single, which inputs a data frame and
a pattern which should match the names of the input columns to reshape. Any input columns with
names that do not match the pattern are considered copy columns; the output also contains a capture
column for each group specified in the pattern:

> (iris.tall.single <- nc::capture_melt_single(
+ iris, part = ".*", "[.]", dim = ".*", value.name = "cm"))

Species part dim cm
1: setosa Sepal Length 5.1
2: setosa Sepal Length 4.9
3: setosa Sepal Length 4.7
4: setosa Sepal Length 4.6
5: setosa Sepal Length 5.0

---
596: virginica Petal Width 2.3
597: virginica Petal Width 1.9
598: virginica Petal Width 2.0
599: virginica Petal Width 2.3
600: virginica Petal Width 1.8

The code above can be read as follows. The first argument, iris specifies the wide input to reshape
(a data frame or data table). The next three arguments (part = ".*", "[.]", dim = ".*") specify
the regex. Internally nc generates a capture group for each named argument, so the generated regex
pattern is (.*)[.](.*) in this example. The value.name argument is not considered part of the regex
and instead specifies the name of the output reshape column.

The output above is a data table (a data frame subclass with special methods with reference
semantics) because data.table::melt is used internally for the reshape operation. The output data
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table consists of one copy column (Species), two capture columns (part, dim), and a single reshape
column (cm). These data can be used to create the desired histogram with ggplot2 via:

> library(ggplot2)
> ggplot(iris.tall.single) + facet_grid(part ~ dim) +
+ theme_bw() + theme(panel.spacing = grid::unit(0, "lines")) +
+ geom_histogram(aes(cm, fill = Species), color = "black", bins = 40)
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For comparison, we show how the same reshape operation can be accomplished with the data.table
package:

> iris.pattern <- "(.*)[.](.*)"
> iris.wide <- data.table::as.data.table(iris)
> iris.tall <- data.table::melt(
+ iris.wide, measure = patterns(iris.pattern), value.name = "cm")
> iris.tall[, `:=`(part = sub(iris.pattern, "\\1", variable),
+ dim = sub(iris.pattern, "\\2", variable))][]

Species variable cm part dim
1: setosa Sepal.Length 5.1 Sepal Length
2: setosa Sepal.Length 4.9 Sepal Length
3: setosa Sepal.Length 4.7 Sepal Length
4: setosa Sepal.Length 4.6 Sepal Length
5: setosa Sepal.Length 5.0 Sepal Length
---

596: virginica Petal.Width 2.3 Petal Width
597: virginica Petal.Width 1.9 Petal Width
598: virginica Petal.Width 2.0 Petal Width
599: virginica Petal.Width 2.3 Petal Width
600: virginica Petal.Width 1.8 Petal Width

The code above uses data.table::melt with patterns which takes a regex used to specify the
four columns to reshape. The part and dim capture columns must be created during a post-processing
step. In this case, the nc code is substantially simpler because the named capture regular expression
was used to specify both the input columns to reshape and the capture columns to output.

Finally we show how the same reshape operation could be done using the tidyr package:

> tidyr::pivot_longer(iris, matches(iris.pattern), values_to = "cm",
+ names_to=c("part", "dim"), names_pattern=iris.pattern)

# A tibble: 600 x 4
Species part dim cm
<fct> <chr> <chr> <dbl>

1 setosa Sepal Length 5.1
2 setosa Sepal Width 3.5
3 setosa Petal Length 1.4
4 setosa Petal Width 0.2
5 setosa Sepal Length 4.9
6 setosa Sepal Width 3
7 setosa Petal Length 1.4
8 setosa Petal Width 0.2
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9 setosa Sepal Length 4.7
10 setosa Sepal Width 3.2
# . . . with 590 more rows

The code above is almost as simple as the corresponding nc code, but with one key difference.
The output capture column names are defined in the names_to argument, which is far away from the
definition of the groups in iris.pattern. In this simple example with two groups in the regex this
separation of related concepts is not a huge problem, but the nc syntax should be preferred for more
complex patterns (with more groups) in order to keep the group names and sub-patterns closer and
easier to maintain/read in the code.

Multiple reshape output columns

For the second data reshaping task, suppose we want to determine whether or not sepals are larger
than petals for each measurement dimension and species. We could use a scatterplot of sepal versus
petal, with a facet for measurement dimension. We, therefore, need a data table with two reshape
output columns: a Sepal column to plot against a Petal column (Figure 1, W→M1). We can perform
this operation using another function, nc::capture_melt_multiple, which inputs a data frame and a
pattern which must contain the special column group and at least one other named group:

> (iris.parts <- nc::capture_melt_multiple(iris, column = ".*", "[.]", dim = ".*"))

Species dim Petal Sepal
1: setosa Length 1.4 5.1
2: setosa Length 1.4 4.9
3: setosa Length 1.3 4.7
4: setosa Length 1.5 4.6
5: setosa Length 1.4 5.0

---
296: virginica Width 2.3 3.0
297: virginica Width 1.9 2.5
298: virginica Width 2.0 3.0
299: virginica Width 2.3 3.4
300: virginica Width 1.8 3.0

Again, any input columns with names that do not match the pattern are considered copy columns
(Species in the example above). Each unique value captured in the special column group becomes
the name of an output reshape column (Petal, Sepal); other groups are used to create output capture
columns (dim). These data can be used to create the scatterplot using ggplot2 via:

> ggplot(iris.parts) + facet_grid(. ~ dim) +
+ theme_bw() + theme(panel.spacing = grid::unit(0, "lines")) +
+ coord_equal() + geom_abline(slope = 1, intercept = 0, color = "grey") +
+ geom_point(aes(Petal, Sepal, color = Species), shape = 1)
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For comparison, we show how to output a data table with multiple reshape output columns using
the data.table and tidyr packages:

> iris.multiple <- data.table::melt(
+ iris.wide, measure = patterns(Petal="Petal", Sepal="Sepal"))
> iris.multiple[, dim := c("Length", "Width")[variable] ]
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Species variable Petal Sepal dim
1: setosa 1 1.4 5.1 Length
2: setosa 1 1.4 4.9 Length
3: setosa 1 1.3 4.7 Length
4: setosa 1 1.5 4.6 Length
5: setosa 1 1.4 5.0 Length

---
296: virginica 2 2.3 3.0 Width
297: virginica 2 1.9 2.5 Width
298: virginica 2 2.0 3.0 Width
299: virginica 2 2.3 3.4 Width
300: virginica 2 1.8 3.0 Width

> tidyr::pivot_longer(iris, matches(iris.pattern), values_to = "cm",
+ names_to=c(".value", "dim"), names_pattern=iris.pattern)

# A tibble: 300 x 4
Species dim Sepal Petal
<fct> <chr> <dbl> <dbl>

1 setosa Length 5.1 1.4
2 setosa Width 3.5 0.2
3 setosa Length 4.9 1.4
4 setosa Width 3 0.2
5 setosa Length 4.7 1.3
6 setosa Width 3.2 0.2
7 setosa Length 4.6 1.5
8 setosa Width 3.1 0.2
9 setosa Length 5 1.4
10 setosa Width 3.6 0.2
# . . . with 290 more rows

The code above computes equivalent results but suffers from the same drawbacks as discussed in
the previous section (repetition, separation of pattern and group names).

To conclude this section, nc provides two new functions for data reshaping using regular expres-
sions. Both functions input a data frame to reshape and a pattern to match with the column names.
For nc::capture_melt_single, all matching input columns are reshaped in the output to a single
column which is named using the value.name argument. For nc::capture_melt_multiple the output
is multiple reshape columns with names defined by the values captured in the special column group.
Values from other groups are stored in capture columns in the output. Both functions support the
output of numeric capture columns via user-specified type conversion functions, as we will see in the
next section.

4 Comparisons which highlight differences with other packages

In this section, we compare the new data reshaping functions in the nc package with similar functions
in other packages. We aim to demonstrate that the new nc syntax is often more convenient and less
repetitive without sacrificing speed.

Building a complex pattern from smaller sub-patterns

In terms of functionality for wide-to-tall data reshaping, the most similar package to nc is tidyr
(Table 1). One advantage of nc is that complex patterns may be defined in terms of simpler sub-
patterns, which can include group names and type conversion functions. Integrating these three
pieces results in a syntax that is easy to read as well; it is more difficult to build and read complex
patterns using tidyr syntax, which requires specifying regex pattern strings, group names, and types
as separate arguments. For example, consider a data set from the World Health Organization (WHO):

> data(who, package = "tidyr")
> set.seed(1);sample(names(who), 10)

[1] "newrel_f3544" "year" "new_ep_m65" "country" "new_ep_m1524"
[6] "new_sn_m4554" "new_ep_f3544" "new_sp_f2534" "new_sp_f65" "newrel_m4554"

>
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Each reshape column name starts with new and has three distinct pieces of information: diagnosis
type (e.g., ep, rel), gender (m or f), and age range (e.g., 1524, 4554). We extract all three pieces of
information below and include a function for converting gender to a factor with levels in a specific
(non-default) order:

> nc.who.sub.pattern <- list(
+ "new_?", diagnosis = ".*", "_",
+ gender = ".", function(mf)factor(mf, c("m", "f")))
> nc.who.ages <- nc::capture_melt_single(who, nc.who.sub.pattern, ages = ".*")
> print(nc.who.ages[1:2], class = TRUE)

country iso2 iso3 year diagnosis gender ages value
<char> <char> <char> <int> <char> <fctr> <char> <int>

1: Afghanistan AF AFG 1997 sp m 014 0
2: Afghanistan AF AFG 1998 sp m 014 30

First, note that nc.who.sub.pattern is a sub-pattern list variable that we have used as the first
part of the pattern in the call to nc::capture_melt_single above (and we will use that sub-pattern
again below). Sub-pattern lists may contain regex character strings (patterns to match), functions (for
converting the previous capture group), or other sub-pattern lists. The reshaped output is a data table
with gender converted to a factor — this can also be done using tidyr::pivot_longer:

> tidyr.who.sub.names <- c("diagnosis", "gender") #L0
> tidyr.who.sub.pattern <- "new_?(.*)_(.)" #L1
> tidyr.who.pattern <- paste0(tidyr.who.sub.pattern, "(.*)") #L2
> tidyr::pivot_longer( #L3
+ who, cols = matches(tidyr.who.pattern), #L4
+ names_to = c(tidyr.who.sub.names, "ages"), #L5
+ names_ptypes = list(gender = factor(levels = c("m", "f"))), #L6
+ names_pattern = tidyr.who.pattern)[1:2,] #L7

# A tibble: 2 x 8
country iso2 iso3 year diagnosis gender ages value
<chr> <chr> <chr> <int> <chr> <fct> <chr> <int>

1 Afghanistan AF AFG 1980 sp m 014 NA
2 Afghanistan AF AFG 1980 sp m 1524 NA

In the code above, we first define a sub-pattern variable for the diagnosis and gender capture
groups, as we did using nc. One difference is that the tidyr sub-pattern variable is a string with
un-named capture groups, whereas the nc sub-pattern variable is a list which includes capture group
names as well as a type conversion function. These three parameters are specified as three separate
arguments in tidyr, which results in some separation (e.g., group names defined on L0 and L5 but
corresponding sub-patterns defined on L1 and L2) and repetition (e.g., gender appears on L0 and L6)
in the code. The pattern also must be repeated: first in the cols argument (L4) to specify the set of
input reshape columns, second in the names_pattern argument (L7) to specify the conversion from
input reshape column names to output capture column values.

Now suppose we want to extract two numeric columns from ages, for example, to use as interval-
censored outputs in a survival regression. Using nc we can use the previously defined sub-pattern
(including the previously defined group names and type conversion function) as the first part of a
larger pattern:

> who.typed <- nc::capture_melt_single(who, nc.who.sub.pattern, ages = list(
+ ymin = "0|[0-9]{2}", as.numeric,
+ ymax = "[0-9]{0,2}", function(x)ifelse(x == "", Inf, as.numeric(x))))
> who.typed[1:2]

country iso2 iso3 year diagnosis gender ages ymin ymax value
1: Afghanistan AF AFG 1997 sp m 014 0 14 0
2: Afghanistan AF AFG 1998 sp m 014 0 14 30

> who.typed[, .(rows = .N), by = .(ages, ymin, ymax)]

ages ymin ymax rows
1: 014 0 14 10882
2: 1524 15 24 10868
3: 2534 25 34 10850
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4: 3544 35 44 10875
5: 4554 45 54 10876
6: 5564 55 64 10851
7: 65 65 Inf 10844

Note in the code above that each group name, regex pattern string, and the corresponding type
conversion function appears on the same line — this syntax keeps these three related pieces of
information close together, which makes complex patterns easier to read and build from smaller pieces.
Also, note how an anonymous function is used to convert the values captured in the ymax group to
numeric (and it maps the empty string to Inf). Such custom type conversion functions are supported
by tidyr since version 1.1.0 (early 2020), so we can do:

> tidyr.who.range.pattern <- paste0(tidyr.who.sub.pattern, "((0|[0-9]{2})([0-9]{0,2}))")
> tidyr::pivot_longer(
+ who, cols = matches(tidyr.who.range.pattern),
+ names_to = c(tidyr.who.sub.names, "ages", "ymin", "ymax"),
+ names_transform = list(
+ gender = function(x)factor(x, levels = c("m", "f")),
+ ymin = as.numeric,
+ ymax = function(x)ifelse(x == "", Inf, as.numeric(x))),
+ names_pattern = tidyr.who.range.pattern)[1:7,]

# A tibble: 7 x 10
country iso2 iso3 year diagnosis gender ages ymin ymax value
<chr> <chr> <chr> <int> <chr> <fct> <chr> <dbl> <dbl> <int>

1 Afghanistan AF AFG 1980 sp m 014 0 14 NA
2 Afghanistan AF AFG 1980 sp m 1524 15 24 NA
3 Afghanistan AF AFG 1980 sp m 2534 25 34 NA
4 Afghanistan AF AFG 1980 sp m 3544 35 44 NA
5 Afghanistan AF AFG 1980 sp m 4554 45 54 NA
6 Afghanistan AF AFG 1980 sp m 5564 55 64 NA
7 Afghanistan AF AFG 1980 sp m 65 65 Inf NA

The code above uses the names_transform argument to define type conversion functions, which
requires some repetition (e.g., ymax and ymin each appear twice).

To conclude this comparison, we have seen that nc syntax makes it easy to read and write complex
patterns because it keeps group-specific names and type conversion functions near the corresponding
sub-patterns. We have also shown that repetition is often necessary with tidyr (e.g., pattern, group
names), whereas such repetition can be avoided by using nc.

Comparison with other packages which support multiple reshape output columns

In this section, we demonstrate the advantages of using nc over several alternatives which support
multiple reshape output columns. A major advantage is that nc directly supports regular expressions
for defining the input reshape columns and output capture columns. Another advantage is that nc
always returns a correct output data set with multiple reshape columns, even when the input columns
are not sorted in a regular order. For example, consider the following simple data set in which the
columns are not in regular order:

> (TC <- data.table::data.table(
+ treatment.age = 13,
+ control.gender = "M",
+ treatment.gender = "F",
+ control.age = 25))

treatment.age control.gender treatment.gender control.age
1: 13 M F 25

It is clear from the table above that the treatment group consists of a teenage female, whereas the
control group consists of a male aged 25 (not the best experimental design, but easy to remember for
the demonstration in this section). Assume we need an output data table with two reshape columns
(age and gender) as well as a capture column (group). The nc syntax we would use is:

> nc::capture_melt_multiple(TC, group = ".*", "[.]", column = ".*")
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group age gender
1: control 25 M
2: treatment 13 F

The correct result is computed above because nc reshapes based on the input column names (the
order of the input columns is not relevant). A naïve user may attempt to perform this reshape using
data.table::patterns:

> data.table::melt(TC, measure.vars = patterns(age = "age", gender = "gender"))

variable age gender
1: 1 13 M
2: 2 25 F

First, note that the syntax above requires repetition of age and gender (in names and in pattern
strings). Also, it is clear that the result is incorrect! Actually, the patterns function is working as
documented; it “returns the matching indices” of the provided regex. However, since the input
columns are not sorted in regular order, melt returns an incorrect result (this is an incorrect use of
these functions, not a bug). To get a correct result, we can provide a list of index vectors:

> data.table::melt(TC, measure.vars = list(age = c(1,4), gender = c(3,2)))

variable age gender
1: 1 13 F
2: 2 25 M

This is what nc does internally; it also converts the variable output column to a more inter-
pretable/useful capture column (e.g., group above).

The stats::reshape function suffers from the same issue as the patterns usage above. Another
issue with this function is that it assumes the output reshape column names are the first part of the
input column names (e.g., Figure 1, W→M1). When input column names have a different structure
(e.g., Figure 1, W→M2), they must be renamed, putting the desired output reshape column names
first:

> TC.renamed <- structure(TC, names = sub("(.*)[.](.*)", "\\2.\\1", names(TC)))
> stats::reshape(TC.renamed, 1:4, direction = "long", timevar = "group")

group age gender id
1: treatment 13 M 1
2: control 25 F 1

However, the result above still contains incorrect results in the gender column. The correct result
can be obtained by sorting the input column names:

> TC.sorted <- data.frame(TC.renamed)[, sort(names(TC.renamed))]
> stats::reshape(TC.sorted, 1:4, direction = "long", timevar = "group")

group age gender id
1.control control 25 M 1
1.treatment treatment 13 F 1

After renaming and sorting the input columns, the correct result is obtained using stats::reshape.
Another way to obtain a correct result is with the cdata package:

> cdata::rowrecs_to_blocks(TC, controlTable = data.frame(
+ group = c("treatment", "control"),
+ age = c("treatment.age", "control.age"),
+ gender = c("treatment.gender", "control.gender"),
+ stringsAsFactors = FALSE))

group age gender
1 treatment 13 F
2 control 25 M

The cdata package is very powerful and can handle many more types of data reshaping operations
than nc. However, it requires a very explicit definition of the desired conversion in terms of a control
table, which results in rather verbose code. In contrast, the terse regular expression syntax of nc is a
more implicit approach, which assumes the input columns to reshape have regular names.
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Figure 2: Timings for computing a tall output table with multiple (2) reshape columns from a wide
input table with 8 reshape columns and a variable number of rows (x-axis).

To conclude this section, we have discussed some advantages of nc relative to other R packages.
Input columns with regular names do not need to be renamed/sorted for nc functions, whereas
renaming/sorting may be necessary using stats::reshape. Verbose/explicit control table code is
always necessary with cdata, whereas a terse/implicit regular expression syntax is used with nc to
simplify the definition of reshape operations.

Comparing computation times of functions for wide-to-tall data reshaping

In previous sections, we have shown that the nc package provides a convenient syntax for defining
wide-to-tall reshape operations. In this section, we investigate whether this convenience comes at the
cost of increased computation time. We aim to demonstrate that the computation time required for the
proposed nc package is comparable with other packages for data reshaping. In particular, since nc is
implemented using data.table, we expect that nc should be slightly slower than data.table (by only the
amount of time required for regex matching). In our result figures, we show the median and quartiles
over 10 timings using the microbenchmark package on an Intel Core i7-8700 3.20GHz processor. Note
that these timings include both the regex matching (which should be relatively fast) and the data
reshaping operation (which should be relatively slow). We varied the number of rows/columns in
each experiment by copying/duplicating the rows/columns in each source data set.

First, we performed timings on variants of the iris data with a variable number of rows and
twice the original number of reshape columns (8). The input reshape column names were of the
form day1.Sepal.Length, day2.Sepal.Length, day1.Sepal.Width, etc. Since the desired output has
two reshape columns (Sepal and Petal), we considered packages which support multiple output
columns (cdata, stats, tidyr, nc, data.table). As expected, we observed that all algorithms have similar
asymptotic time complexity (Figure 2). We observed that nc is slightly slower than data.table (by
constant factors), slightly faster than the other packages (cdata, stats), and about the same speed as
tidyr.

Second, we performed similar timings on variants of the iris data with a variable number of
columns and the original number of rows (150). As in the previous experiment, we expected that all
functions would have similar slopes, indicating linear asymptotic time complexity. Surprisingly, we
observed on the log-log plot (Figure 3) that cdata has a larger asymptotic slope than the other packages,
which suggests its time complexity may be super-linear in the number of columns to reshape. The
other packages differed by constant factors, with data.table being fastest, followed by tidyr, nc, cdata,
and finally the slowest stats. All packages except stats performed the operation in less than 1 second
for 1,000 or fewer columns. This comparison confirms the expectation that nc speed is comparable to
other packages.

Third, we performed timings on versions of the WHO data with a variable number of duplicated
rows and the original number of columns (56). We ran reshaping functions from several additional
packages (utils, reshape2, tidyfast) that can compute the desired output table with a single reshape
output column. We computed the amount of time it takes to create zero or four capture output
columns (with additional post-processing steps for tidyfast::dt_pivot_longer, reshape2::melt,
tidyr::gather, cdata::unpivot_to_blocks). We expected that functions which require additional
post-processing steps should be slower by constant factors. As we expected, all functions appear to
have similar asymptotic time complexity and differ only in terms of constant factors. For zero capture
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Figure 3: Timings for computing a tall output table with multiple (2) reshape columns from a wide
input table with 150 rows and a variable number of columns to reshape (x-axis).

output columns, the slowest functions were stats::reshape and cdata::unpivot_to_blocks, which
were the only ones to take more than one second for 10,000 input rows. The fastest functions were
data.table::melt and tidyfast::dt_pivot_longer (about 10ms for 10,000 input rows). As expected,
for four capture output columns, the functions which require post-processing were slower, and the
fastest functions were data.table::melt and nc::capture_melt_single.

Finally, we performed similar timings on variants of the WHO data with a variable number of
columns and a fixed number of rows (11). The desired output again has a single reshape output
column, and we again tried computing either zero or four capture output columns. We observed
timings (Figure 5) with similar asymptotic trends as in the previous comparisons. In particular, timings
for most packages appear to be linear in the number of input reshape columns, and timings for cdata
appear to be super-linear for a large number of columns. These data indicate that nc speed is similar
to comparable R packages.

5 Discussion and conclusions

In this paper, we described the nc package and its new functions for regular expressions and data
reshaping. The nc package allows a user to define a regular expression in R code, along with capture
group names and corresponding type conversion functions. We showed how this syntax makes it easy
to define complex regular expressions in terms of simpler sub-patterns, while providing a uniform
interface to three regex engines (ICU, PCRE, RE2). We showed several examples of how nc can be
used for wide-to-tall data reshaping. We provided a detailed comparison with other data reshaping
functions in terms of syntax, functionality, and computation time.

In all of our speed comparisons, we observed that the speed of nc is similar to other R functions for
wide-to-tall data reshaping. We expected that all R functions would have linear asymptotic timings,
and differ only in constant factors. We were surprised to observe in our empirical timings that the
cdata package appears to have asymptotic time complexity that is super-linear in the number of
columns to reshape. This result suggests that the speed of cdata could be improved by adopting one
of the linear time reshaping algorithms used in the other packages.

The tidyr::pivot_longer function provides a feature set which is most similar to nc data reshap-
ing functions. We showed that both packages could perform the same data reshaping operations, but
nc provides a syntax that reduces repetition in user code. Another advantage is that nc R code allows
sub-pattern lists which contain group names, regex patterns, and type conversion functions, whereas
in tidyr these three related pieces of information must be defined in seperate arguments. Therefore nc
syntax may be preferable in order to ease the definition of complex patterns and to avoid repetition in
user code.

In nc, there are two different functions for wide-to-tall data reshaping: nc::capture_melt_single
computes a single output reshape column, and nc::capture_melt_multiple computes multiple out-
put reshape columns. In contrast, other functions that support multiple output reshape columns also
support a single output reshape column (Table 1). It is natural to ask whether these two nc functions
could be combined into a single function that could handle both kinds of output. Of course, it is possi-
ble, but we prefer to keep the two functions separate in order to provide more specific/informative
documentation, examples, and error messages.
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Figure 4: Timings for computing a tall output table with a single reshape column from a wide input
table with 56 reshape columns and a variable number of rows (x-axis). The Left panel shows time to
compute output data table with no capture columns; The Right panel shows time to compute output
data table with four capture columns (typically slower as post-processing steps may be necessary).
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Figure 5: Timings for computing a tall output table with a single reshape column from a wide input
table with 11 rows and a variable number of columns to reshape (x-axis). The Left panel shows time to
compute output data table with no capture columns; The Right panel shows time to compute output
data table with four capture columns (typically slower as post-processing steps may be necessary).

We have shown how the nc package provides a powerful and efficient new syntax for wide-to-tall
data reshaping using regular expressions. The inverse operation, tall-to-wide data reshaping, is not
supported. For tall-to-wide reshaping operations, we recommend using the efficient implementation
in data.table::dcast.

Future work

For future work, we will be interested to explore other operations and R packages/functions which
could be simplified using regular expressions. For example, the tidyr::pivot_longer function
requires some repetition of the pattern (in names_pattern and cols arguments); it could be simplified
by changing the behavior when names_pattern is specified, and cols is not (currently an error, could
instead set cols to the set of columns which match names_pattern).

Another example where there is room for improvement is data.table::melt, which we have
shown requires some post-processing steps to output capture columns. As a result of this research, we
have proposed changes to data.table::melt1 that allow efficient specification and output of capture
columns. Since nc uses data.table internally, we plan to eventually use these changes for speedups of
nc functions.

Reproducible research statement. The source code for this article can be freely downloaded from
https://github.com/tdhock/nc-article

1https://github.com/Rdatatable/data.table/pull/4731

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://github.com/tdhock/nc-article
https://github.com/Rdatatable/data.table/pull/4731


CONTRIBUTED RESEARCH ARTICLE 111

Bibliography

T. Barrett. tidyfast: Fast Tidying of Data, 2020. URL https://CRAN.R-project.org/package=tidyfast.
R package version 0.2.1. [p101]

G. Csárdi. rematch2: Tidy Output from Regular Expression Matching, 2017. URL https://CRAN.R-
project.org/package=rematch2. R package version 2.0.1. [p99]

M. Dowle and A. Srinivasan. data.table: Extension of ‘data.frame‘, 2019. http://r-datatable.com. [p101]

J. E. F. Friedl. Mastering Regular Expressions. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2 edition,
2002. [p98]

M. Gagolewski. R package stringi: Character string processing facilities, 2018. URL http://www.
gagolewski.com/software/stringi/. [p99]

T. D. Hocking. Comparing namedcapture with other r packages for regular expressions. R Journal,
2019a. [p98, 99, 101]

T. D. Hocking. namedCapture: Named Capture Regular Expressions, 2019b. R package version 2019.01.14.
[p99]

T.-Y. Huang and B. Zhao. tidyfst: Tidy verbs for fast data manipulation. Journal of Open Source Software,
5(52):2388, 2020. doi: 10.21105/joss.02388. URL https://doi.org/10.21105/joss.02388. [p101]

J. Mount and N. Zumel. cdata: Fluid Data Transformations, 2019. URL https://CRAN.R-project.org/
package=cdata. R package version 1.1.2. [p101]

K. Ushey, J. Hester, and R. Krzyzanowski. rex: Friendly Regular Expressions, 2017. URL https://CRAN.R-
project.org/package=rex. R package version 1.1.2. [p99]

Q. Wenfeng. re2r: RE2 Regular Expression, 2017. URL https://CRAN.R-project.org/package=re2r. R
package version 0.2.0. [p99]

H. Wickham. Reshaping data with the reshape package. Journal of Statistical Software, 21(12):1–20, 2007.
URL http://www.jstatsoft.org/v21/i12/. [p101]

H. Wickham. stringr: Simple, Consistent Wrappers for Common String Operations, 2018. URL https:
//CRAN.R-project.org/package=stringr. R package version 1.3.1. [p99]

H. Wickham and L. Henry. tidyr: Easily Tidy Data with ’spread()’ and ’gather()’ Functions, 2018. URL
https://CRAN.R-project.org/package=tidyr. R package version 0.8.2. [p99]

Toby Dylan Hocking
School of Informatics, Computing, and Cyber Systems
Northern Arizona University
Flagstaff, Arizona
USA
toby.hocking@nau.edu
ORCID 0000-0002-3146-0865

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=tidyfast
https://CRAN.R-project.org/package=rematch2
https://CRAN.R-project.org/package=rematch2
http://www.gagolewski.com/software/stringi/
http://www.gagolewski.com/software/stringi/
https://doi.org/10.21105/joss.02388
https://CRAN.R-project.org/package=cdata
https://CRAN.R-project.org/package=cdata
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=re2r
http://www.jstatsoft.org/v21/i12/
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=tidyr
mailto:toby.hocking@nau.edu


CONTRIBUTED RESEARCH ARTICLE 112

Unidimensional and Multidimensional
Methods for Recurrence Quantification
Analysis with crqa
by Moreno I. Coco, Dan Mønster, Giuseppe Leonardi, Rick Dale and Sebastian Wallot

Abstract Recurrence quantification analysis is a widely used method for characterizing patterns in
time series. This article presents a comprehensive survey for conducting a wide range of recurrence-
based analyses to quantify the dynamical structure of single and multivariate time series and capture
coupling properties underlying leader-follower relationships. The basics of recurrence quantification
analysis (RQA) and all its variants are formally introduced step-by-step from the simplest auto-
recurrence to the most advanced multivariate case. Importantly, we show how such RQA methods can
be deployed under a single computational framework in R using a substantially renewed version of
our crqa 2.0 package. This package includes implementations of several recent advances in recurrence-
based analysis, among them applications to multivariate data and improved entropy calculations
for categorical data. We show concrete applications of our package to example data, together with a
detailed description of its functions and some guidelines on their usage.

1 Introduction

In the current article, we present the updated 2.0 version of the R package crqa to perform many
variants of recurrence-based analyses (Coco and Dale, 2014), including some very recent develop-
ments for the treatment of multivariate and categorical data. Recurrence-based techniques allow the
quantification of temporal structure and generalized autocorrelation properties of individual time
series (Webber and Zbilut, 1994; Zbilut and Webber, 1992), the quantification of bivariate relationships,
and coupling between two time series (Zbilut et al., 1998; Marwan and Kurths, 2002), as well as the
quantification of multidimensional dynamics of multivariate time series (Wallot et al., 2016b; Wallot
and Mønster, 2018). Recurrence-based techniques originate from the description and analysis of
dynamical systems (Marwan et al., 2007; Marwan and Kurths, 2002) and have been widely applied to
data from physics (Alex et al., 2015; Ambrożkiewicz et al., 2019; Donner and Thiel, 2007; Hilarov, 2017;
Zolotova and Ponyavin, 2006), physiology (Marwan et al., 2002; Langbein et al., 2004; Thomasson et al.,
2001; Mestivier et al., 2001; Mønster et al., 2016; Timothy et al., 2017), and psychology (Abney et al.,
2014; Coco et al., 2018, 2016; Shockley et al., 2003; Wallot et al., 2019; Wijnants et al., 2012; Pagnotta
et al., 2020), to name a few fields.

The real success of recurrence-based analyses has revolved around their power of capturing the
dynamics of complex and non-stationary time series data and of time series exhibiting qualitatively
different patterns along with their temporal evolution (Marwan et al., 2007). This is because recurrence-
based analyses are model-free techniques that make few assumptions and hence are well suited for
the analysis of complex systems. Moreover, recurrence-based analyses are versatile and can be applied
to interval-scale data as well as nominal data, continuously sampled data, and inter-event data alike
(Dale et al., 2011; Zbilut et al., 1998).

The new version of the crqa package features the integration of major developments in recurrence
analysis, such as its extension to multidimensional data, as well as a key simplification of its design
and a marked improvement of the underlying computational procedures. It includes useful new
functions, including a tool for mining the parameter settings for continuous data and piece-wise
computation of recurrence plots to mitigate the computational cost of long time series.

The remainder of this article is divided into two broad sections. In the first section, we provide
a concise introduction to the core concepts of recurrence analysis from the simplest case of auto-
recurrence of a unidimensional time series to the most complex case of multidimensional cross-
recurrence, which is now integrated into the new version of the crqa package. In the second section,
we showcase example applications of the different analysis methods using empirical data, hence
providing a hands-on tutorial for how to use the different functions of the package.

2 Methodological background

In section 2.2.1, we briefly introduce the framework of recurrence quantification analysis (RQA
hereafter) with the simplest case of a unidimensional time series. Then, in section 2.2.2, we discuss
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how RQA can be applied to two different unidimensional times series. Finally, in sections 2.2.3 and
2.2.4 we explain how RQA methods can be extended to multidimensional data.

Recurrence quantification analysis (RQA)

The concept of recurrence is at the heart of all recurrence-based analyses (Marwan and Kurths, 2002;
Trulla et al., 1996), which mostly apply to time series or sequenced data (but see Wallot and Leonardi
(2018b)). As we will see, recurrences are often defined in terms of phase space coordinates, not directly
in terms of the values of a single time series, but the concept is easily demonstrated using this case—a
single time series or sequence—as a starting point. Loosely speaking, a recurrence is the repetition of a
value in a sequence of data points. More precisely, recurrence in a time series x, with n data points
x1, x2, . . . , xn is defined as:

Rij =

{
1 : xi = xj
0 : xi ̸= xj

i, j = 1, 2, . . . n (1)

The above equation defines the elements Rij of the recurrence matrix R in terms of identical
repetitions. Such a definition is useful for a nominal sequence, where there are categorical elements
that are either identical or not, and so no meaningful ‘distance’ norm among categories can be defined
(see section 2.3.3 for an application to text data). In order to define recurrences for continuous data,
we need to establish a threshold parameter (or radius parameter) ε, which provides the width of a
tolerance band in the chosen distance norm within which similar but not identical values in a time
series are counted as recurrent:

Rij =

{
1 : |xi − xj| ≤ ε

0 : |xi − xj| > ε
i, j = 1, 2, . . . n (2)

Setting a threshold is necessary in most cases for empirical data because such data feature intrinsic
fluctuations as well as measurement error (Marwan et al., 2007). Using recurrences as defined
above, we can convert any unidimensional time series x into a recurrence plot (RP), which is a
two-dimensional portrait of its dynamics expressed through its recurrence characteristics.

Figure 1 shows some examples of time series of various complexity (i.e., a sinusoidal, a chaotic
attractor, and white noise) and their associated RPs, given some value for the threshold parameter ε.

If a time series x constitutes the one-dimensional measurement of an underlying multidimensional
system, and the dynamics of the underlying dimensions are co-dependent, then these underlying
dimensions can be recovered via the method of time-delayed embedding from the unidimensional
time series (Packard et al., 1980; Takens, 1981). In these cases, the time series x is delayed (or lagged)
by a certain number of data points, τ, and the number of times such delays are applied to x depends
on an embedding dimension parameter m. The time-shifted copies of x, xτ , x2τ ,. . . ,x(m−1)τ , can now
be integrated into a single m-dimensional phase space, which shows the recovered multidimensional
dynamics behind the measured unidimensional time series (Figure 2).

If the time series data comes from a multidimensional system, embedding the data into a higher
dimensional phase space before the computation of an RP will improve the quantification of the
dynamics of the systems from which that time series was recorded (Marwan et al., 2007). Now,
with embedded data, recurrences are defined not in terms of the individual values of the original,
unidimensional time series x but in terms of coordinates in m-dimensional phase space. It is possible
to construct a total of N = n − (m − 1)τ points in phase space, with the following coordinates:

X1 = (x1, x1+τ , x1+2τ , . . . , x1+(m−1)τ)

X2 = (x2, x2+τ , x2+2τ , . . . , x2+(m−1)τ)

... (3)

Xk = (xk, xk+τ , xk+2τ , . . . , xk+(m−1)τ)

...

XN = (xN , xN+τ , xN+2τ , . . . , xn)
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Figure 1: The three-time series in the first row (A) — a periodical sine wave, one of the dimensions
of the chaotic Lorenz attractor and a white noise signal — were subjected to recurrence analysis
without dimensional embedding. That is, the recurrence plots depict recurrences based on the values
of the one-dimensional time series (B). The third row (C) shows their associated recurrence plots with
dimensional embedding (the sine wave was embedded in 2 dimensions, the Lorenz attractor and the
white noise signal in 3 dimensions).
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Figure 2: Graphical exemplification of the embedding method. A unidimensional time series (B)—
here represented with time running along the y-axis—is embedded in two-dimensional phase space
(A) by choosing as the second dimension (C) of every point in panel B the τ-lagged value (here τ = 3)
of the very same original unidimensional time series (B). After selecting an appropriate value of the
threshold (or radius) parameter (here ε = 0.25), recurrence analysis can be applied to the trajectory in
the two-dimensional phase space (A), and a recurrence plot is generated (D). In the recurrence plot
(D), the recurrence points around the coordinates of (X9;X9+τ) are highlighted in red color.
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In terms of points in the m-dimensional phase space, the elements of the recurrence matrix are
then given by

Rij =

{
1 : ||Xi − Xj|| ≤ ε

0 : ||Xi − Xj|| > ε
i, j = 1, 2, . . . N (4)

where || · || is a distance norm in the m-dimensional phase space and ε is the threshold used to
determine whether the points are close enough in phase space to be considered recurring or not.
Examples of embedding and the resulting RPs are shown in Figure 1, lower panel, and in Figure 2,
panel D. Note, however, that in the process of phase space reconstruction, the number of coordinates
available in phase space is less than the number of data points in the original time series, the difference
being equal to n − N = τ(m − 1). Moreover, the resulting phase space portraits do not exactly reflect
the true underlying multidimensional dynamics but are isomorphic to them (Garland et al., 2016). For
continuous time series (i.e., not categorical), the delay τ, the embedding dimension m and the radius ε
are usually unknown and have to be estimated from the data. τ can be obtained by examining the
average mutual information function (AMI) of x (Fraser and Swinney, 1986), and the false-nearest-
neighbor function (FNN) of x, given some value for τ, can, in turn, be used to determine m (Kennel
et al., 1992). The radius ε is then chosen to achieve the desired proportion of recurrence points that is
expected given the type of data at hand (Webber Jr and Zbilut (2005); see Wallot and Mønster (2018)
for practical information on parameter estimation). The crqa package implements functions to carry
out parameter estimation semi-automatically.

RPs are a very useful visualization to qualitatively explore the dynamics of a time series. However,
their main advantage is that they provide the basis to quantify the dynamics of a time series based
on the patterns of recurrence points found in the plot (Zbilut and Webber, 1992). There are various
measures that can be computed from RPs. Here, we briefly describe a selection of measures, including
the most common ones, that are implemented in the new version of the crqa package.

The most basic measure is the recurrence rate (RR) or percentage recurrence, which is defined as
the sum of all recurrence points in an RP divided by the area of that RP. RR provides a measure for
how many individual values of a time series—or its phase space coordinates—recur over time:

RR =
1

N2

N

∑
i,j=1

Rij (5)

All other measures characterize dynamics by exploiting the patterns of recurrences along with
the vertical and diagonal structures of the RP (see Table 1 for a concise summary of the measures). In
particular, measures based on diagonal-line structures reflect repetitions of the trajectories of the time
series, whereas measures based on vertical-line structures focus on the states during which a time
series slows down its dynamics. The entropy of the time series can also be computed on the basis of
diagonal and vertical line structures of the RP. In version 2.0 of the crqa package, we include a novel
entropy measure, which is based on the distribution of the areas of the rectangular structures in an RP
generated from categorical time series. This measure provides a more accurate estimation of entropy
over the classic diagonal-line entropy for categorical time series that predominantly evolve in terms of
changes of states (Leonardi, 2018).

Cross-recurrence quantification analysis (CRQA)

Until now, we focused on quantifying the dynamics of a system by way of recurrences of a single
time series. However, the concept of recurrence can be extended to that of cross-recurrence, which
extends the univariate recurrence analysis to a bivariate analysis technique that allows quantification
of the temporal coupling properties or similarity of two time series (Zbilut et al., 1998; Marwan et al.,
2007). In other words, cross-recurrence is the recurrence of a value in a time series x, with data points
x1, x2, . . . , xn with the values of a time series y, with data points y1, y2, . . . , yn. Formally:

CRij =

{
1 : |xi − yj| ≤ ε

0 : |xi − yj| > ε
i, j = 1, 2, . . . n (6)

As for Equation 2, a threshold parameter ε is applied to identify similar, but not necessarily
identical, values that are recurrent across the two time series. As in the univariate case, this parameter
can be set to values closer to 0, forcing cross-recurrences to be identical values, such as between two
nominal (categorical) sequences. Also, in the case of cross-recurrence analysis, the two time series x
and y can be embedded before computing the cross-recurrence plot (CRP):
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Measure Abbreviation Definition

Recurrence Rate RR
1

N2

N

∑
i,j=1

Rij

Determinism DET
N

∑
l=lmin

lP(l)

/
N

∑
l=1

lP(l)

Average Diagonal Line Length L
N

∑
l=lmin

lP(l)

/
N

∑
l=lmin

P(l)

Maximum Diagonal Line Length maxL max({li}
Nl
i=1), Nl = ∑

l≥lmin

P(l)

Diagonal Line Entropy ENTR −
N

∑
l=lmin

p(l) log p(l)

Laminarity LAM
N

∑
v=vmin

vP(v)

/
N

∑
v=1

vP(v)

Trapping Time TT
N

∑
v=vmin

vP(v)

/
N

∑
v=vmin

P(v)

Categorical Area-based Entropy catH −
Na

∑
a>1

p(a) log p(a)

Table 1: Summary and definition of RQA measures. Here, l is some diagonal line length on the
recurrence plot, i.e., the number of diagonally adjacent recurrence points; P(l) is the histogram or
frequency distribution of such diagonal line lengths; p(l) is the probability of some diagonal line
length; v is some vertical line length on the recurrence plot, i.e., the number of vertical adjacent
recurrence points; P(v) is the histogram or frequency distribution of such diagonal line lengths; lmin
and vmin are the minimum diagonal and vertical line lengths included in the measures (≥ 2); a is the
value of the area of a rectangular recurrence block generated in a categorical recurrence analysis; p(a)
is the probability of the recurrence blocks of area a.

CRij =

{
1 : ||Xi − Yj|| ≤ ε

0 : ||Xi − Yj|| > ε
i, j = 1, 2, . . . N (7)

Commonly, it is expected that x and y have the same number of data points, and that the delay
and embedding dimension parameters, τ and m, have to be the same too (see Wallot and Mønster
(2018); Wallot and Leonardi (2018a) for practical aspects of parameter estimation)1. The recurrence
measures obtained from cross-recurrence quantification analysis are calculated in the same way as for
the univariate recurrence quantification analysis (see Table 1). However, the values for cross-recurrence
now reflect the coupled dynamics of the two time series (Shockley et al., 2002) rather than the dynamics
of an individual time series in univariate RQA. There is a key difference between RPs and CRPs. RPs
always have recurrence points all along the main diagonal line of the plot (so-called line of identity,
LOI), because a time series is by definition recurrent with itself at lag 0, which is what recurrences
along the main diagonal reflect (i.e., xi = xj when i = j). This is not necessarily the case for CRPs as
two time series are not necessarily synchronized (xi need not be the same as yj when i = j). If the time
series are not synchronized, cross-recurrences around the main diagonal are absent or sparse. The
presence of a full LOI in a CRP implies that the dynamics of the two time series are identical or that
they have a strictly linear relationship to each other.

Multidimensional recurrence quantification analysis (MdRQA)

Multidimensional recurrence quantification analysis (MdRQA) is one of the recent extensions of RQA
(Wallot et al., 2016b) that is now also available in the crqa package. MdRQA allows the analysis
of multidimensional time series z with samples z1, z2, . . . , zn, where each point (sample) in z has d
dimensions:

1It is possible for x and y to be different lengths, and so to produce a rectangular CRP, but this is very rare in
practice and it introduces some complications in computing synchrony measures
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zk = (zk,1, zk,2, . . . , zk,d) (8)

Here, recurrences are defined on the d-dimensional coordinate space made up of the points of z:

Rij =

{
1 : ||zi − zj|| ≤ ε

0 : ||zi − zj|| > ε
i, j = 1, 2, . . . n (9)

Like their unidimensional counterparts, multidimensional time series can be embedded into a
higher dimensional space. The logic of estimating the delay and embedding dimension parameters, τ
and m, are the same as with univariate RQA (Wallot, 2017; Wallot and Leonardi, 2018a). However,
suppose one has multivariate time series and wants to estimate embedding parameters for those time
series. In that case, one should use the multivariate embedding functions which are also provided
with the new version of the crqa package, because they provide superior estimates of embedding
parameters for multidimensional time series (Wallot and Mønster, 2018).

Depending on the underlying data, MdRQA can, in principle, be used for two different purposes.
On the one hand, MdRQA can be used to quantify a multidimensional construct, such as physiological
arousal, by simultaneously looking at its different measurable dimensions (e.g., heart rate, breathing,
and body temperature). This would be the multivariate version of how univariate RQA quantifies the
dynamics of a single unidimensional time series (e.g., breathing alone). On the other hand, MdRQA
can be used to examine the shared dynamics of multiple individual time series, such as, for example,
three electrodermal signals measured from three members of a team performing a collaborative task.
Here, MdRQA variables would be interpreted as capturing higher-order inter-correlative properties
between the three signals at the level of the group (Wallot et al., 2016b).

In either case, one has to make a decision about whether to normalize the different dimensions of
the time series or not. If each dimension of the multidimensional time series is normalized, for example,
z-scored, it would effectively give each time series equal weight for the definition of recurrence. In
particular, if one does not know how the different time series interact, or if they are measured
on different scales without regard to their potential effects on one another, then normalization is
recommended. Otherwise, the risk is to assign a greater weight to the time series bearing greater
variance. If one is certain that the values of each dimension of the multidimensional time series
are already properly scaled with regard to each other, such as when simultaneously analyzing the
three dimensions of the Lorenz system (Lorenz, 1963), then one needs not—and perhaps should
not—normalize the dimensions.

Multidimensional cross-recurrence quantification analysis (MdCRQA)

Multidimensional cross-recurrence quantification analysis (MdCRQA) extends MdRQA in the same
way that CRQA extends RQA. Effectively, MdCRQA allows for the computation of cross-recurrences
between two multidimensional time series x and y (Wallot, 2019), where cross-recurrences are defined
between the two d-dimensional coordinate spaces between the points of x and y:

xi = (zi,1, zi,2, . . . , zi,d) (10)

yj = (zj,1, zj,2, . . . , zj,d) (11)

CRij =

{
1 : ||xi − yj|| ≤ ε

0 : ||xi − yj|| > ε
i, j = 1, 2, . . . n (12)

It is important that the different dimensions of the two multivariate time series enter the analysis
in the same order. For the example of physiological arousal, if the heart rate is the first dimension
in x, breathing is the second dimension in x, and body temperature is the third dimension in x, then
heart rate also needs to be the first dimension in y, breathing needs to be the second dimension in
y, and accordingly body temperature needs to be the third dimension in y. Otherwise, the resulting
MdCRQA measure will not be interpretable.

Unidimensional and multidimensional cross-recurrence analysis can also be performed in a time-
dependent manner. This so-called windowed cross-recurrence analysis is conceptually very similar
to windowed cross-correlation analysis as in Boker et al. (2002), and it can be used to track how
cross-recurrence changes over the time course. To that end, one simply partitions the time series of
interest into a number of overlapping or non-overlapping sub-series and calculates CRPs for each of
the sub-series. For each CRP, i.e., each sub-series of the original time series, the recurrence measures
are calculated, which allows tracking changes in cross-recurrence over time.
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Figure 3: Illustration of DCRP. Time series of two of the three dimensions from the Lorenz system,
one in red, the other one in black (A). After computation of their CRP, one can define their diagonal
cross-recurrence profile (DCRP) in order to quantify their time-lagged coupling properties (B). As can
be seen, the two time series are most strongly coupled at around the lags of 5 to 9, where a peak in the
DCRP can be observed.

The diagonal cross-recurrence profile (DCRP)

Finally, from cross-recurrence plots of either two unidimensional time series (i.e., CRQA) or two
multidimensional time series (i.e., MdCRQA), it is possible to extract the diagonal cross-recurrence
profiles (DCRPs) and use them to capture leader-follower-relationships (Dale et al., 2011; Marwan
et al., 2007). To that end, one has to specify a window size w for the number of lags on the recurrence
plot that one wants to investigate. For example, a window-size of 10 data-points, i.e., w = 10 would
span recurrences of ± 10 diagonals from the LOI. Specifically, this procedure determines the cross-
recurrence rates of each diagonal, CRw, by summing up all cross-recurrence points that fall along such
diagonal and divide them by their length:

CRw =
1

N − w

N−w

∑
j−i=w

Ri,j (13)

The DCRP permits quantification of the recurrence rate over different relative lags between two
time series. If the peak of cross-recurrences falls along the central diagonal, the line of synchronization
(LOS), then this suggests strong coupling at lag 0 between the two time series. If the peak of cross-
recurrences falls instead on one of the diagonals off the LOS, it indicates that the dynamics of one
time series follow the dynamics of the other time series by some lag equal to that diagonal position
(Figure 3).

Note, however, interpreting the lags in terms of the sampling rate of the underlying measured time
series only applies to CRPs based on unembedded (often categorical) time series. If the time series
are embedded, this means that the observed lag is based on coordinates that are made up of several
data points from the respective original time series, and hence introduces a degree of uncertainty with
regard to the precise time interval of the lag when one tries to map particular recurrence points back
to data points of the original time series. In addition, the leader-follower interpretation of the lags
cannot be granted the status of a causal interpretation. For example, a parent can deliberately ‘lag’
their behavior behind that of their child. In such a case, it would be odd to say definitively that the
child’s behavior is causing the parent’s behavior. For this reason, the DCRP has to be interpreted with
caution and is best treated as a general description of relative temporal relationships.

3 Package design

The crqa package is available from the Comprehensive R Archive Network (CRAN) at https://cran.
r-project.org/web/packages/crqa/index.html. The software is written in R with the exception of
the spdiags function, which contains a section written in Fortran. The main function is crqa, which
takes its name from the package. This function performs all types of recurrence quantification analyses
discussed in the previous section, and it returns the actual recurrence plot, along with the measures
listed in Table 1 extracted from it. Here is how to call this primary function, with arguments and
defaults:
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Argument Description Usage Notes
ts1 and ts2 The input time series, either unidimensional

or multidimensional time series
If auto-recurrence is used (see method = rqa), then t1 and
t2 should be the same time series.

delay A constant indicating the number of time
points used to lag the time series

It corresponds to the τ of the equations.

embed A constant indicating the number of embed-
ding dimensions applied to the time series

It corresponds to the m of the equations.

rescale Whether the distance matrix on which recur-
rence is evaluated should be rescaled and
how

If rescale = 0, keep the distance matrix as is; if rescale =
1, rescale the distance matrix to its mean; if rescale = 2,
rescale to distance matrix to its maximum value.

radius A constant used to decide whether the dis-
tance between two points is small enough to
be considered recurrent

For categorical time series, the radius needs to be set at
values smaller than 1. For continuous time series, the value
of the radius needs to tailored to the type of data and its
range.

normalize Normalize the time series if normalize = 0, keep the time series at their original scale;
if normalize = 1, normalize the time series to unit interval;
if normalize = 2, z-score the time series.

mindiagline The minimum number of contiguous points
along the diagonals to consider the system
into a recurrent state

The default value is usually 2, as it takes a minimum of two
points to define any line.

minvertline The minimum number of contiguous points
along the vertical lines to consider the system
into a recurrent state

The default value is usually 2, as it takes a minimum of two
points to define any line.

tw The Theiler window parameter It defines the number of diagonals off the line of identity
that are excluded from recurrence quantification.

whiteline A logical flag to calculate (TRUE) or not
(FALSE) empty vertical lines.

The default is FALSE, as the calculation of such lines adds
on the time of computation.

recpt A logical flag indicating whether measures of
cross-recurrence are calculated directly from
a recurrent plot (TRUE) or not (FALSE)

It is mostly useful if the user wants to compute joint-
recurrence analysis. The RP or CRP is supplied in place of
ts1, and ts2 needs to be assigned as NA.

side A string indicating the side of the recurrence
plot on which recurrence measures should
be calculated

For side = upper, recurrence measures are calculated on
the upper triangle of the RP, for side = lower on the lower
triangle of the RP, for size = both on the full RP. Note,
the line of identity is automatically excluded for upper and
lower setting.

method A string to indicate the type of recurrence
analysis to perform

For method = rqa, Auto-recurrence is calculated, i.e., a uni-
dimensional series; for method = crqa, cross-recurrence is
calculated; for method = mdcrqa, multidimensional recur-
rence is calculated. Note, the default value is crqa.

metric A string to indicate the type of distance met-
ric used

To see the list of all other possible metrics, see the help for
the rdist function. Note, the default is euclidean.

datatype A string (continuous or categorical) to indi-
cate the nature of the data type

If the time series contain categorical information, it will
automatically be recoded into a continuous integer-based
time series with a warning sent to the user.

Table 2: Overview of the arguments that can be used in crqa to set up the recurrence quantification
analysis.

crqa(ts1, ts2, delay, embed, rescale = 0, radius, normalize = 0, mindiagline = 2,
minvertline = 2, tw = 0, whiteline = FALSE, recpt = NULL, side = "upper",
method = "crqa", metric = "euclidean", datatype = "continuous")

Several arguments in this function allow the user to refine aspects of the computation. For example,
the user can modify the metric to obtain the distance matrix when estimating recurrence or the settings
of thresholds to accept contiguous points as recurring (see Table 2 for the list of arguments of crqa with
a brief explanation of each). drpfromts can be used to obtain the diagonal cross-recurrence profile,
and this function is built using the crqa at its core. In fact, most arguments stay exactly the same,
and we will illustrate the additional arguments that are specific to this function when describing it.
Likewise, the functions wincrqa and windowdrp are built on the main function crqa and are used to
compute windowed cross-recurrence. The package also contains functions, such as optimizeParam, to
automatically estimate the settings for the three main parameters of RQA analyses, i.e., radius ε, delay
τ, and embedding dimension m, for continuous measures. As recurrence quantification analysis is
heavy on memory requirements, the package features a function (piecewiseRQA) which can be used
to break down the analysis of long time series into smaller and more manageable chunks that are
computationally more tractable. Finally, the package provides the user with functions to simulate
data from classic examples of dynamical systems, such as the Lorenz (lorenzattractor) or categorical
series with different distributions (simts). In what follows, we briefly describe the data available with
the package. These data are used to illustrate the different functionalities of the crqa package.
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Related Packages

A search of CRAN shows very few other packages offering alternative methods to compute recurrence
quantification analysis. In particular, tseriesChaos, nonlinearTseries, and RHRV. The function recurr
in tseriesChaos computes a recurrence plot for a (section of) a single unidimensional time series, but
it does not compute any derived measures from the plot characterizing the dynamics of the system,
nor does it handle cross recurrence plots or any of the many extensions to simple recurrence plots
provided by our crqa package. Going a little further, the function rqa in nonlinearTseries returns key
measures from the recurrence plots (e.g., recurrence rate) and quick visualization of the recurrence
plot (available also with the function RecurrencePlot). Finally, the function RecurrencePlot in RHRV
is simply a wrapper built on the function in nonlinearTseries with the same name but specifically
tailored to electrocardiogram data. The functions available in nonlinearTseries provide very basic
functionality in terms of the range of metrics available and optimization routines. They do not allow
the user to examine diagonal structures for leader-follower analyses, nor explore the evolution of
recurrence rate using windowed methods. All such features are integrated into crqa, which, to the best
of our knowledge, is the most comprehensive statistical package to perform recurrence quantification
analysis in R.

Data

Different types of categorical and continuous time series, both unidimensional and multidimensional,
are available with the package. The command load(crqa) will load the data into the R workspace. In
particular, we include a nursery rhyme “The wheels on the bus” by Verna Hills to illustrate the most
basic recurrence quantification analysis. This text is a vector of 120 strings (i.e., the words of the song),
and as it is extremely simple and highly repetitive, it makes it a very good example to illustrate the
core concept of recurrence. Then, we move on to cross-recurrence quantification analysis and include
in the data object of the package eye-tracking data from the study by Richardson and Dale (2005). In
this study, a narrator describes the characters of a TV series (Friends) to a listener, who will have to
later answer some comprehension questions about them, while their eye-movement is co-registered.
Here, we use a single trial of this study, which is stored as a data frame of 2,000 observations of six
possible screen locations that are looked at by the narrator and the listener. These are numerically
coded from 1 to 6, representing a 2x3 visual grid2. This data will also be used to illustrate diagonal and
windowed cross-recurrence. Finally, we illustrate multidimensional cross-recurrence analysis using
the hand movement data from the study by Wallot et al. (2016a). In this study, dyads were instructed
to cooperate in a complex LEGO joint construction task under different conditions, while their hand
movements and heart rates were co-registered. Again, we select only a single trial of hand-movement
from the turn-taking condition. The data frame comprises 5,799 observations from two participants
(P1 and P2) for the dominant (_d) and non-dominant (_n) hand.

Using the crqa package

RQA

As explained in section 2.2.1, RQA entails computing the auto-recurrence of a unidimensional time
series. In the context of the nursery rhyme, we expect clear phases of recurrence to emerge because the
words greatly repeat. In order to run this analysis, we use the main function crqa and specify in the
argument method that we are running an RQA analysis (method = "rqa"). As the data that we use
is categorical, we need to specify in the argument datatype that the nature of the data is categorical
(datatype = "categorical"). This will automatically recode the categorical states of the series (i.e.,
the words) into unique numerical integers so that recurrence can be computed using a radius that has
to be smaller than 1 (e.g., radius = 0.01) so that we can capture the recurrence of identical words.
For categorical RQA, the delay and embedding dimension have to be set to 1 (delay = 1; embed =
13.). We also need to set the Theiler window parameter to 1 (tw = 1) so that we can exclude the LOI
from all recurrence measures. Finally, the same unidimensional time series has to be input both as ts1
and ts2 to obtain its auto-recurrence.

2There are two more states, 10 and 11, to indicate when the listener or the narrator blinked or looked outside of
the screen or to identify possible blinks. They are coded with a different number so that these two states will not
recur when the radius is set near 0.

3If embedding dimension is set to higher values,this becomes equivalent to doing recurrence on n-grams,where
m = n. In fact,this interpretation of categorical recurrence creates bridges to traditional natural language process-
ing,summarized in Dale et al. (2018)
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Figure 4: Recurrence quantification of the nursery rhyme ‘wheels on the bus’. On the left panel, we
show the full recurrence and the red box indicates the region of RP that is zoomed in on the right
panel.

res <- crqa(text, text, delay = 1, embed = 1, rescale, radius = 0.01, normalize,
mindiagline, minvertline, tw = 1, whiteline, recpt, side, method = "rqa",
metric = "euclidean", datatype = "categorical")

We can use the plotting function plotRP to visualize the resulting recurrence plot. This function
provides some basic arguments to change the size of the points in the plot (pcex), the color (cols), or
their type (pch), which are taken verbatim from the generic plot function.

RP <- res$RP
parC <- list(unit = 10, labelx = "Time", labely = "Time", cols = "black", pcex = .5,

pch = 15, las = 0, labax = seq(0, nrow(RP), 10),
labay = seq(0, nrow(RP), 10))

plotRP(RP, parC)

In order to get a closer understanding of recurrences, we zoom in into a segment of the text, re-run
the crqa() function, and visualize it (Figure 4). We add the labels of the axes (x,y), print the words
vertically using the las argument, and decrease the temporal unit argument to print each individual
word on the axes.

text_zoom <- text[81:110]
ans_zoom <- crqa(text_zoom, text_zoom, delay, embed, rescale, radius, normalize,

mindiagline, minvertline, tw, whiteline, recpt, side, method, metric,
datatype)

RP <- ans_zoom$RP
parC$labay <- parC$labax <- text_zoom
parC$las <- 2
parC$unit <- 1
parC$labelx <- parC$labely <- "Words"
plotRP(RP, parC)

As it can be clearly seen in Figure 4, the bulk of recurrence in that portion is driven by the repeated
use of the single word wah. When looking at a few measures associated with the RP, we observe an
overall determinism of 85.4%, which implies that the system is fairly repetitive, an average diagonal
line length of 3.88, which implies that on average, there are sequences of four words that repeat, and a
maximum diagonal length of 9, which means that the longest sequence repeating is made of 9 words.
Some measures such as determinism or the average diagonal line length depending on the setting of
the argument mindiagline (equivalent to lmin in Table 1). The default value of this argument is 2, as
two contiguous points form a line, but it can depend on the type of data (e.g., words vs. eye-movement)
or the sample rate at which it is acquired (55 Hz vs. 1,000 Hz). For example, if we have acquired data
at 1,000 Hz, we would practically have one data point every 2 ms. This means that if we use a default
mindiagline of 2, we would be considering as lines any states that contiguously repeat over a 4 ms
window. This value would certainly be unrealistic for some type of responses that unfolds over a
longer period of time (e.g., an eye-movement fixation lasts for an average of 200 ms).
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Figure 5: Cross-recurrence using a single trial of eye-movement data measured on a listener and
a narrator. On the left panel, we visualize the full cross-recurrence plot. The transparent red band
represents the lags around the line of coincidence that have been used to calculate the diagonal
cross-recurrence plot (center panel), whereas the transparent blue squares within it are the overlapping
windows used to compute the windowed cross-recurrence profile (right panel).

CRQA: crqa

As already explained in section 2.2.2, cross-recurrence is an extension of auto-recurrence to two
different unidimensional time series. In order to run a cross-recurrence analysis with the crqa package,
we simply need to change the method argument to method = "crqa". Here, we illustrate its use through
two time series of eye-movement data explained in section 2.3.2. Also, we input two different time
series of eye-movement data, narrator and listener, rather than just one. An optional argument that
is available in the crqa function is the side (upper, lower, or both) of the recurrence plot on which
recurrence measures are computed. This may be useful, for example, for researchers interested in
leader-follower dynamics (see Figure 5, left panel, for the visualization of the cross-recurrence plot).

Diagonal-CRQA: drpfromts

In section 2.2.2, we explained what diagonal cross-recurrence is and how it can be used. In the crqa
package, this measure is computed by the function drpfromts, which utilizes the same arguments
of the main crqa function plus an additional argument, windowsize, to define the number of lags
(or diagonals) around the line of synchronization (LOS) of the CRP over which recurrence rate is
computed. In the example visualized in Figure 5, center panel, we have chosen a window of 100 lags,
which spans about ±3 seconds around the LOS. We can clearly see that the peak recurrence is shifted
by ≈ 1 second from the LOS, i.e., lag 0. This reflects the time taken by the listener to look at the same
panel the narrator was looking at—namely, about 1 second for a listener to “catch up” to the speaker.

res <- drpfromts(narrator, listener, windowsize = 100, radius = 0.001,
delay = 1, embed = 1, rescale = 0, normalize = 0, mindiagline = 2,
minvertline = 2, tw = 0, whiteline = F, recpt = F, side = "both",
method = "crqa", metric = "euclidean", datatype = "continuous")

Windowed-CRQA: windowdrp

Windowed cross-recurrence captures the evolution of recurrence rate over time. In the context of
the eye-movement data, this measure reflects how consistently listener and narrator are looking at
the same scene location at any given point in time. More importantly, the windowed methodology
reveals how recurrence changes over time (refer to section 2.2.5 for more details). We use the function
windowdrp to compute this measure, which again shares the same arguments of crqa, plus three more
that are specific to it. In particular, we have to set: (a) the size of the window that slides over the
time-course, e.g., windowsize = 100, (b) the step that we want this window to move, e.g., windowstep =
20, and (c) the number of lags4 within the window of interest over which recurrence rate is computed,
e.g., lagwidth = 50. In Figure 5, right panel, we observe that the recurrence rate grows over time,
which means that the narrator and the listener tend to look more and more at the same panels as the
trial progresses.

4Note, that the number of lags cannot be greater than the size of the window.
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res <- windowdrp(narrator, listener, windowstep = 20, windowsize = 100, lagwidth = 50,
radius = 0.001, delay = 1, embed = 1, rescale = 0, normalize = 0,
mindiagline = 2, minvertline = 2, tw = 0, whiteline = F, side = "both",
method = "crqa", metric = "euclidean", datatype = "continuous")

MdCRQA

Finally, we compute multidimensional cross-recurrence by setting the method argument, i.e., method
= "mdcrqa". Note, in order to compute multidimensional recurrence, the user needs to provide the
same data frame as input to both ts1 and ts2. This method is also available for drpfromts and
windowdrp. Applied to the hand movement data, we first restructure the data of the two participants
into independent sets. We re-use the same parameter settings of Wallot et al. (2016a) to compute
MdCRQA and leave all other arguments with their default values.

P1 <- cbind(handset$P1_TT_d, handset$P1_TT_n)
P2 <- cbind(handset$P2_TT_d, handset$P2_TT_n)
res <- crqa(P1, P2, delay = 5, embed = 2, rescale = 0, radius = 0.1,

normalize = 0, mindiagline = 10, minvertline = 10, tw = 0,
whiteline, recpt, side, method = "mdcrqa", metric, datatype)

Breaking down the computation: piecewiseRQA

Often, researchers are interested in time series which contain several thousands of observations.
Sometimes the dimensionality of these time series can be reduced without losing too much information,
such as by down-sampling. This strategy may not always be possible or serve the researcher’s purpose.
Recurrence quantification analysis can require more RAM than is available in standard laptops or
personal workstations, making it nearly impossible to run. In the new version of the crqa package, we
provide the user with the piecewiseRQA function, which can be used to compute all different variants
of recurrence quantification analysis described above on long time series. Conceptually, this function
divides the time series into blocks, obtains a recurrence plot for each individual block, and then fills
the original recurrence plot with all such sub-blocks, before computing the measures.5

For example, if we are handling a time series of 10,000 observations, we could divide it into
10 blocks of 1,000 observations each. piecewiseRQA has exactly the same arguments that we have
already encountered in the main crqa function but has an additional two that are used to control
the size of the block, e.g., blockSize = 100, and the argument typeRQA, which can take two options,
either full or diagonal. If the value for typeRQA is diagonal, only the diagonal cross-recurrence will
be computed; if full, the recurrence measures will be obtained out of the full plot6. In Figure 6,
we visualize the computational speed (left panel) and memory demand (right panel) on simulated
time series of sinusoids of increasing size and compare what happens if we run the piecewiseRQA,
also with blocks of increasing size, as compared to running the main crqa function. We can clearly
see that for time series of increasing length, memory demands are kept lower by the piecewiseRQA
function as compared to the crqa. However, we can also see that there is a wide variance for blocks of
different sizes. Therefore, it may be wise to explore the block sizes to find the one that can optimize
the computational performance over a single trial before running the piecewise recurrence analysis on
an entire dataset.

Estimating starting parameters: optimizeParam

The last function we showcase is optimizeParam, which helps the user exploring the space of values
for the parameters of delay, embedding dimension and radius to compute recurrence quantification
on continuous-valued time series. In particular, optimizeParam first estimates the average mutual
information (AMI) of either the unidimensional or multidimensional time series and chooses the
value that minimizes it. Then, it takes such a delay value and evaluates the embedding dimensions
maximizing the false-nearest neighbors (FNN)7. As a last step, optimizeParam applies the values of
delay and embedding dimension obtained to find a radius which returns a recurrence rate within
a minimum and maximum value established by the user. We apply optimizeParam() to simulated

5This function is similar to the crp_big function in the long-standing CRP-toolbox for MATLAB by Marwan
and colleagues: http://tocsy.pik-potsdam.de.

6Currently, the windowed cross-recurrence is not implemented to work with the piecewiseRQA.
7Users can also access the functions to compute delay (MdDelay) and embedding dimensions (MdFnn) indepen-

dently of optimizeParam.
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Figure 6: Evaluating the speed (time in seconds, left panel) and memory (peak RAM in MB, right
panel) performance of crqa() and piecewiseRQA() for simulated data of increasing size (from 3000 to
7000 data points). We compare the use of blocks of different sizes (from 1000 to 6500 in increments of
500, coded using color and point type) with the case of running crqa() on the entire sequence of data
points.

sinusoids to show the unidimensional case, and to the hand movement data of Wallot et al. (2016a) to
show the multidimensional case.

In order to set up the estimation of the delay and embedding dimensions for unidimensional time
series, the user has to decide how to choose the value of average mutual information (i.e., typeami =
mindip, the lag at which minimal information is observed, or typeami = maxlag, the maximum lag at
which minimal information is observed) and the relative percentage of information gained in FNN,
relative to the first embedding dimension, when higher embeddings are considered (i.e., fnnpercent).
Then, as crqa is integrated into the optimizeParam to estimate the radius, most of the arguments are
the same (e.g., mindiagline or tw), except the number of values of that are considered (i.e., radiusspan
= 100).

ts1 <- seq(0.1, 200, .1)
ts1 <- sin(ts1) + linspace(0, 1,length(ts1))
ts2 <- ts1
par <- list(method = "rqa", metric = "euclidean", maxlag = 20, radiusspan = 100,

normalize = 0, rescale = 4, mindiagline = 10, minvertline = 10, tw = 0,
whiteline = FALSE, recpt = FALSE, side = "both", datatype = "continuous",
fnnpercent = 10, typeami = "mindip")

results <- optimizeParam(ts1, ts2, par, min.rec = 2, max.rec = 5)
print(unlist(results))

radius emddim delay
0.17 2 18

For multidimensional series, the user needs to specify the right RQA method (i.e., method =
"mdcrqa"). Then, for the estimation of the delay via AMI: (1) nbins, which is the number of breaks
used to define the bins within which the two-dimensional histogram (or frequency distribution) of the
original and delayed time series are computed, and (2) the criterion to select the delay (firstBelow
to use the lowest delay at which the AMI function drops below the value set by the threshold
argument, and localMin to use the position of the first local AMI minimum). The estimation of the
embedding dimensions instead needs the following arguments: (1) maxEmb, which is the maximum
number of embedding dimensions considered, (2) noSamples, which is the number of randomly drawn
coordinates from phase space used to estimate the percentage of false-nearest neighbors, (3) Rtol,
which is the first distance criterion for separating false neighbors, and (4) Atol, which is the second
distance criterion for separating false neighbors. The radius is estimated as before.

par$method <- "mdcrqa"
par$nbins <- 50
par$criterion <- "firstBelow"
par$threshold <- 1.6
par$maxEmb <- 20
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par$numSamples <- 500
par$Rtol <- 10
par$Atol <- 2
results <- optimizeParam(P1, P2, par, min.rec = 2, max.rec = 5)
print(unlist(results))

radius emddim delay
0.032 11 2

4 Conclusion

This paper describes recurrence quantification analysis, a statistical method to characterize the nonlin-
ear dynamics of a system. It has received a growing interest from researchers across very different
fields from physiology to psychology because of its flexibility, ease of application, and explanatory
power. In particular, we explain recurrence analysis from the simplest case of auto-recurrence of a
unidimensional time series to the most complex case of multidimensional cross-recurrence. More
importantly, we presented a significantly updated version of the crqa to perform all different variants
of recurrence analysis described in the theoretical section of this manuscript. We showcased the
different functions available in crqa with real data of categorical and continuous nature, and illustrated
how starting parameters for continuous data could be obtained (i.e., radius, embedding dimension,
and delay) as well as handling long time series in a memory-efficient way using additional functions
available in crqa.

It is useful to end with some observations regarding the broader relevance of the package presented
here. The RQA methodology and the updated crqa tap into a number of evolving problems in data
analysis across various disciplines. For example, there is a drive to improve measures and models
of multimodal data (Abawajy, 2015; Dale, 2015; Lahat et al., 2015), including multi-person measures
(Cooke et al., 2013; López Pérez et al., 2017; Schilbach et al., 2013; von Zimmermann and Richardson,
2016; Wallot et al., 2016a). RQA and its multidimensional counterpart implemented in our package
constitute an extraordinarily expansive analysis tool for exploring varied kinds of complex and
multidimensional data. In addition, a demand for more dynamic quantitative analyses has now
also penetrated into the social sciences (Chemero, 2011; Friedenberg, 2009; Spivey, 2008; Ward, 2002;
Pagnotta et al., 2020). crqa is designed to be a comprehensive analysis package for studying the
dynamics of diverse systems, especially systems that exhibit high degrees of interdependence, and
that show signatures in their dynamics that are critical for understanding them.
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The bdpar Package: Big Data Pipelining
Architecture for R
by Miguel Ferreiro-Díaz, Tomás R. Cotos-Yáñez, José R. Méndez and David Ruano-Ordás

Abstract In the last years, big data has become a useful paradigm for taking advantage of multiple
sources to find relevant knowledge in real domains (such as the design of personalized marketing
campaigns or helping to palliate the effects of several fatal diseases). Big data programming tools and
methods have evolved over time from a MapReduce to a pipeline-based archetype. Concretely the use
of pipelining schemes has become the most reliable way of processing and analyzing large amounts of
data. To this end, this work introduces bdpar, a new highly customizable pipeline-based framework
(using the OOP paradigm provided by R6 package) able to execute multiple preprocessing tasks over
heterogeneous data sources. Moreover, to increase the flexibility and performance, bdpar provides
helpful features such as (i) the definition of a novel object-based pipe operator (%>|%), (ii) the ability to
easily design and deploy new (and customized) input data parsers, tasks, and pipelines, (iii) only-once
execution which avoids the execution of previously processed information (instances), guaranteeing
that only new both input data and pipelines are executed, (iv) the capability to perform serial or
parallel operations according to the user needs, (v) the inclusion of a debugging mechanism which
allows users to check the status of each instance (and find possible errors) throughout the process.

1 Introduction

Social networks and instant messaging applications have arguably become an essential part of the
human experience. In fact, nowadays, more than 60% of the population from industrialized countries
use these mechanisms to communicate or share information. This phenomenon emerged due to
(i) the declining costs of computers and storage systems by a factor of more than 200 (Engineering,
1984), (ii) an exponential increase in processing speed and computer hardware capabilities (Iansiti and
Khansa, 1995), (iii) the emergence of high-throughput and fully-available communication networks
(Dorogovtsev and Mendes, 2013), and (iv) certain human needs such as keeping interconnected and
having permanent access to the data (Kabeer, 2005).

This scenario has promoted an exponential growth in the amount of data generated and stored in
the last decade. Concretely, the latest reports from 2018 showed that around 2.16EB (exabytes) of data
are created every day (Domo-Data, 2019; VCloud, 2019), and trends are showing that the growth of
available information is four times higher than the world economy (VCloud, 2019). Indeed, 90% of the
total world data have been created in the last two years alone (IBM, 2019).

In addition to the availability of unlimited sources and tools to generate, exchange, and handle
information, the lack of a standardized way of representing data has led to a massive increase in
unstructured information. In fact, approximately 80% of the existing data is unstructured (VCloud,
2019; IBM, 2019). The data obtained from a single source are usually insufficient to carry out a suitable
decision making-process. However, the ability to take advantage of the combination of data from
multiple (and unstructured) sources requires the execution of preprocessing operations that guarantee
a unified data format. The need for facilitating the management and exploitation of vast amounts
of heterogeneous data (in terms of data types and formats) within a reasonable elapsed time and
cost-effective manner led to the emergence of the Big Data era (Mervis, 2012; Labrinidis and Jagadish,
2012).

Big Data is an abstract concept used to refer to the use of new programming paradigms able to
handle large volumes of information and the execution of data mining tasks by taking advantage of
parallel programming schemes over large computer clusters (IBM et al., 2011; Brown et al., 2011). In this
context, MapReduce (Wu et al., 2014; Miner and Shook, 2012) is the most popular programming model
to develop, execute and deploy Big Data analyses on large clusters. However, its batch-processing
nature forces uploading data to the system (cluster) every time is analyzed, even when the input data
has been previously utilized. This requirement (i) makes this programming paradigm unsuitable
when leading with real-time streaming sources and (ii) avoids achieving full use of the computational
capabilities and resources since clusters are idle while the data is being loaded. In order to solve these
limitations, the utilization of pipelining schemes for big data processing was recently introduced by
Di Tommaso (2019). This concept (extrapolated from the electronic domain) is focused on dividing
the whole data analysis process into a set of computationally simple tasks (O’Donovan et al., 2015)
whereby the required information for each task is handled exclusively, which avoids the (pre)loading
of unnecessary information. This advantage has prompted the emergence of multiple enterprises
offering cloud pipeline-based data analysis services such as BDB Solutions for Big Data (Solutions,
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2019), AWS Amazon Data Pipeline (Amazon, 2019) or Google Cloud Dataflow (Google, 2019). These
services allow users to build highly customized pipelines using a simple graphical interface, even if
their technical skills are basic. Despite the great advantages of these services, their cloud-oriented
nature causes customers to be reluctant to use them due to (i) the full control of the pipeline by the
company offering the service, (ii) data privacy and security concerns (since information is executed in
a foreign infrastructure), and (iii) the difficulty of assessing and calculating the cost of computational
resources required to process data through the defined pipeline.

In order to cope with these problems, several customers decided to change the third-party cloud-
based service to a proprietary solution by designing and implementing their own pipelining tools.
Meanwhile, multiple open-source offline Big Data Pipeline frameworks emerged from the academic
community to make this new paradigm available to everybody (Di Tommaso, 2019). However, as
can be observed from the list shown in (Di Tommaso, 2019), despite the great number of available
solutions, the majority are developed using Java language (>90%) while only a few belong to the R
ecosystems. Among these, two packages should be mentioned, repo (Napolitano, 2020) and drake
(Landau, 2018). The former one is a data-centered pipeline focused on solving bioinformatics data
problems (specific-purpose application). Conversely, the latter is a generic pipeline tool that provides
similar functionality to the GNU Make utility. As can be seen, despite both applications are focused
on the same concept (pipelines), the target, implementation schema, and provided functionalities are
quite divergent. In addition, we found some important issues that are not addressed by the actual
pipelines tools such as (i) lack of a pure object-oriented (OO) implementation to facilitate the use and
reduce the learning curve for people coming from object-oriented environments, (ii) the absence of an
application based on the pipelining concept used by the well-known magrittr package (Bache and
Wickham, 2020) (focused on UNIX pipes), (iii) the use of a black-box implementation which hampers
users to easily trace and debug both code and the intermediate results.

This scenario motivated us to design and implement bdpar, a framework capable of unifying and
preprocessing heterogeneous data through the development and execution of customizable pipelines.
To this end, our package allows automatizing the management of a large amount of information
by segmenting data into a sequence of simple and indivisible tasks (divide and conquer paradigm).
Specifically, bdpar allows to (i) use or develop content extractors (such as SMS or email parsers), (ii)
use and implement new preprocessing tasks (pipes), (iii) define customization pipelines (set of tasks)
to achieve the desired (structured) output, (iv) visualize the intermediate results achieved by each
instance after being processed by the tasks comprising the pipeline (white-box implementation), (v)
prevent the re-execution of previously computed instances and tasks, and finally (vi) execute the
pipeline following both a sequential or parallel paradigm.

This paper provides a full description of the main functionalities and resources of the bdpar
package. The current version is 3.0.1, and an updated list (with the whole collection of resources)
is available in the vignette document and the reference manual. The following section provides a
complete description of the package structure and functionalities. Then, the use of the package is
described, and finally, an illustrative case study is provided.

2 Package structure and operation

In order to exploit the main advantages and strengths of the object-oriented paradigm (such as
maintainability, modularity, or inheritance), the bdpar package was fully developed using R6 classes
(package R6 (Chang, 2019b)). Particularly, bdpar was implemented using R6 classes due to its high
performance and ease of use when compared with other alternatives (such as S3 or S4) (Chang (2019a);
Wickham (2019)). From an operational point of view, R6 classes implemented in bdpar package are
divided into three different categories: (i) data extraction functionalities; (ii) pipe-based operations;
and finally (iii) bdpar framework configuration utilities.

The first category (data extraction methods) comprises all methods responsible for automatically
detect the format and parse contents according to the inner structure of data gathered from input
sources. The second category encapsulates the functionality of extracting features from the parsed
information. By default, the bdpar framework provides a complete data preprocessing flow comprising
18 different tasks. Additionally, bdpar allows for the easy creation of new customized data flows by
combining multiple tasks (object-based pipes). Finally, the third category of methods allows handling
the configuration parameters needed for the proper operation of both the bdpar framework and some
tasks using third-party functions (such as credentials for rtweet (Kearney, 2019) or tuber (Sood, 2019)).

In order to improve the readability of the code and facilitate the comprehension of each imple-
mented class, a naming convention was adopted. Methods included in the data extraction category
are labeled using Extractor as a prefix, followed by the type (or structure) of the input source (e.g.,
ExtractorEml and ExtractorSms methods are able to parse text contents from emails and SMS, re-
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spectively). Finally, pipe-based functionalities are named using the operation name followed by the
suffix Pipe (e.g., ToLowerPipe and FindHashtagPipe are tasks designed to convert text characters to
lowercase and detect Twitter hashtags from textual contents, respectively).

As stated before, the bdpar framework is focused on designing, implementing, and deploying
customized processing flows for the big data domain. In order to handle the information obtained
from the input sources, the package uses a specific structure called Instance, which is responsible for
storing the properties extracted by each pipe comprising the processing flow. To provide an insightful
view of our bdpar framework, Figure 1 provides a graphical representation of its inner operation,
which is divided into two main stages: (i) data loading and (ii) pipeline executing.

Figure 1: Description of bdpar two-stage execution process. The first stage is responsible for loading
the dataset, while the second stage is in charge of executing the pipes comprising the user-defined
preprocessing tasks.

As shown in Figure 1, the first stage comprises the loading of the required extractors accord-
ing to the type of input data. By default, bdpar provides four different types of extractors: (i)
ExtractorSMS is able to extract the textual contents exchanged through Short Message Service (SMS);
(ii) ExtractorTwtid is capable of obtaining the text from Twitter entries (tweets); (iii) ExtractorEML can
be used to gathering raw content from the body of email messages, and finally (iv) ExtractorYtbid
allows extracting the comments published on the YouTube platform. Additionally, to increase the com-
patibility of bdpar with other data formats, the framework allows for the easy design and deployment
of new customized extractors (by using a simple OOP inheritance relation).

Once the content is successfully extracted from the raw sources, the second stage is automatically
initiated by bdpar. This stage comprises the execution of two steps: (i) pipeline handling; and (ii)
output generating. The former is in charge of performing unified data processing by executing a
specific set of pipes (also named pipeline) over the previously extracted content. It should be noted
that each pipe included in the pipeline is represented as an object (inherited from GenericPipe class)
responsible for performing a specific operation (task) over the input data. The second step (called
output generating) transforms the preprocessed data into a specific output format (e.g., into a CSV
structure). Moreover, bdpar allows users to develop new specific output-generation methods to
achieve the desired output.

As can be realized from the pipeline handling stage shown in Figure 1, the pipe-based structure
provides great flexibility and versatility to users since it allows users to easily (i) modify existing
pipelines by adding or removing pipes, (ii) develop new pipes implementing additional tasks, or (iii)
design and deploy new customized pipelines. To assist users in the creation and deployment of new
pipelines, bdpar provides a set of 18 combinable pipes implementing basic preprocessing tasks for text
sources. As can be seen in Table 1, tasks included in bdpar are divided into two different categories:
(i) transformer tasks which are able to perform operations that successively alter the original content
(such as lowercase conversion or emoticon finding), and (ii) maintainers which are responsible for
executing operations that do not affect the current content (such as storing the extension of the input
data).
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Pipe name Pipe type Name of computed
property Description

GuessDatePipe Transformer "date" Obtains the date and time
based on the type and
structure of the input
data.

File2Pipe Transformer "source" Obtains the source based
on the type and structure
of the input data.

FindUserNamePipe Transformer "userName" Detects and extracts
usernames from textual
sources.

FindHashtagPipe Transformer "hashtag" Detects and obtains hash-
tags from input data.

FindUrlPipe Transformer "URLs" Uses regular expressions
to find URLs in text.

FindEmoticonPipe Transformer "emoticon" Identifies and extracts
emoticons from textual
sources.

FindEmojiPipe Transformer "Emojis" Transforms emojis to its
textual representation.

GuessLanguagePipe Transformer "language" Tries to guess the lan-
guage of a specific text.

ContractionPipe Transformer "contractions" Transforms previously de-
tected contractions.

AbbreviationPipe Transformer "abbreviation" Expands detected abbrevi-
ations.

SlangPipe Transformer "langpropname" Identifies slang words to
its corresponding formal
speech.

ToLowerCasePipe Transformer – Converts the input source
to lowercase characters.

InterjectionPipe Transformer "interjection" Detects and extracts in-
terjections from textual
sources.

StopWordPipe Transformer "stopWord" Recognizes and obtains
stop words from textual
sources.

TargetAssigningPipe Maintainer "target" Identifies the target class
of the data.

StoreFileExtPipe Maintainer "extension" Guess the extension of the
input data.

MeasureLengthPipe Maintainer "length" Computes the length of a
given text.

TeeCSVPipe Maintainer – Transforms the final result
into a CSV format file.

Table 1: Pipes provided by bdpar framework.

Additionally, each pipe provides a property name field where the computed property will be
stored. To increase flexibility, property names can be specified by users or leave it by default (see
names described in Table 1). Finally, pipes definition in Table 1 were sorted to match the execution
order defined in the pipeline included by default in bdpar (named as DefaultPipeline)

Moreover, to increase the reliability of the pipeline, bdpar allows defining the execution order of
each task comprising the specified pipeline. During the definition of a pipeline, we should specifically
take into account the possible interdependence between pipes (e.g., language-dependent tasks should
be executed after GuessLanguagePipe). To solve this situation and ensure the proper creation and
execution of the pipelining process, bdpar provides a pipe-orchestration system. This mechanism is
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automatically invoked when the pipeline is executed and traverses all tasks comprising the pipeline to
evaluate two types of interdependencies: (i) always-before (or ‘a priori dependence’) and (ii) not-after
(or ‘a posteriori dependence’). The first constraint is used when a specific pipe requires the previous
execution of other tasks to ensure its proper operation (for instance, AbbreviationPipe needs to know
the text language, so it should not be executed before GuessLanguagePipe). Conversely, the second
type of restriction is used to indicate the tasks that cannot be started after the execution of the current
one (for instance, the recognition of contractions should not be run after changing text characters to
lowercase or removing punctuation marks). Both restrictions are automatically managed through the
checkCompatibility method included in the Instance class.

Furthermore, in order to ensure the proper execution of tasks implemented through R6 classes
within the pipeline, bdpar implements an object-oriented customized operator (denoted as %>|%)
inspired by the implementation of the primitive forward-pipe operator (%>%) provided by the magrittr
package (Bache and Wickham, 2020). Particularly, the execution of this new operator implies some
inner operations such as (i) discarding an Instance (left-side operand) whenever an error occurs during
the data processing flow, (ii) automatically manage pipes dependencies between pipes, (iii) simplifying
the invocation of the associated pipe task (right-side operand) by hiding its explicit call, (iv) facilitate
debugging issues by showing log messages with different levels of granularity, (v) the ability to
display the intermediate computation results of each instance throughout the whole preprocessing
flow and (vi) the capability to avoid the re-execution of previously processed pipelines. To this end,
the operator transparently calls the pipe method defined in the pipe object. These functionalities allow
improving the processing capabilities (in terms of speed, performance, and usability) of the application
by preventing the problems derived from the (potential) existence of errors during the pipelining
process and shorten pipelining definition by taking advantage of the customized operator capabilities.
To increase the customization capabilities, bdpar allows easy development and deployment of new
user-defined pipelines. To ensure full compatibility of new user-defined pipelines bdpar provides
a reference class called GenericPipeline. Additionally, to simplify the use of the framework, bdpar
provides a predefined pipeline (named DefaultPipeline) containing all the pipes included in Table 1.

Finally, once all Instance objects are processed, the output generation stage starts. As can be seen
from Figure 1, this stage is responsible for storing the results achieved after executing the pipeline
process over each (valid) Instance. Although this stage allows the use of customized storage and
output-representation methods (implemented by user), bdpar provides two methods able to (i) save
the achieved output into an external CSV file (using TeeCSVPipe pipe) or (ii) internally store in memory
a set of preprocessed Instance objects (default output).

In order to exemplify the structure and operation of an object-based pipeline in bdpar, we have
included below a code snippet comprising 13 different text processing tasks (implemented as pipe
objects).

instance %>|%
TargetAssigningPipe$new() %>|% StoreFileExtPipe$new() %>|%
GuessDatePipe$new() %>|% File2Pipe$new() %>|%
MeasureLengthPipe$new("length_before_cleaning_text") %>|%
FindUrlPipe$new() %>|% FindEmojiPipe$new() %>|% GuessLanguagePipe$new() %>|%
SlangPipe$new() %>|% ToLowerCasePipe$new() %>|%
InterjectionPipe$new() %>|% StopWordPipe$new() %>|%
MeasureLengthPipe$new("length_after_cleaning_text") %>|% TeeCSVPipe$new()

To facilitate the understanding of the pipelining process, the code included above assumes that
each input data has been successfully loaded and stored in an Instance object (denoted as instance).
As can be seen from the code snippet, each instance is processed through all the tasks comprising this
pipeline. Specifically, the first 13 ones perform different preprocessing operations over each instance,
while the latest one stores the achieved results into a CSV file.

3 Using bdpar package

The package can be installed and attached as described in the code included below (please refer to the
‘README’ file to access the latest and development versions).

install.packages("bdpar")
library(bdpar)

Please note that the core functionalities of bdpar require the previous installation of six R packages
(described in the ‘Imports’ field included in the ‘DESCRIPTION’ file). In addition, some optional tasks
(mainly belonging to specific data-processing pipes) used certain packages (indicated on the ‘Suggest’
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field included in the ‘DESCRIPTION’ file) and should also be installed in order to ensure its proper
operation. It should be taken into account that in case of needing all the dependencies, the argument
dependencies = TRUE should be included in the command install.packages.

Executing bdpar framework

In order to guarantee a high level of flexibility, bdpar can be easily executed by using two different
ways (i) following an OOP paradigm or (ii) using a classical function call approach. Below is include a
code snippet describing both scenarios.

bdpar <- Bdpar$new()
bdpar$execute(path, extractors= ExtractorFactory$new(),

pipeline= DefaultPipeline$new(), cache= TRUE,
verbose= FALSE, summary= FALSE)

a) Executing bdpar using OOP paradigm

output <- line(path, extractors = ExtractorFactory$new(),
pipeline= DefaultPipeline$new(), cache= TRUE,
verbose= FALSE, summary= FALSE)

b) Executing bdpar following a function-based approach.

As can be depicted, both execution methods require the same six arguments since runPipeline is
a wrapper function which encapsulates bdpar execution using the OOP paradigm. The first argument
is mandatory since it is used to specify the directory or file(s) path where the raw input data is located.
The second parameter indicates the extractors required to parse the input sources. If not defined, bdpar
automatically invokes the default ExtractorFactory$new() object which initializes the four extractors
provided by bdpar framework. Following, the third argument is used to determine the sequence of
preprocessing tasks that should be executed (pipeline) to achieve the desired output (featured dataset).
If the argument is not assigned, bdpar executes DefaultPipeline$new() object which implements
an error-safe pipeline comprised of 18 tasks described in Table 1. The fourth one is used to enable
(or disable) bdpar not-re-execution functionality (defined as N-RE). Particularly, this feature is able to
detect which instances, tasks, and even pipelines were previously executed with a view to avoiding
their re-execution. Moreover, the penultimate argument is used to indicate (if needed) the generation
of a log output showing different levels of granularity (DEBUG, INFO, WARN, ERROR, FATAL). It should
be noted that DEBUG level allows displaying the intermediate results achieved by each instance after
being processed by the tasks comprising the pipeline. This is very useful to detect the location of
possible errors. Finally, the latter argument allows showing (if needed) a detailed summary of all the
operations and tasks performed during the pipeline execution.

Developing new functionalities

As previously stated, the design of the software architecture of bdpar is focused on facilitating the
customization of any stage of the process (data loader and pipeline executor). Specifically, bdpar allows
users to: (i) defining new types of input data parses, (ii) creating new pipes, and (iii) implementing
and deploying new preprocessing tasks.

Regarding the first aspect, the development of new content parsers involves two stages: (i) the
implementation of a customized extractor by overriding solely the methods of the Instance class that
are necessary to load the input and (ii) the registration of the created extractor so it can be loaded
by the bdpar framework. Two code fragments to detail the development and registration of a new
customized parsers is included below.

ExtractorImage <- R6::R6Class(
classname = "ExtractorImage",
inherit = Instance,
public = list(
initialize = function(path) {
super$initialize(path)

},
obtainSource = function() {
source <- imager::load.image(super$getPath())
super$setSource(source)
super$setData(source)

} ) )
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a) Implementation of new ExtractorImage parser.

extractors <- ExtractorFactory$new()
extractors$registerExtractor(extension= c("jpeg","png"),

extractor= ExtractorImage)

b) Dynamic extractor registration operation in bdpar.

As can be seen, the first code snippet describes the formal structure of a new extractor. Particu-
larly, ExtractorImage is able to load an image into an Instance object. To accomplish this task, the
obtainSource method loads (by invoking load.image() method) an image from the file path received
as a parameter of the class constructor (super$getPath()). Then, the loaded image is stored in the
source variable of the Instance superclass (by invoking super$setSource() method) and is assigned
to the data variable by calling to super$setData() method. The data field is used to store the result of
each task comprising the pipeline.

Moreover, the second fragment of code exemplifies the registration of the previously created
extractor in bdpar framework. As can be depicted, this operation is performed by a simple call to the
registerExtractor method included in ExtractorFactory class. Due to the one-to-one dependency
between each extractor and the different input formats, bdpar requires the definition of a specific exten-
sion (or set of extensions) to discern which type of extractor should execute. Also, ExtractorFactory
provides two additional methods (i) getAllExtractors, which shows all registered extractors in bdpar
framework and (ii) removeExtractor, which deletes a specific data extractor. Finally, to avoid parsing
errors, unsupported input contents by registered extractors are automatically ignored by bdpar.

For the creation and deployment of new preprocessing tasks, bdpar provides an abstract class
named GenericPipe. This type of class is very common in OOP to ensure all subclasses (pipes) follow
the same structure and implement the methods defined in the superclass (GenericPipe). Particularly,
GenericPipe defines two main methods that should be included in each subclass: (i) initialize and
(ii) pipe. The former includes three optional parameters that are propertyName, which refers to the spe-
cific name to the output value computed in the task, alwaysBeforeDeps, and notAfterDeps, which han-
dles two types of dependencies between pipes ("always-before" and "not-after", respectively). Finally,
the pipe method is used to implement the behavior of the new task. Below we include a code snippet
exemplifying how to develop a basic image-preprocess pipeline. Concretely, we design three pipes:
(i) Image2Pipe responsible for invoking the obtainSource method provided in the ExtractorImage
parser, (ii) ImageCroppingPipe in charge of halving the image, and (iii) ImageRotatePipe, which rotates
the image 30 degrees clockwise.

Image2Pipe <- R6::R6Class(
name = "Image2Pipe",
inherit = GenericPipe,
public = list(
initialize = function(propertyName= "",

alwaysBeforeDeps= list(),
notAfterDeps= list()) {

super$initialize(propertyName, alwaysBeforeDeps, notAfterDeps)
},
pipe = function(instance) {

instance$obtainSource()
instance

} ) )

ImageCroppingPipe <- R6::R6Class(
"ImageCroppingPipe",
inherit = GenericPipe,
public = list(
initialize = function(propertyName= "",

alwaysBeforeDeps= list("Image2Pipe"),
notAfterDeps= list()) {

super$initialize(propertyName, alwaysBeforeDeps, notAfterDeps)
},
pipe = function(instance) {
data <- instance$getData()
data <- imager::imsub(data, x > height/2)
instance$setData(data)

instance
} ) )
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ImageResizePipe <- R6::R6Class(
"ImageResizePipe",
inherit = GenericPipe,
public = list(
initialize = function(propertyName= "",

alwaysBeforeDeps= list("Image2Pipe"),
notAfterDeps= list()) {

super$initialize(propertyName, alwaysBeforeDeps, notAfterDeps)
},
pipe = function(instance) {
data <- instance$getData()
data <- imager::imrotate(data, 30)
instance$setData(data)

instance
} ) )

As can be seen, the Image2Pipe class stores the loaded image into a new instance. Follow-
ing, ImageCroppingPipe and ImageResizePipe class apply different image manipulation functions
(imager::imsub, imager::imrotate) to halve and rotate the images, respectively. Following the result,
of each pipe is stored into a specific field of the Instance object (by calling the instance$setData()
method). To ensure proper operation of both tasks, image content should be previously loaded
into an instance object (by invoking Image2Pipe associated task). To this end, a priori dependence
with Image2Pipe has been defined in the initialize method of both pipes. As mentioned before,
to facilitate the development and execution of pipes, dependencies between pipes are automatically
managed by the object-oriented pipe operator (%>|%). Finally, in order to develop robust pipelines,
instance objects should be invalidated when an error occurs, or the requirements are not satisfied
(such as the storage of empty data or non-identification of textual language).

Finally, bdpar allows users to customize existing pipelines and develop new ones from scratch. In
order to motivate the usage of bdpar regardless of user programming skills, the framework allows
to manually or dynamically design new pipelines. The first method requires the creation of a new
class (inheriting from GenericPipeline) which implements the execute method defined in the parent
class. Moreover, to ensure proper management of (possible) execution errors (such as invalidated
instances), a try-catch function should be included. Additionally, bdpar allows customizing the log
messages (if needed) by calling the bdpar.log() function. Below we include an example showing
how a customized pipeline is manually created.

TestPipeline <- R6::R6Class(
classname = "TestPipeline",
inherit = GenericPipeline,
public = list(
initialize = function() ,
execute = function(instance)
message("[TestPipeline][execute][Info] ", instance$getPath())
tryCatch(

instance %>|% Image2Pipe$new() %>|%
ImageCroppingPipe$new() %>|% ImageResizePipe$new(),

error = function(e)
bdpar.log(message = paste0(instance$getPath()," :", paste(e)),
level= "ERROR",
className= class(self)[1],
methodName= "execute")
instance$invalidate()

)
return(instance)

) )

On the other hand, the dynamic method allows the creation of custom pipelines by simply
indicating a list containing the pipe objects to be used. To achieve a higher level of flexibility dynamic,
the model provides two ways of defining pipelines: (i) during the object instantiation or (ii) by calling
the add function. A simple example describing how the previous pipeline is created following the
dynamic method is included below.

pipeline <- DynamicPipeline$new(pipeline= list(Image2Pipe$new(),
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ImageCroppingPipe$new(),
ImageResizePipe$new()))

a) Pipeline definition during object instantiation.

pipeline <- DynamicPipeline$new()
pipeline$add(list(Image2Pipe$new(), ImageCroppingPipe$new(),

ImageResizePipe$new()))

b) Pipeline creation using the add method.

Additionally, the dynamic method provides six methods able to extend the pipeline customization
capabilities: (i) add(pipe,pos=NULL), which adds new pipe object(s) to the pipeline flow at a certain
position (or at the end if not defined), (ii) removeByPos(pos), which removes a pipe object at a
given position, (iii) removeByPipe(pipe.name) responsible for erasing a pipe object by name, (iv)
removeAll() capable of releasing all pipe objects from the pipeline, (v) get() returning a list containing
the pipe objects comprising the pipeline, and finally, (vi) print() which displays the pipes comprised
in the pipeline.

As can be realized from both methods, the manual definition of pipelines allows users to have
greater control and insight over the pipeline (such as personalizing error-handling methods or the
inclusion of new user-defined object-oriented pipeline operators). Conversely, the dynamic mode
enables users to define optimal pipelines without expert knowledge of R6 and OOP concepts.

Managing bdpar configuration options

bdpar.Options included in bdpar allows managing configuration parameters to customize the be-
havior of available tasks and indicate parameters needed for the proper operation of pipes and/or
content extractors (such as path locations for slang dictionaries or credentials required by Twitter or
Youtube APIs, respectively). Moreover, to easily search and access the configuration, bdpar.Options
stores parameters following a key-value pair structure. As can be deducted, the key parameter is
used to uniquely identify a configuration entry. In order to facilitate the management of configuration
parameters, bdpar.Options provides four main methods: (i) bdpar.Options$add(key,value), which
adds a new configuration entry, (ii) bdpar.Options$set(key,value) used to modify the value of an
existing configuration parameter, (iii) bdpar.Options$remove(key), which removes an entry matching
a specific name, and finally, (iv) bdpar.Options$reset() used to restore bdpar.Options to its initial
state (default options). Table 2 describes the configuration options included in bdpar.
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Type Key Assigned
by default Description

API credentials

twitter.consumer.key
twitter.consumer.secret
twitter.access.token
twitter.access.token.secret

youtube.app.id
youtube.app.password

x

x

Set of keys need to
connect to Twitter
and Youtube API

API cache cache.youtube.path
cache.twitter.path x Path to temporary

place extracted data

Pipe parameters teeCSVPipe.output.path
√ Defines the out-

put file path for
TeeCSVPipe

Extractor options extractorEML.mpaPartSelected
√ Indicates the content-

type to parse on multi-
part emails

N-RE handler cache.folder
√ Indicates the path to

store the intermediate
results

Parallel settings numCores
√ Selects the number of

cores used to execute
the pipelines

Resource files

resources.abbreviations.path
resources.contractions.path
resources.interjections.path
resources.slangs.path
resources.stopwords.path

√
Location for the dif-
ferent language dic-
tionaries (slang, con-
tractions, . . .)

Table 2: Structure of bdpar configuration options.

As can be seen from Table 2, configuration options are divided into seven categories: (i) API
credentials, (ii) API cache, (iii) pipe parameters (iv) Extractor options, (v) instance cache handler,
(vi) parallel settings, and (vii) resource files. It is important to take into account that values for API
credentials are not provided by default due to the inexistence of publicly available access keys for both
Youtube and Twitter (only for private use with prior approval). Following, the optional API cache
configuration entries are responsible for designating temporal locations to store information obtained
after executing the content extractors. Defining cache paths API ensures that duplicated sources are
executed only once (avoids parsing duplicated inputs).

Moreover, pipe parameters and extractor options allow specifying configuration values needed
to guarantee the proper execution of pipes and extractors, respectively. Particularly, default "extrac-
torEML.mpaPartSelected" entry allows defining which content-type (text/plain or text/html) should
be extracted in multipart emails while "teeCSVPipe.output.path" indicates the location to store the
CSV file generated by TeeCSVPipe pipe.

In addition, the not-re-execution handler allows defining the path to store the information required
for the proper operation of the not-re-execution functionality. Despite this, the feature is very useful
to reduce both unnecessary computation costs and time consumption that requires extra storage
space. Therefore, bdpar allows the deletion of the intermediate results by invoking the specific
bdpar.Options$cleanCache() method.

Following, parallel settings category is used to define the configuration values to handle paral-
lelization in bdpar. Concretely, "numCores" entry allows defining the number of CPU cores to be
used when a pipeline is executed. By default, bdpar is configured following a sequential paradigm
(numCores = 1). Additionally, to ensure proper use of CPU resources bdpar provides a mechanism to
verify whether the number of assigned CPU cores is compatible with the hardware specifications or not.
If the assigned CPU cores are not valid, bdpar will be executed using the most optimal configuration
according to the hardware specifications.
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The last category comprises different dictionaries needed to perform multiple language-dependent
operations (such as contraction detection or stopwords removal). Dictionaries provided by default
ensure the compatibility of bdpar from 8 to 50 different languages (depending on the text-mining
operation selected).

4 A case study

In order to illustrate the functionality of the bdpar package from a more realistic perspective, we
developed a case study to show the most frequent words from a heterogeneous dataset collection
(containing SMS and emails). The dataset comprises 20 emails (eml format) and 20 SMS in plain
text from the nutritional and health domain. Moreover, to ensure straightforward reproducibility,
(i) all the resources used are included in the package, and the pipeline provided by the package
(DefaultPipeline) was selected to perform the content preprocessing flow, and (ii) resulting dataset
was stored into a structured CSV file. Once the pipeline was executed, 18 new columns were generated
from the outputs acquired after executing some pipeline tasks (labeled according to the property
names described in Table 1). For instance, the execution of FindEmojiPipe forces the creation (if not
exists) of a new column (named "emojis") containing the emojis found for each instance (or blank if
not found).

To carry out the case of study, word frequencies were computed over the text content generated
after executing the whole pipeline tasks (stored in the data column). Additionally, some previous
text-cleaning operations were performed over the preprocessed text prior to executing the computation
of the word frequencies (using word-cloud plots). Concretely, words were reduced to their stem form
(stemDocument), punctuation marks were deleted, and numbers were removed (using the tm package
(Feinerer et al., 2008)). Finally, for comparison purposes, frequencies were calculated both individually
and jointly (see Figures 2 and 3)

#Execute bdpar framework
bdpar::runPipeline(path= system.file(“example”, package= “bdpar”),

cache= FALSE)
#Load CSV generated after executing bdpar
dataset <- read.csv(file= bdpar.Options$get("teeCSVPipe.output.path"),

sep= ";", stringsAsFactors= FALSE )

#Separate instances by type
sms <- dataset[dataset$extension == "tsms", ]
eml <- dataset[dataset$extension == "eml", ]
# Function to clean text and compute frequencies
word.frec <- function(data) {
corpus <- tm::VCorpus(VectorSource(data))
corpus <- tm::tm_map(corpus, removePunctuation)
corpus <- tm::tm_map(corpus, removeNumbers)
corpus <- tm::tm_map(corpus, stemDocument)
sorted <- sort(rowSums(as.matrix(tm::TermDocumentMatrix(corpus))),

decreasing = TRUE)
return(data.frame(word = names(sorted), freq = sorted))

}
sms.words <- word.frec(sms$data)
eml.words <- word.frec(eml$data)
all.words <- word.frec(dataset$data)
# Wordcloud for sms and emails
par(mfrow=c(1,2))
wordcloud::wordcloud(words= sms.words$word, freq= sms.words$freq,

min.freq= 1, max.words= 100, random.order= FALSE,
rot.per= .5, colors= RColorBrewer::brewer.pal(8, "Dark2"))

wordcloud::wordcloud(words= eml.words$word, freq= eml.words$freq,
min.freq= 1, max.words= 100, random.order= FALSE,
rot.per= .5, colors= RColorBrewer::brewer.pal(8, "Dark2"))

par(mfrow=c(1,1))
#Wordcloud for all instances (sms and email)
wordcloud::wordcloud(words= dataset.words$word, freq= all.words$freq,

min.freq= 1, max.words= 100, random.order= FALSE,
rot.per= .5, colors= RColorBrewer::brewer.pal(8, "Dark2"))
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Figure 2 graphically represents the results achieved after performing an individualized analysis
of each dataset (SMS and emails). Conversely, Figure 3 represents the frequencies achieved when
analyzing both datasets together. Observing Figure 2, we see that frequencies of words included in
SMS messages are lower than those included in emails. This is mainly due to the limited length of SMS
messages (up to 160 characters). Therefore, the word frequency in Figure 3 has increased considerably,
mainly owing to the joint evaluation of both datasets.

Figure 2: Wordcloud for SMS (left) and email (right).

Figure 3: Wordcloud for SMS and email jointly.

Keeping in mind the functionality provided by bdpar (demonstrated through the current case
study), it is easy to deduce that the application of data mining techniques over unstructured data
could be easily addressed by taking advantage of the functionality of our framework. Some big data
operations that could be addressed by taking advantage of bdpar are the clustering of documents
using token features, the classification of documents, or the retrieval of documents for specific queries.

5 Conclusions and future work

In this work, we introduced bdpar, a pipe-based R framework to facilitate the creation of unified
datasets from heterogeneous sources. Our framework allows users to (i) define new content extractors
(data parsers), (ii) develop and deploy new preprocessing tasks (pipes), and (iii) define and build
customized interconnected task flows (pipelines). Additionally, to save computational resources and
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increase execution speed, bdpar provides an optimized pipe operator (noted as %>I%) capable of
aborting the processing of an instance if an error was detected. Finally, a case study was developed to
demonstrate the capability of the framework to preprocess and unify heterogeneous data into a single
CSV file.

Future work is focused on two main aspects: (i) the development of semantic-based tasks able
to explode the semantic relationships between synsets and; (ii) the capability to represent using a
graph-based visualization the pipes comprising each pipeline, and (iii) the analysis of textual polarity
and sentiment analysis.
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Linear Regression with Stationary
Errors: the R Package slm
by Emmanuel Caron, Jérôme Dedecker and Bertrand Michel

Abstract This paper introduces the R package slm, which stands for Stationary Linear Models.
The package contains a set of statistical procedures for linear regression in the general context where
the error process is strictly stationary with a short memory. We work in the setting of Hannan (1973),
who proved the asymptotic normality of the (normalized) least squares estimators (LSE) under
very mild conditions on the error process. We propose different ways to estimate the asymptotic
covariance matrix of the LSE and then to correct the type I error rates of the usual tests on the
parameters (as well as confidence intervals). The procedures are evaluated through different sets of
simulations.

1 Introduction

We consider the usual linear regression model

Y = Xβ + ε ,

where Y is the n-dimensional vector of observations, X is a (possibly random) n × p design matrix,
β is a p-dimensional vector of parameters, and ε = (εi)1≤i≤n is the error process (with zero mean
and independent of X). The standard assumptions are that the εi’s are independent and identically
distributed (i.i.d.) with zero mean and finite variance.

In this paper, we propose to modify the standard statistical procedures (tests, confidence intervals,
. . . ) of the linear model in the more general context where the εi’s are obtained from a strictly
stationary process (εi)i∈N with a short memory. To be more precise, let β̂ denote the usual least
squares estimator of β. Our approach is based on two papers: the paper by Hannan (1973) who
proved the asymptotic normality of the least squares estimator D(n)(β̂ − β) (D(n) being the usual
normalization) under very mild conditions on the design and on the error process; and a recent
paper by Caron (2019) who showed that, under Hannan’s conditions, the asymptotic covariance
matrix of D(n)(β̂ − β) can be consistently estimated.

Let us emphasize that Hannan’s conditions on the error process are very mild and are satisfied
for most of the short-memory processes (see the discussion in Section 4.4 of Caron and Dede
(2018)). Putting together the two above results, we can develop a general methodology for tests
and confidence regions on the parameter β, which should be valid for most of the short-memory
processes. This is, of course, directly useful for time-series regression, but also in the more general
context where the residuals of the linear model seem to be strongly correlated. More precisely, when
checking the residuals of the linear model, if the autocorrelation function of the residuals shows
significant correlations, and if the residuals can be suitably modeled by an ARMA process, then
our methodology is likely to apply. We shall give an example of such a situation on the "Shanghai
pollution" dataset at the end of the paper.

Hence, the tools presented in the present paper can be seen from two different points of view:

- as appropriate tools for time series regression with a short memory error process
- as a way to robustify the usual statistical procedures when the residuals are correlated.

Let us now describe the organization of the paper. In the next section, we recall the mathematical
background, the consistent estimator of the asymptotic covariance matrix introduced in Caron (2019),
and the modified Z-statistics and χ-square statistics for testing the hypothesis on the parameter
β. Next, we present the slm package and the different ways to estimate the asymptotic covariance
matrix: by fitting an autoregressive process on the residuals (default procedure), by means of the
kernel estimator described in Caron (2019) (theoretically valid) with a bootstrap method to choose
the bandwidth (Wu and Pourahmadi (2009)), by using alternative choices of the bandwidth for the
rectangular kernel (Efromovich (1998)) and the quadratic spectral kernel (Andrews (1991)), and
by means of an adaptive estimator of the spectral density via Histograms (Comte (2001)). In a
section about numerical experiments, we estimate the level of a χ-square test for a linear model
with random design, with different kinds of error processes, and for different estimation procedures.
In the last section, we apply the package to the "Shanghai pollution" dataset, and we compare the
summary output of slm with the usual summary output of lm. An extended version of this paper is
available as an arXiv preprint (see Caron et al. (2019)).
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2 Linear regression with stationary errors

Asymptotic results for the kernel estimator

We start this section by giving a short presentation of linear regression with stationary errors, more
details can be found for instance in Caron (2019). Let β̂ be the usual least squares estimator for the
unknown vector β. The aim is to provide hypothesis tests and confidence regions for β in the non
i.i.d. context.

Let γ be the autocovariance function of the error process ε: for any integers k and m, let
γ(k) = Cov(εm, εm+k). We also introduce the covariance matrix:

Γn := [γ(j − l)]1≤j,l≤n .

Hannan (1973) has shown a Central Limit Theorem for β̂ when the error process is strictly
stationary, under very mild conditions on the design and the error process. Let us notice that
the design can be random or deterministic. We introduce the normalization matrix D(n) which
is a diagonal matrix with diagonal term dj(n) =

∥∥X.,j
∥∥

2 for j in {1, . . . , p}, where X.,j is the jth
column of X. Roughly speaking Hannan’s result says in particular that, given the design X, the
vector D(n)(β̂ − β) converges in distribution to a centered Gaussian distribution with covariance
matrix C. As usual, in practice, the covariance matrix C is unknown, and it has to be estimated.
Hannan also showed the convergence of second order moment:1

E

(
D(n)(β̂ − β)(β̂ − β)tD(n)t

∣∣∣X) −−−−→
n→∞

C, a.s.

where
E

(
D(n)(β̂ − β)(β̂ − β)tD(n)t

∣∣∣X) = D(n)(XtX)−1XtΓnX(XtX)−1D(n).

In this paper, we propose a general plug-in approach: for some given estimator Γ̂n of Γn, we introduce
the plug-in estimator:

Ĉ = Ĉ(Γ̂n) := D(n)(XtX)−1XtΓ̂nX(XtX)−1D(n),

and we use Ĉ to standardize the usual statistics considered for the study of linear regression.
Let us illustrate this plug-in approach with a kernel estimator which has been proposed in Caron

(2019). For some K and a bandwidth h, the kernel estimator Γ̃n,h is defined by

Γ̃n,h =
[
K
(

j − l

h

)
γ̃j−l

]
1≤j,l≤n

, (1)

where the residual-based empirical covariance coefficients are defined for 0 ≤ |k| ≤ n − 1 by

γ̃k =
1
n

n−|k|∑
j=1

ε̂j ε̂j+|k|. (2)

For a well-chosen kernel K and under mild assumptions on the design and the error process, it has
been proved in Caron (2019) that

C̃−1/2
n D(n)(β̂ − β)

L−−−−→
n→∞

Np(0p, Ip), (3)

for the plug-in estimator C̃n := Ĉ(Γ̃n,hn
), for some suitable sequence of bandwidths (hn).

More generally, in this paper, we say that an estimator Γ̂n of Γn is consistent for estimating
the covariance matrix C if Ĉ(Γ̂n) is positive definite and if it converges in probability to C. Note
that such a property requires assumptions on the design, see Caron (2019). If Ĉ(Γ̂n) is consistent
for estimating the covariance matrix C, then Ĉ(Γ̂n)

−1/2
D(n)(β̂ − β) converges in distribution to a

standard Gaussian vector.
To conclude this section, let us make some additional remarks. The interest of Caron’s recent

paper is that the consistency of the estimator Ĉ(Γ̂n) is proved under Hannan’s condition on the
error process, which is known to be optimal with respect to the convergence in distribution (see for
instance Dedecker (2015)), and which allows dealing with most short memory processes. However,
the natural estimator of the covariance matrix of β̂ based on Γ̂n has been studied by many other

1The transpose of a matrix X is denoted by Xt.
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authors in various contexts. For instance, let us mention the important line of research initiated by
Newey and West (1987, 1994) and the related papers by Andrews (1991), Andrews and Monahan
(1992), among others. In the paper by Andrews (1991), the consistency of the estimator based
on Γ̂n is proved under general conditions on the fourth-order cumulants of the error process, and
a data-driven choice of the bandwidth is proposed. Note that these authors also considered the
case of heteroskedastic processes. Most of these procedures, known as HAC (Heteroskedasticity
and Autocorrelation Consistent) procedures, are implemented in the package sandwich by Zeileis,
Lumley, Berger and Graham, and presented in great detail in the paper by Zeileis (2004). We shall
use an argument of the sandwich package, based on the data-driven procedure described by Andrews
(1991).

Tests and confidence regions

We now present tests and confidence regions for arbitrary estimators Γ̂n. The complete justifications
are available for kernel estimators, see Caron (2019).

Z-Statistics. We introduce the following univariate statistics:

Zj =
dj(n)β̂j√

Ĉ(j,j)

, (4)

where Ĉ = Ĉ(Γ̂n). If Γ̂n is consistent for estimating the covariance matrix C and if βj = 0, the
distribution of Zj converges to a standard normal distribution when n tends to infinity. We directly
derive an asymptotic hypothesis test for testing βj = 0 against βj ̸= 0 as well as an asymptotic
confidence interval for βj .

Chi-square statistics. Let A be an n × k matrix with rank(A) = k. Under Hannan (1973)’s
conditions, D(n)(Aβ̂ − Aβ) converges in distribution to a centered Gaussian distribution with
covariance matrix ACAt. If Γ̂n is consistent for estimating the covariance matrix C, then AĈ(Γ̂n)

converges in probability to AC. The matrix AĈ(Γ̂n)A
t being symmetric positive definite, this yields

W := (AĈ(Γ̂n))
−1/2D(n)A(β̂ − β)

L−−−−→
n→∞

Nk(0k, Ik).

This last result provides asymptotical confidence regions for the vector Aβ. It also provides an
asymptotic test for testing the hypothesis H0 : Aβ = 0 against H1 : Aβ ̸= 0. Indeed, under the
H0-hypothesis, the distribution of ∥W ∥2

2 converges to a χ2(k)-distribution.
The test can be used to simplify a linear model by testing that several linear combinations

between the parameters βj are zero, as we usually do for Anova and regression models. In particular,
with A = Ip, the test corresponds to the test of overall significance.

3 Introduction to linear regression with the slm package

Using the slm package is very intuitive because the arguments and the outputs of slm are similar to
those of the standard functions lm, glm, etc. The output of the main function slm is an object of
class "slm", a specific class that has been defined for linear regression with stationary processes. The
"slm" class has methods plot, summary, confint, and predict, see the extended version Caron et al.
(2019) for more details. Moreover, the class "slm" inherits from the "lm" class and thus provides the
output of the classical lm function.

The statistical tools available in slm strongly depend on the choice of the covariance plug-in
estimator Ĉ(Γ̂n) we use for estimating C. All the estimators Γ̂n proposed in slm are residual-based
estimators, but they rely on different approaches. In this section, we present the main functionality
of slm together with the different covariance plug-in estimators.

For illustrating the package, we simulate synthetic data according to the linear model:

Yi = β1 + β2(log(i) + sin(i) + Zi) + β3i + εi,

where Z is a Gaussian autoregressive process of order 1 and ε is the Nonmixing process described
further in the paper. We use the functions generative_model and generative_process respectively
to simulate observations according to this regression design and with this specific stationary process.
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R> library(slm)
R> set.seed(42)
R> n = 500
R> eps = generative_process(n,"Nonmixing")
R> design = generative_model(n,"mod2")
R> design_sim = cbind(rep(1,n), as.matrix(design))
R> beta_vec = c(2,0.001,0.5)
R> Y = design_sim %*% beta_vec + eps

Linear regression via AR fitting on the residuals

A large class of stationary processes with continuous spectral density can be well approximated
by AR processes, see for instance Corollary 4.4.2 in Brockwell and Davis (1991). The covariance
structure of an AR process having a closed form, it is thus easy to derive an approximation Γ̃AR(p)
of Γn by fitting an AR process on the residual process. The AR-based method for estimating C is
the default version of slm. This method proceeds in four main steps:

1. Fit an autoregressive process on the residual process ε̂ ;
2. Compute the theoretical covariances of the fitted AR process ;
3. Plug the covariances in the Toeplitz matrix Γ̃AR(p) ;

4. Compute Ĉ = Ĉ(Γ̃AR(p)).

The slm function fits a linear regression of the vector Y on the design X and then fits an AR
process on the residual process using the ar function from the stats package. The output of the
slm function is an object of class "slm". The order p of the AR process is set in the argument
model_selec:

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "fitAR",
+ model_selec = 3)

The estimated covariance is recorded as a vector in the attribute cov_st of regslm, which is an
object of class "slm". The estimated covariance matrix can be computed by taking the Toeplitz
matrix of cov_st, using the toeplitz function.

AR order selection. The order p of the AR process can be chosen at hand by setting model_selec
= p, or automatically with the AIC criterion by setting model_selec = -1.

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "fitAR",
+ model_selec = -1)

The order of the fitted AR process is recorded in the model_selec attribute of regslm:

R> regslm@model_selec

[1] 2

Here, the AIC criterion suggests to fit an AR(2) process on the residuals.

Linear regression via kernel estimation of the error covariance

The second method for estimating the covariance matrix C is the kernel estimation method (1)
studied in Caron (2019). In short, this method estimates C via a smooth approximation of the
covariance matrix Γn of the residuals. This estimation of Γn corresponds to the so-called tapered
covariance matrix estimator in the literature, see for instance Xiao and Wu (2012), or also to the
"lag-window estimator" defined in Brockwell and Davis (1991), page 330. It applies in particular for
non-negative symmetric kernels with compact support, with an integrable Fourier transform and
such that K(0) = 1. Table 1 gives the list of the available kernels in the package slm.

It is also possible for the user to define his own kernel and use it in the argument kernel_fonc
of the slm function. Below we use the triangle kernel, which assures that the covariance matrix is
positive definite. The support of the kernel K in Equation (1) being compact, only the terms γ̃j−l

for small enough lag j − l are kept and weighted by the kernel in the expression of Γ̃n,h. Rather
than setting the bandwidth h, we select the number of γ(k)’s that should be kept (the lag) with the
argument model_selec in the slm function. Then the bandwidth h is calibrated accordingly, that is
equal to model_selec +1.
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kernel_fonc = kernel definition
rectangular K(x) = 1{|x|≤1}

triangle K(x) = (1 − |x|)1{|x|≤1}
trapeze K(x) = 1{|x|≤δ} +

1
1−δ (1 − |x|)1{δ≤|x|≤1}

Table 1: Available kernel functions in slm.

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "kernel",
+ model_selec = 5, kernel_fonc = triangle, plot = TRUE)

The plot output by the slm function is given in Figure 1.

Figure 1: ACF of the residual process.

Order selection via bootstrap. The order parameter can be chosen at hand as before or
automatically by setting model_selec = -1. The automatic order selection is based on the bootstrap
procedure proposed by Wu and Pourahmadi (2009) for banded covariance matrix estimation. The
block_size argument sets the size of bootstrap blocks, and the block_n argument sets the number
of blocks. The final order is chosen by taking the order which has the minimal risk. Figure 2 gives
the plots of the estimated risk for the estimation of Γn (left) and the final estimated ACF (right).

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st ="kernel",
+ model_selec = -1, kernel_fonc = triangle, model_max = 30,
+ block_size = 100, block_n = 100, plot = TRUE)

The selected order is recorded in the model_selec attribute of the slm object output by the
slm function:

R> regslm@model_selec

[1] 10

Order selection by Efromovich’s method (rectangular kernel). An alternative method
for choosing the bandwidth in the case of the rectangular kernel has been proposed in Efromovich
(1998). For a large class of stationary processes with exponentially decaying autocovariance function
(mainly the ARMA processes), Efromovich proved that the rectangular kernel is asymptotically
minimax, and he proposed the following estimator:

f̂Jnr
(λ) =

1
2π

k=Jnr∑
k=−Jnr

γ̂keikλ,
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(a) Estimated risk error via bootstrap. (b) Estimated ACF for the selected order.

Figure 2: Plots output by slm for the kernel method with bootstrap selection of the order.

with the lag
Jnr =

log(n)
2r

[
1 + (log(n))−1/2

]
,

where r is a regularity index of the autocovariance index. In practice, this parameter is unknown
and is estimated thanks to the algorithm proposed in the section 4 of Efromovich (1998). As for the
other methods, we use the residual based empirical covariances γ̃k to compute f̂Jnr

(λ).

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "efromovich",
+ model_selec = -1)

Order Selection by Andrews’s method. Another method for choosing the bandwidth has
been proposed by Andrews (1991) and implemented in the package sandwich by Zeileis, Lumley,
Berger and Graham (see the paper by Zeileis (2004)). For the slm package, the automatic choice of
the bandwidth proposed by Andrews can be obtained as follows:

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "hac")

The procedure is based on the function kernHAC in the sandwich package. This function computes
directly the covariance matrix estimator of β̂, which will be recorded in the slot Cov_ST of the slm
function. Here, we take the quadratic spectral kernel:

K (x) =
25

12π2x2

(
sin (6πx/5)

6πx/5 − cos (6πx/5)
)

,

as suggested by Andrews (see Section 2 in Andrews (1991), or Section 3.2 in Zeileis (2004)), but
other kernels could be used, such as Bartlett, Parzen, Tukey-Hamming, among others (see Zeileis
(2004)).

Positive definite projection. Depending on the method used, the matrix Ĉ(Γ̂n) may not always
be positive definite. It is the case of the kernel method with rectangular or trapeze kernel. To
overcome this problem, we make the projection of Ĉ(Γ̂n) into the cone of positive definite matrices
by applying a hard thresholding on the spectrum of this matrix: we replace all eigenvalues lower or
equal to zero with the smallest positive eigenvalue of Ĉ(Γ̂n). Note that this projection is useless for
the triangle or quadratic spectral kernels because their Fourier transform is non-negative (leading
to a positive definite matrix Ĉ(Γ̂n)). Of course, it is also useless for the fitAR and spectralproj
methods.

Linear regression via projection spectral estimation

The projection method relies on the ideas of Comte (2001), where an adaptive nonparametric method
has been proposed for estimating the spectral density of a stationary Gaussian process. We use
the residual process as a proxy for the error process, and we compute the projection coefficients
with the residual-based empirical covariance coefficients γ̃k, see Equation (2). For some d ∈ N∗,
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the estimator of the spectral density of the error process that we use is defined by computing the
projection estimators for the residual process on the basis of histogram functions:

ϕ
(d)
j =

√
d

π
1[πj/d,π(j+1)/d[, j = 0, 1, . . . , d − 1.

The estimator is defined by

f̂d(λ) =

d−1∑
j=0

â
(d)
j ϕ

(d)
j ,

where the projection coefficients are

â
(d)
j =

√
d

π

(
γ̃0
2d

+
1
π

n−1∑
r=1

γ̃r

r

[
sin
(

π(j + 1)r
d

)
− sin

(
πjr

d

)])
.

The Fourier coefficients of the spectral density are equal to the covariance coefficients. Thus, for
k = 1, . . . , n − 1 it yields

γk = ck

=
2
k

√
d

π

d−1∑
j=0

â
(d)
j

[
sin
(

kπ(j + 1)
d

)
− sin

(
kπj

d

)]
,

and for k = 0:

γ0 = c0 = 2
√

π

d

d−1∑
j=0

â
(d)
j .

This method can be proceeded in the slm function by setting method_cov_st =
"spectralproj":

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "spectralproj",
+ model_selec = 10, plot = TRUE)

The graph of the estimated spectral density can be plotted by setting plot = TRUE in the slm function,
see Figure 3.

Figure 3: Spectral density estimator by projection on the histogram basis.

Model selection. The Gaussian model selection method proposed in Comte (2001) follows the
ideas of Birgé and Massart, see for instance Massart (2007). It consists of minimizing the l2 penalized
criterion, see Section 5 in Comte (2001):

crit(d) := −
d−1∑
j=0

[
â
(d)
j

]2
+ c

d

n
,

where c is a multiplicative constant that in practice can be calibrated using the slope heuristic
method, see Birgé and Massart (2007), Baudry et al. (2012) and the R package capushe.
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R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "spectralproj",
+ model_selec = -1, model_max = 50, plot = TRUE)

The selected dimension is recorded in the model_selec attribute of the slm object output by the
slm function:

R> regslm@model_selec

[1] 8

The slope heuristic algorithm here selects a Histogram on a regular partition of size 8 over the
interval [0, π] to estimate the spectral density.

Linear regression via masked covariance estimation

This method is a full-manual method for estimating the covariance matrix C by only selecting
covariance terms from the residual covariances γ̃k defined by (2). Let I be a set of positive integers,
then we consider

γ̂I (k) := γ̃k1k∈I∪{0}, 0 ≤ |k| ≤ n − 1,

and then we define the estimated covariance marix Γ̂I by taking the Toeplitz matrix of the vector γ̂I .
This estimator is a particular example of a masked sample covariance estimator, as introduced by
Chen et al. (2012), see also Levina and Vershynin (2012). Finally, we derive from Γ̂I an estimator
Ĉ(Γ̂I ) for C.

The next instruction selects the coefficients 0, 1, 2 and 4 from the residual covariance terms:

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "select",
+ model_selec = c(1,2,4))

The positive lags of the selected covariances are recorded in the model_selec argument. Let us
notice that the variance γ0 is automatically selected.

As for the kernel method, the resulting covariance matrix may not be positive definite. If it is
the case, the positive definite projection method described before is used.

Linear regression via manual plugged covariance matrix

This last method is a direct plug-in method. The user proposes his own vector estimator γ̂ of γ, and
then the Toeplitz matrix Γ̂n of the vector γ̂ is used for estimating C with Ĉ(Γ̂n).

R> v = rep(0,n)
R> v[1:10] = acf(eps, type = "covariance", lag.max = 9)$acf
R> regslm = slm(Y ~ X1 + X2, data = design, cov_st = v)

The user can also propose his own covariance matrix Γ̂n for estimating C.

R> v = rep(0,n)
R> v[1:10] = acf(eps, type = "covariance", lag.max = 9)$acf
R> V = toeplitz(v)
R> regslm = slm(Y ~ X1 + X2, data = design, Cov_ST = V)

Let us notice that the user must verify that the resulting covariance matrix is positive definite.
The positive definite projection algorithm is not used with this method.

4 Numerical experiments and method comparisons

This section summarizes an extensive study which has been carried out to compare the performances
of the different approaches presented before in the context of a linear model with short range
dependent stationary errors.

Description of the generative models

We first present the five generative models for the errors that we consider in the paper. We choose
different kinds of processes to reflect the diversity of short-memory processes.
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• AR1 process. The AR1 process is a Gaussian AR(1) process defined by

εi − 0.7εi−1 = Wi,

where Wi is a standard gaussian distribution N (0, 1).
• AR12 process. The AR12 process is a seasonal AR(12) process defined by

εi − 0.5εi−1 − 0.2εi−12 = Wi,

where Wi is a standard Gaussian distribution N (0, 1). When studying monthly datasets, one
usually observes a seasonality of order 12. For example, when looking at climate data, the
data are often collected per month, and the same phenomenon tends to repeat every year.
Even if the design integrates the deterministic part of the seasonality, a correlation of order
12 usually remains present in the residual process.

• MA12 process. The MA12 is also a seasonal process defined by

εi = Wi + 0.5Wi−2 + 0.3Wi−3 + 0.2Wi−12,

where the (Wi)’s are i.i.d. random variables following Student’s distribution with 10 degrees
of freedom.

• Nonmixing process. The three processes described above are basic ARMA processes, whose
innovations have absolutely continuous distributions; in particular, they are strongly mixing
in the sense of Rosenblatt (1956), with a geometric decay of the mixing coefficients (in fact,
the MA12 process is even 12-dependent, which means that the mixing coefficient α(k) = 0
if k > 12). Let us now describe a more complicated process: let (Z1, . . . , Zn) satisfying the
AR(1) equation

Zi+1 =
1
2 (Zi + ηi+1),

where Z1 is uniformly distributed over [0, 1] and the ηi’s are i.i.d. random variables with
distribution B(1/2), independent of Z1. The process (Zi)i≥1 is a strictly stationary Markov
chain, but it is not α-mixing in the sense of Rosenblatt (see Bradley (1986)). Let now Q0,σ2

be the inverse of the cumulative distribution function of a centered Gaussian distribution with
variance σ2 (for the simulations below, we choose σ2 = 25). The Nonmixing process is then
defined by

εi = Q0,σ2 (Zi).
The sequence (εi)i≥1 is also a stationary Markov chain (as an invertible function of a stationary
Markov chain). By construction, εi is N (0, σ2)-distributed, but the sequence (εi)i≥1 is not a
Gaussian process (otherwise, it would be mixing in the sense of Rosenblatt). Although it is
not obvious, one can prove that the process (εi)i≥1 satisfies Hannan’s condition (see Caron
(2019), Section 4.2).

• Sysdyn process. The four processes described above have the property of "geometric decay
of correlations", which means that the γ(k)’s tend to 0 at an exponential rate. However, as
already pointed out in the introduction, Hannan’s condition is valid for most of the short
memory processes, even for processes with slow decay of correlations (provided that the
γ(k)’s are summable). Hence, our last example will be a non-mixing process (in the sense of
Rosenblatt), with an arithmetic decay of the correlations.
For γ ∈]0, 1[, the intermittent map θγ : [0, 1] 7→ [0, 1] introduced in Liverani et al. (1999) is
defined by

θγ(x) =

{
x(1 + 2γxγ) if x ∈ [0, 1/2[

2x − 1 if x ∈ [1/2, 1].

It follows from Liverani et al. (1999) that there exists a unique θγ -invariant probability measure
νγ . The Sysdyn process is then defined by

εi = θi
γ .

From Liverani et al. (1999), we know that on the probability space ([0, 1], νγ), the auto-
correlations γ(k) of the stationary process (εi)i≥1 are exactly of order k−(1−γ)/γ . Hence,
(εi)i≥1 is a short memory process provided γ ∈]0, 1/2[. Moreover, it has been proved in
Section 4.4 of Caron and Dede (2018) that (εi)i≥1 satisfies Hannan’s condition in the whole
short-memory range, that is for γ ∈]0, 1/2[. For the simulations below, we took γ = 1/4,
which give autocorrelations γ(k) of order k−3.
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The linear regression models simulated in the experiments all have the following form:

Yi = β1 + β2(log(i) + sin(i) + Zi) + β3i + εi, for all i in {1, . . . , n}, (5)

where Z is a Gaussian autoregressive process of order 1 and ε is one of the stationary processes
defined above. For the simulations, β1 is always equal to 3. All the error processes presented above
can be simulated with the slm package with the generative_process function. The design can be
simulated with the generative_model function.

Automatic calibration of the tests

It is, of course, of first importance to provide hypothesis tests with correct significance levels or
at least with correct asymptotical significance levels, which is possible if the estimator Γ̂n of the
covariance matrix Γn is consistent for estimating C. For instance, the results of Caron (2019) show
that it is possible to construct statistical tests with correct asymptotical significance levels. However,
in practice, such asymptotical results are not sufficient since they do not indicate how to tune the
bandwidth on a given dataset. This situation makes the practice of linear regression with dependent
errors really more difficult than linear regression with i.i.d. errors. This problem happens for several
methods given before ; order choice for the fitAR method, bandwidth choice for the kernel method,
dimension selection for the spectralproj method.

It is a tricky issue to design a data-driven procedure for choosing test parameters in order to
have a correct Type I Error. Note that unlike with supervised problems and density estimation, it is
not possible to calibrate hypothesis tests in practice using cross-validation approaches. We thus
propose to calibrate the tests using well-founded statistical procedures for risk minimization ; AIC
criterion for the fitAR method, bootstrap procedures for the kernel method, and slope heuristics
for the spectralproj method. These procedures are implemented in the slm function with the
model_selec = -1 argument, as detailed in the previous section.

Let us first illustrate the calibration problem with the AR12 process. For T = 1000 simulations,
we generate an error process of size n under the null hypothesis: H0 : β2 = β3 = 0. Then we use
the fitAR method of the slm function with orders between 1 and 50, and we perform the model
significance test. The procedure is repeated 1000 times, and we estimate the true level of the test by
taking the average of the estimated levels on the 1000 simulations for each order. The results are
given in Figure 4 for n = 1000. A boxplot is also displayed to visualize the distribution of the order
selected by the automatic criterion (AIC).

Non-Seasonal errors

We first study the case of non-Seasonal error processes. We simulate an n-error process according to
the AR1, the Nonmixing, or the Sysdyn processes. We simulate realizations of the linear regression
model (5) under the null hypothesis: H0 : β2 = β3 = 0. We use the automatic selection procedures
for each method (model_selec = -1). The simulations are repeated 1000 times in order to estimate
the true level of the model significance for each test procedure. We simulate either small samples
(n = 200) or larger samples (n = 1000, 2000, 5000). The results of these experiments are summarized
in Table 2.

For n large enough (n ≥ 1000), all methods work well, and the estimated level is around 0.05.
However, for small samples (n = 200), we observe that the fitAR and the hac methods show better
performances than the others. The kernel method is slightly less effective. With this method, we
must choose the size of the bootstrap blocks as well as the number of blocks, and the test results are
really sensitive to these parameters. In these simulations, we have chosen 100 blocks with a size of
n/2. The results are expected to improve with a larger number of blocks.

Let us notice that for all methods and for all sample sizes, the estimated level is much better
than if no correction is made (usual Fisher tests).

Seasonal errors

We now study the case of linear regression with seasonal errors. The experiment is exactly the same
as before, except that we simulate AR12 or MA12 processes. The results of these experiments are
summarized in Table 3.

We directly see that the case of seasonal processes is more complicated than for the non-seasonal
processes especially for the AR12 process. For a small samples size, the estimated level is between
0.17 and 0.24, which is clearly too large. It is, however, much better than the estimated level of the
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Figure 4: Estimated level of the test according to the order of the fitted AR process on the residuals
(top) and boxplot of the order selected by AIC, over 1000 simulations. The data has been simulated
according to Model (5) with β1 = 3 and β2 = β3 = 0, with n = 1000.

usual Fisher test, which is around 0.45. The fitAR method is the best method here for the AR12
process because for n ≥ 1000, the estimated level is between 0.06 and 0.07. For efromovich and
kernel methods, a level less than 0.10 is reached but for large samples only. The spectralproj and
hac methods do not seem to work well for the AR12 process, although they remain much better
than the usual Fisher tests (around 19% of rejection instead of 45%).

The case of the MA12 process seems easier to deal with. For n large enough (n ≥ 1000), the
estimated level is between 0.04 and 0.07 whatever the method, except for hac (around 0.15 for
n = 5000). It is less effective for a small sample size (n = 200) with an estimated level around 0.115
for fitAR, spectralproj and efromovich methods.

I.I.D. errors

To be complete, we consider the case where the ϵi’s are i.i.d., to see how the five automatic methods
perform in that case. We simulate n i.i.d. centered random variables according to the formula:

ϵi = W 2
i − 5

4 ,

where W follows a student distribution with 10 degrees of freedom. Note that the distribution of
the ϵi’s is not symmetric and has no exponential moments. Except for the kernel method, the
estimated levels are close to 5% for n large enough (n ≥ 300). It is slightly worse for small samples,
but it remains quite good for the methods fitAR, efromovich, and hac.

As a general conclusion of this section about numerical experiments and method comparison, we
see that the fitAR method performs quite well in a wide variety of situations and should therefore be
used as soon as the user suspects that the error process can be modeled by a stationary short-memory
process.

5 Application to the PM2.5 pollution Shanghai Dataset

This dataset comes from a study about fine particle pollution in five Chinese cities. The data are
available on the following website https://archive.ics.uci.edu/ml/datasets/PM2.5+Data+of+
Five+Chinese+Cities#. Here we are interested with the city of Shanghai. We study the regression

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://archive.ics.uci.edu/ml/datasets/PM2.5+Data+of+Five+Chinese+Cities#
https://archive.ics.uci.edu/ml/datasets/PM2.5+Data+of+Five+Chinese+Cities#


Contributed research article 157

n Process
Method Fisher test fitAR spectralproj

200
AR1 process 0.465 0.097 0.14
NonMixing 0.298 0.082 0.103

Sysdyn process 0.385 0.105 0.118

1000
AR1 process 0.418 0.043 0.049
NonMixing 0.298 0.046 0.05

Sysdyn process 0.393 0.073 0.077

2000
AR1 process 0.454 0.071 0.078
NonMixing 0.313 0.051 0.053

Sysdyn process 0.355 0.063 0.064

5000
AR1 process 0.439 0.044 0.047
NonMixing 0.315 0.053 0.056

Sysdyn process 0.381 0.058 0.061

n Process
Method efromovich kernel hac

200
AR1 process 0.135 0.149 0.108
NonMixing 0.096 0.125 0.064

Sysdyn process 0.124 0.162 0.12

1000
AR1 process 0.049 0.086 0.049
NonMixing 0.053 0.076 0.038

Sysdyn process 0.079 0.074 0.078

2000
AR1 process 0.075 0.067 0.071
NonMixing 0.057 0.067 0.047

Sysdyn process 0.066 0.069 0.073

5000
AR1 process 0.047 0.047 0.044
NonMixing 0.059 0.068 0.05

Sysdyn process 0.057 0.064 0.071

Table 2: Estimated levels for the non-seasonal processes.

of PM2.5 pollution in Xuhui District by other measurements of pollution in neighboring districts
and also by meteorological variables. The dataset contains hourly observations between January
2010 and December 2015. More precisely, it contains 52584 records of 17 variables: date, time of
measurement, pollution and meteorological variables. More information on these data is available in
the paper of Liang et al. (2016).

We remove the lines that contain NA observations, and we then extract the first 5000 observations.
For simplicity, we will only consider pollution variables and weather variables. We start the study
with the following 10 variables:

- PM_Xuhui: PM2.5 concentration in the Xuhui district (ug/m3)
- PM_Jingan: PM2.5 concentration in the Jing’an district (ug/m3)
- PM_US.Post: PM2.5 concentration in the U.S diplomatic post (ug/m3)
- DEWP: Dew Point (Celsius Degree)
- TEMP: Temperature (Celsius Degree)
- HUMI: Humidity (%)
- PRES: Pressure (hPa)
- Iws: Cumulated wind speed (m/s)
- precipitation: hourly precipitation (mm)
- Iprec: Cumulated precipitation (mm)

R> shan = read.csv("ShanghaiPM20100101_20151231.csv", header = TRUE,
+ sep = ",")
R> shan = na.omit(shan)
R> shan_complete = shan[1:5000,c(7,8,9,10,11,12,13,15,16,17)]
R> shan_complete[1:5,]
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n Process
Method Fisher test fitAR spectralproj

200 AR12 process 0.436 0.178 0.203
MA12 process 0.228 0.113 0.113

1000 AR12 process 0.468 0.068 0.183
MA12 process 0.209 0.064 0.066

2000 AR12 process 0.507 0.071 0.196
MA12 process 0.237 0.064 0.064

5000 AR12 process 0.47 0.062 0.183
MA12 process 0.242 0.044 0.048

n Process
Method efromovich kernel hac

200 AR12 process 0.223 0.234 0.169
MA12 process 0.116 0.15 0.222

1000 AR12 process 0.181 0.124 0.179
MA12 process 0.069 0.063 0.18

2000 AR12 process 0.153 0.104 0.192
MA12 process 0.058 0.068 0.173

5000 AR12 process 0.1 0.091 0.171
MA12 process 0.043 0.057 0.147

Table 3: Estimated levels for the seasonal processes.

n Process
Method Fisher test fitAR spectralproj

150 i.i.d. process 0.053 0.068 0.078
300 i.i.d. process 0.052 0.051 0.06
500 i.i.d. process 0.047 0.049 0.053

n Process
Method efromovich kernel hac

150 i.i.d. process 0.061 0.124 0.063
300 i.i.d. process 0.05 0.095 0.052
500 i.i.d. process 0.049 0.082 0.056

Table 4: Estimated levels for the i.i.d. process

PM_Jingan PM_US.Post PM_Xuhui DEWP HUMI PRES TEMP Iws
26305 66 70 71 -5 69.00 1023 0 60
26306 67 76 72 -5 69.00 1023 0 62
26308 73 78 74 -4 74.41 1023 0 65
26309 75 77 77 -4 80.04 1023 -1 68
26310 73 78 80 -4 80.04 1023 -1 70

precipitation Iprec
26305 0 0
26306 0 0
26308 0 0
26309 0 0
26310 0 0

The aim is to study the concentration of particles in Xuhui District according to the other
variables. We first fit a linear regression with the lm function.

R> reglm = lm(shan_complete$PM_Xuhui ~ . ,data = shan_complete)
R> summary.lm(reglm)

Call:
lm(formula = shan_complete$PM_Xuhui ~ ., data = shan_complete)
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Residuals:
Min 1Q Median 3Q Max

-132.139 -4.256 -0.195 4.279 176.450

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -54.859483 40.975948 -1.339 0.180690
PM_Jingan 0.596490 0.014024 42.533 < 2e-16 ***
PM_US.Post 0.375636 0.015492 24.246 < 2e-16 ***
DEWP -1.038941 0.170144 -6.106 1.10e-09 ***
HUMI 0.291713 0.045799 6.369 2.07e-10 ***
PRES 0.025287 0.038915 0.650 0.515852
TEMP 1.305543 0.168754 7.736 1.23e-14 ***
Iws -0.007650 0.002027 -3.774 0.000163 ***
precipitation 0.462885 0.132139 3.503 0.000464 ***
Iprec -0.125456 0.039025 -3.215 0.001314 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.68 on 4990 degrees of freedom
Multiple R-squared: 0.9409, Adjusted R-squared: 0.9408
F-statistic: 8828 on 9 and 4990 DF, p-value: < 2.2e-16

The variable PRES has no significant effect on the PM_Xuhui variable. We then perform a backward
selection procedure, which leads to select 9 significant variables:

R> shan_lm = shan[1:5000,c(7,8,9,10,11,13,15,16,17)]
R> reglm = lm(shan_lm$PM_Xuhui ~ . ,data = shan_lm)
R> summary.lm(reglm)

Call:
lm(formula = shan_lm$PM_Xuhui ~ ., data = shan_lm)

Residuals:
Min 1Q Median 3Q Max

-132.122 -4.265 -0.168 4.283 176.560

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -28.365506 4.077590 -6.956 3.94e-12 ***
PM_Jingan 0.595564 0.013951 42.690 < 2e-16 ***
PM_US.Post 0.376486 0.015436 24.390 < 2e-16 ***
DEWP -1.029188 0.169471 -6.073 1.35e-09 ***
HUMI 0.285759 0.044870 6.369 2.08e-10 ***
TEMP 1.275880 0.162453 7.854 4.90e-15 ***
Iws -0.007734 0.002023 -3.824 0.000133 ***
precipitation 0.462137 0.132127 3.498 0.000473 ***
Iprec -0.127162 0.038934 -3.266 0.001098 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.68 on 4991 degrees of freedom
Multiple R-squared: 0.9409, Adjusted R-squared: 0.9408
F-statistic: 9933 on 8 and 4991 DF, p-value: < 2.2e-16

The autocorrelation of the residual process shows that the errors are clearly not i.i.d., see Figure 5.
We thus suspect the lm procedure to be unreliable in this context.

The autocorrelation function decreases pretty fast, and the partial autocorrelation function
suggests that fitting an AR process on the residuals should be an appropriate method in this case.
The automatic fitAR method of slm selects an AR process of order 28. The residuals of this AR
fitting look like white noise, as shown in Figure 6. Consequently, we propose to perform a linear
regression with slm function, using the fitAR method on the complete model.

R> regslm = slm(shan_complete$PM_Xuhui ~ . ,data = shan_complete,
+ method_cov_st = "fitAR", model_selec = -1)
R> summary(regslm)
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Figure 5: Autocorrelation function (left) and partial autocorrelation function (right) of the residuals.

Figure 6: Autocorrelation function of the residuals for the AR fitting.

Call:
"slm(formula = myformula, data = data, x = x, y = y)"

Residuals:
Min 1Q Median 3Q Max

-132.139 -4.256 -0.195 4.279 176.450

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -54.859483 143.268399 -0.383 0.701783
PM_Jingan 0.596490 0.028467 20.953 < 2e-16 ***
PM_US.Post 0.375636 0.030869 12.169 < 2e-16 ***
DEWP -1.038941 0.335909 -3.093 0.001982 **
HUMI 0.291713 0.093122 3.133 0.001733 **
PRES 0.025287 0.137533 0.184 0.854123
TEMP 1.305543 0.340999 3.829 0.000129 ***
Iws -0.007650 0.005698 -1.343 0.179399
precipitation 0.462885 0.125641 3.684 0.000229 ***
Iprec -0.125456 0.064652 -1.940 0.052323 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.68
Multiple R-squared: 0.9409
chi2-statistic: 8383 on 9 DF, p-value: < 2.2e-16

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



Contributed research article 161

Note that the variables show globally larger p-values than with the lm procedure, and more variables
have no significant effect than with lm. After performing a backward selection, we obtain the
following results:

R> shan_slm = shan[1:5000,c(7,8,9,10,11,13)]
R> regslm = slm(shan_slm$PM_Xuhui ~ . , data = shan_slm,
+ method_cov_st = "fitAR", model_selec = -1)
R> summary(regslm)

Call:
"slm(formula = myformula, data = data, x = x, y = y)"

Residuals:
Min 1Q Median 3Q Max

-132.263 -4.341 -0.192 4.315 176.501

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -29.44924 8.38036 -3.514 0.000441 ***
PM_Jingan 0.60063 0.02911 20.636 < 2e-16 ***
PM_US.Post 0.37552 0.03172 11.840 < 2e-16 ***
DEWP -1.05252 0.34131 -3.084 0.002044 **
HUMI 0.28890 0.09191 3.143 0.001671 **
TEMP 1.30069 0.32435 4.010 6.07e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.71
Multiple R-squared: 0.9406
chi2-statistic: 8247 on 5 DF, p-value: < 2.2e-16

The backward selection with slm only keeps 5 variables.
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clustcurv: An R Package for Determining
Groups in Multiple Curves
by Nora M. Villanueva, Marta Sestelo, Luis Meira-Machado and Javier Roca-Pardiñas

Abstract In many situations, it could be interesting to ascertain whether groups of curves can be
performed, especially when confronted with a considerable number of curves. This paper introduces
an R package, known as clustcurv, for determining clusters of curves with an automatic selection of
their number. The package can be used for determining groups in multiple survival curves as well as
for multiple regression curves. Moreover, it can be used with large numbers of curves. An illustration
of the use of clustcurv is provided, using both real data examples and artificial data.

Keywords: multiple curves, number of groups, nonparametric, survival analysis, regression models,
cluster

1 Introduction

A problem often encountered in many fields is the comparison of several populations through specific
curves. Typical examples, considered by a number of authors, are given by the comparison of survival
curves in survival analysis, children growth curves in pediatrics, or the comparison of regression
curves in regression analysis. In many of these studies, it is very common to compare a large number
of curves between groups, and methods of summarizing and extracting relevant information are
necessary. A common approach is to look for a partition of the sample into a number of groups in
such a way that curves in the same group are as alike as possible but as distinct as possible from
those in other groups. This process is also known as curve clustering. A hypothesis test can be used
to ascertain that the curves in the same group are equal. A fundamental and difficult problem in
clustering curves is the estimation of the number of clusters in a dataset.

Traditionally, the comparison of these functions is performed using parametric models through
the comparison of the resulting model parameters. This approach, however, requires the specification
of the parametric model, which is often difficult and may be considered a disadvantage. Several
nonparametric methods have been proposed in the literature to compare multiple curves. In the
area of survival analysis, for example, several nonparametric methods have been proposed to test
for the equality of survival curves for censored data. The most well-known and widely used to
test the null hypothesis of no difference in survival between two or more independent groups was
proposed by Mantel (1966). An alternative test that is often used is the Peto & Peto (Peto and Peto,
1972) modification of the Gehan-Wilcoxon test (Gehan, 1965). Several other variations of the log-rank
test statistic using weights on each event time have been proposed in the literature (Tarone and Ware,
1977; Harrington and Fleming, 1982; Fleming et al., 1987) as well as other procedures to compare these
survival curves based on different measures, as can be the medians (Chen and Zhang, 2016). There
exists an extensive literature on curve comparison in the framework of regression analysis. In this
context, several nonparametric tests have been proposed to test the equality of the mean functions,
H0 : m1 = · · · = mj. Hall and Hart (1990) proposed a bootstrap test, while Härdle and Mammen (1993)
Hardle and Marron (1990) suggested a semiparametric approach based on kernel smoothing. Other
relevant papers on this topic are King et al. (1991) , Delgado (1993) , Kulasekera (1995) , Young and
Bowman (1995), Dette and Neumeyer (2001), Pardo-Fernández et al. (2007) , Srihera and Stute (2010) ,
among others. A good review on this topic can be seen in the paper by Neumeyer and Dette (2003).

When the null hypothesis of equality of curves is rejected, leading to the clear conclusion that
at least one curve is different, it can be interesting to ascertain whether curves can be grouped or
if all these curves are different from each other. In this setting, one naïve approach would be to
perform pairwise comparisons. In this line are the papers by Rosenblatt (1975), González-Manteiga
and Cao (1993), Härdle and Mammen (1993), Dette and Neumeyer (2001) who proposed alternative
tests of the null hypothesis of equality of curves obtained from pairwise comparisons of the estimators
of the regression functions. A similar statistic was also considered by King et al. (1991). Pairwise
comparisons between group levels with corrections for multiple testing are also possible in the
framework of survival analysis. Among others, this can be achieved with the pairwise_survdiff of
the package survminer (Kassambara et al., 2019). However, in any case, this approach would lead
to a large number of comparisons without the possibility of determining groups with similar curves.
Results for such a test can tell us that all combinations are different, or just one pair. When the number
of curves to be compared increase, so does the difficulty of interpretation.

For partitioning a given set of curves into a set of K groups of curves (i.e., K clusters), Villanueva
et al. (2019a) propose an adaptation of the K-means methodology. K-means is probably the most
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commonly used clustering method for splitting a dataset into a set of K groups with a very simple
and fast algorithm. Furthermore, it can efficiently deal with very large data sets. One potential
disadvantage of K-means clustering is that it requires the number of clusters to be pre-specified. A
method is proposed by Villanueva et al. (2019a) to determine the number of clusters.

The development of clustcurv R package has been motivated by recent contributions that account
for these problems, in particular, the methods proposed by Villanueva et al. (2019a) to determine
groups in multiple survival curves and those introduced by Villanueva et al. (2019b) in the framework
of regression curves. The clustcurv R package attempts to answer the following two questions: (i)
given a potential large sample of curves, what is the best value for the number of clusters? (ii) What is
the best subdivision of the sample curves into a given number of K clusters? To facilitate the task of
selecting the optimal number of clusters as well as the composition of the clusters, it is essential to have
software for implementing the proposed methods in an environment that researchers will find user-
friendly and easily understandable. We believe that our package can answer this aim by providing
several user-friendly functions. The package clustcurv is freely available from the Comprehensive R
Archive Network (CRAN) at https://cran.r-project.org/web/packages/clustcurv

Three data sets were chosen for illustration of the software usage with real data. The first two
datasets show the applicability of the proposed methods for obtaining clusters of survival curves.
These applications were chosen to solve two real problems in the study of recurrence of breast cancer
patients and survival of myeloma cancer. To illustrate the package usage in the regression context we
used real data from a Barnacle’s Growth study conducted in Galicia, Spain. Simulated data were also
used to illustrate the package capabilities in a more complicated scenario.

The remainder of the paper is structured as follows: Section 2 briefly reviews methods for selecting
the number of clusters and the nonparametric test used; Section 3 explains the use of the main functions
and methods of clustcurv; Section 4 gives an illustration of the practical application of the package
using real and simulated data; and finally, the last section concludes with a discussion and possible
future extensions of the package.

2 An overview of the methodology

In this section, we briefly review the methodological background of the clustcurv package. As it
solves problems addressed in the field of survival analysis and regression analysis, firstly, the notation
and the nonparametric estimation procedures for both contexts are exposed. Then, the procedure for
determining groups of curves is explained in detail, considering a general framework which includes
the aforementioned contexts. Briefly, our procedure is described as follows. First, the J curves are
estimated by nonparametric estimators. Second, given a number of K groups, the optimal possible
assignment of J curves into K groups is chosen by means of a heuristic algorithm. Third, the optimal
number of groups is determined using an automatic bootstrap-based testing procedure.

Notation and estimation procedure in the survival context

We will assume the J-sample general random censorship model where observations are made on nj

individuals from population j(j = 1, . . . , J). Denote n = ∑J
j=1 nj and suppose that the observations

from the n individuals are mutually independent. Let Tij be an event time corresponding to an
event measured from the start of the follow-up of the i-th subject (i = 1, . . . , nj) in the sample j, and
assume that Tij is observed subject to a (univariate) random right-censoring variable Cij assumed to be
independent of Tij. Due to the censoring, rather than Tij, we observe (T̃ij, ∆ij), where T̃ij = min(Tij, Cij),
∆ij = I(Tij ≤ Cij), where I(·) is the indicator function.

Since the censoring time is assumed to be independent of the process, the survival functions,
Sj(t) = P(Tj > t), may be consistently estimated by the Kaplan-Meier estimator (Kaplan and Meier,
1958) based on the (T̃j, ∆j). The Kaplan-Meier estimator or the Product-Limit estimator is a nonpara-
metric method frequently used to estimate survival for censored data. Let t1 < t2 < . . . < tmj , mj ≤ nj
denote the distinct ordered failure times from population j (j = 1, . . . , J), and let du be the number of
events from population j at time tu. Then, the Kaplan-Meier estimator of survival (for population j) is

Ŝj(t) = ∏
u:tu≤t

(
1 − du

Rj(tu)

)
,

where Rj(t) = ∑
nj

i=1 I(T̃ij ≥ t) denote the number of individuals at risk just before time t, among
individuals from population j. The Kaplan-Meier estimate is a step function with jumps at event times.
The size of the steps depends on the number of events and the number of individuals at risk at the
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corresponding time. Under this setup, we will be interested to determine clusters in multiple survival
curves.

Notation and estimation procedure in the regression context

Let (Xj, Yj) be J independent random vectors, and assume that they satisfy the following nonparamet-
ric regression models, for j = 1, . . . , J,

Yj = mj(Xj) + ε j, (1)

where the error variable ε j has mean zero, and mj(Xj) = E(Yj|Xj) is the unknown regression function.
We do not make any assumptions about the error distribution.

The regression models in (1) can be estimated using several approaches, such as methods based on
regression splines (de Boor, 2001), Bayesian approaches (Lang and Brezger, 2004), or local polynomial
kernel smoothers (Wand and Jones, 1995; Fan and Gijbels, 1996). In this package, local linear kernel
smoothers, as implemented in the npregfast package, are used.

Determining groups of nonparametric curves

As noted earlier, several authors have proposed different methods that can be used to compare
estimates of nonparametric functions of multiple samples. The null hypothesis is that all the curves
have identical functions, H0 : F1 = . . . = FJ . However, if this hypothesis is rejected, there are no
available procedures that let determine groups among these curves, that is, to assess if the levels
{1, . . . , J} can be grouped in K groups (G1, . . . ,GK) with K < J, so that Fi = Fj for all i, j ∈ Gk, for
each k = 1, . . . , K. Note that (G1, . . . ,GK) must be a partition of {1, . . . , J}, and therefore must satisfy
the following conditions:

G1 ∪ . . . ∪ GK = {1, . . . , J} and Gi ∩ Gj = ∅, ∀i ̸= j ∈ {1, . . . , K}. (2)

We propose a procedure to test, for a given number K, the null hypothesis H0(K) that at least one
partition exists (G1, . . . ,GK) so that all the conditions above are verified. The alternative hypothesis
H1(K) is that for any (G1, . . . ,GK), exists at least a group Gk in which Fi ̸= Gj for some i, j ∈ Gk.

The cited testing procedure is based on the J-dimensional process

Û(z) = (Û1(z), Û2(z), . . . , ÛJ(z))t,

where, for j = 1, . . . , J,

Ûj(z) =
K

∑
k=1

[F̂j(z)− Ĉk(z)] I{j∈Gk},

and Ĉk is the pooled nonparametric estimate based on the combined Gk-partition sample.

The following test statistics were considered in order to test H0(K): a Cramér-von Mises type
statistic

DCM = min
G1,...,GK

J

∑
j=1

∫
R

Û2
j (z)dz,

and a modification of it based on the L1 norm proposed in the Kolmogorov-Smirnov test statistic

DKS = min
G1,...,GK

J

∑
j=1

∫
R
|Ûj(z)|dz,

where R is the support of the lifetime distribution or the support of the independent variable in case
of survival or regression, respectively.

In order to approximate the minimizers involved in the test statistics, we propose the use of
clustering algorithms. Particularly, in the case of DCM, defined in terms of the L2-distance, we propose
the use of the K-means (Macqueen, 1967). However, for obtaining the values of DKS, defined in this
case in terms of the L1-norm, a variation of the K-means where instead of calculating the mean for each
group to determine its centroid, it calculates the median, the k-medians —suggested by Macqueen
(1967) and developed by Kaufman and Rousseeuw (1990)— would be more appropriate. In both
cases, the carried-out procedure is equivalent: the functions Fj (j = 1, . . . , J) have to be estimated
in a common grid of size Q leading to a matrix of (J x Q) dimension, where each row corresponds
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with the estimates of the j curve in the Q positions of the grid. Then, this matrix will be the input of
both heuristic methods, K-means and K-medians, and from these, the “best” partition (G1, . . . ,GK) is
obtained.

Finally, the decision rule based on D consists of rejecting the null hypothesis if D is larger than the
(1 − α)-percentile obtained under the null hypothesis. To approximate the distributions of the test
statistic under the null hypothesis, resampling methods such as the bootstrap introduced by Efron
(1979) can be applied.

The testing procedure used here involves the following steps:

1. Using the original sample, for j = 1, . . . , J and i = 1, . . . , nj, estimate the functions Fj in a
nonparametric way and in a common grid using each sample separately. Then, using the
proposed algorithms, obtain the “best" partition (G1, . . . ,GK). With it, obtain the estimated
curves Ĉk using a pooled nonparametric estimator based on the combined partition samples
(i.e., the estimator obtained by applying the nonparametric estimator to the combined partition
samples).

2. Obtain the D value as explained before.

3. Draw bootstrap samples using a bootstrap procedure. In the survival context, follow step 3.(a),
and in the regression context, follow step 3.(b):

(a) For b = 1, . . . , B (e.g., B = 1000), and for each j ∈ Gk, draw (T̃∗b
1j , ∆∗b

1j ), (T̃
∗b
2j , ∆∗b

2j ), . . . , (T̃∗b
nj j

, ∆∗b
nj j
)

by independent sampling nj times with replacement from the empirical distribution func-

tion, F̂k, putting mass n−1
k (nk = ∑J

j=1 nj I{j∈Gk}) at each point (T̃ij, ∆ij), with j ∈ Gk.
Note that this procedure is a pooled bootstrap, i.e., bootstrap from the pooled-combined
partition sample given by the null hypothesis H0(K).

(b) For b = 1, . . . , B, and for each j ∈ Gk, draw
{(

Xi1, Y∗b
i1

)}n1

i=1
, . . . ,

{(
Xi J , Y∗b

iJ

)}nJ

i=1
, where

Y∗b
ij =

K

∑
k=1

Ĉk(Xij)I{j∈Gk} + ε̂ijW∗b
i

being ε̂ij the null errors under the H0(K) obtained as

ε̂ij =
K

∑
k=1

(
Yij − Ĉk(Xij)

)
I{j∈Gk},

and the variables W∗b
1 , . . . , W∗b

n are independent for the observed sample and i.i.d. with
E(W∗b

i ) = 0, Var(W∗b
i ) = 1, and third moment equals to 1. A common choice is to

consider a binary variable with probabilities P{W∗b
i = (1 −

√
5)/2} = (5 +

√
5)/10 and

P{W∗b
i = (1 +

√
5)/2} = (5 −

√
5)/10, which corresponds to the golden section. Note that

we have used the wild bootstrap here (Wu, 1986; Liu, 1988; Mammen, 1993) because this
method is valid both for homoscedastic and for heteroscedastic models where the variance
of the error is a function of the covariate.

4. Let D∗b be the test statistic obtained from the bootstrap samples after applying step 1 and 2 to
the cited bootstrap samples.

Since in step 3 the bootstrap resamples are constructed under the null hypothesis of K groups,
this mechanism approximates the distribution of the test statistic under the null hypothesis. If we
denote D∗(b) for the order statistics of the values D∗1, . . . , D∗B obtained in step 4, then D∗([(1−α)B])

approximates the (1 − α)-quantile of the distribution of D under the null hypothesis.

It is important to highlight that repeating this procedure, testing H0(K), from K = 1 onwards until
a certain null hypothesis is not rejected allows us to determine the number of K groups automatically.
Note that however, that unlike the previous test decision, this latter one is not statistically significant
(strong evidences for rejecting the null hypothesis are not given). The whole procedure is briefly
described step by step in Algorithm 1.

Finally, note that, under survival and regression scenarios, the proposed procedure for the determi-
nation of groups in multiple curves may be translated as a test of multiple hypotheses where a set of
K p-values corresponding to the K null hypotheses, H0(1), H0(2), . . . , H0(K) are given. Even though
several methods have been proposed to deal with this problem (see, e.g., Dudoit and van der Laan
(2008) for an introduction to this area), there are still open challenges because there is no information
about the minimum number of tests needed to apply these techniques. In any case, we have decided
to propose a possible approach to apply some of these well-known techniques as Bonferroni, Holm
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Algorithm 1: k-nonparametric curves algorithm

1. With the original sample, for j = 1, . . . , J and i = 1, . . . , nj, and using the
nonparametric estimator obtain F̂j.

2. Initialize with K = 1 and test H0(K):

2.1 Obtain the “best” partition G1, . . . ,GK by means of the k-means or k-medians
algorithm.

2.2 For k = 1, . . . , K, estimate Ĉk and retrieve the test statistic D.

2.3 Generate B bootstrap samples and calculate D∗b, for b = 1, . . . , B.

2.4 if D > D∗(1−α) then
reject H0(K)
K = K + 1
go back to 2.1

else
accept H0(K)

end

3. The number K of groups of equal nonparametric curves is determined.

(Holm, 1979), etc. As the problem is still open, we feel that the final user must be able to decide to
apply them by means of an argument included in the functions of the package. The challenge in the
present context is that the number of hypotheses that are going to be tested is unknown in advance. In
order to solve this we propose that, after having increased K in the algorithm, the null hypothesis for
“smaller K’s” has to be re-tested simultaneously with H0(K).

3 Package structure and functionality

The clustcurv package is a shortcut for “clustering curves” for being this its major functionality: to
provide a procedure that allows users to determine groups of multiple curves with an automatic
selection of their number. The package enables both survival and regression curves to be grouped, and
it is designed along lines similarly into both contexts. In addition, in view of the high computational
cost entailed in these methods, parallelization techniques are included to become feasible and efficient
in real situations.

The functions within the clustcurv package are described in Table 1. Briefly, there are two main
types of functionalities: (i) to determine groups of multiple curves with the automatic selection of their
number with regclustcurves or survclustcurves functions and (ii) to determine groups of curves,
given a number K, with kregcurves or ksurvcurves functions. The S3 object obtained from whatever
previous functions is the argument required as input for autoplot, which returns a graphical output
based on ggplot2 package. Numerical summaries of the fitted objects can be obtained by using print
or summary.

Since the two most important functions in this package are survclustcurv and regclustcurv, the
arguments of these functions are shown in Table 2. Note that the ksurvcurves kregcurves functions
are just a simplified version of the previous two. Users can automatically obtain the optimal number
of groups of multiple curves by means of survclustcurves and regclustcurves. Nevertheless, in
those situations where the user knows in advance the number of groups, it is possible to obtain
the assignment of the curves into the corresponding group, by means of the function ksurvcurves
or kregcurves. In both functions, a common argument is the algorithm, which returns the best
assignments of the curves into the groups to which they belong. At the moment, the algorithms to
solve this optimization problem can be K-means or K-medians, through the argument algorithm =
'kmeans' or algorithm = 'kmedians'.

Furthermore, in order to address the high computational burden, the functions survclustcurves,
regclustcurves, ksurvcurves and kregcurves have been programmed in parallel to compute the
bootstrap-based testing procedure. The input command required for the use of parallelization is
cluster = TRUE. The number of cores for parallel execution is fixed using the number of CPU
cores on the current host minus one unless it is specified by the user (ncores = NULL). Then,
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registerDoParallel of the doParallel package is used to register the parallel backend. The par-
allel computation is performed by the foreach function of foreach package.

Function Description

survclustcurves Main function for determining groups of multiple survival curves and
selecting automatically the optimal number of them.

regclustcurves Main function for determining groups of multiple regression curves
ecting automatically the optimal number of them.

ksurvcurves Main function for determining groups of survival curves, given a
number of groups K.

kregcurves Main function for determining groups of regression curves, given a
number of groups K.

summary Method of the generic summary function for kcurves and
clustcurves objects (both survival and regression context), which
returns a short summary.

print Method of the generic print function for kcurves and clustcurves
objects, which prints out some key components.

autoplot Visualisation of clustcurves and kcurves objects with ggplot2 (Wick-
ham et al., 2019) graphics. Provides the plots for the estimated non-
parametric curves grouped by color (optional) and their centroids
(mean curve of the curves pertaining to the same group).

Table 1: Summary of functions in the clustcurv package.

4 Illustrative examples

In this section, we illustrate the use of clustcurv package using some real and simulated data. In the
case of the survival context, the proposed methods were applied to the German breast cancer data
included in the condSURV package and to the multiple myeloma data freely available as part of
the survminer package. For the regression analysis, the clustcurv package includes a data set called
barnacle5 with measurements of rostro-carinal length and dry weight of barnacles collected from five
sites of Galicia (northwest of Spain). Additionally, in order to show the behaviour of the method in a
more complicated scenario, an example with simulated data is also provided.

Application to German Breast Cancer Study Data

In this study, a total of 686 patients with primary node-positive breast cancer were recruited between
July 1984 and December 1989, and 16 variables were measured such as the age of the patient (age),
menopausal status (menopause), hormonal therapy (hormone), tumour size (size, in mm), tumor
grade (grade), and the number of positive nodes (nodes). In addition to these and other variables,
the recurrence-free survival time (rectime, in days) and the corresponding censoring indicator (0 –
censored, 1 – event) were also recorded.

We will use these data to illustrate the package capabilities to build clusters of survival curves
based on the covariate nodes (grouped from 1 to > 13). An excerpt of the data.frame with one row
per patient is shown below:

> library(condSURV)
> library(clustcurv)
> data(gbcsCS)
> head(gbcsCS[, c(5:10, 13, 14)])
age menopause hormone size grade nodes rectime censrec

1 38 1 1 18 3 5 1337 1
2 52 1 1 20 1 1 1420 1
3 47 1 1 30 2 1 1279 1
4 40 1 1 24 1 3 148 0
5 64 2 2 19 2 1 1863 0
6 49 2 2 56 1 3 1933 0

The first three patients have developed a recurrence shown by censrec variable equals to 1, unlike
the following three, which take the value of 0. This variable, along with the other two, rectime and
nodes, will be taken into account for applying the methods described in Section 2.2. The number of
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survclustcurves() arguments

time A vector with variable of interest, i.e. survival time.
status A vector with censoring indicator of the survival time of the process; 0 if the total time

is censored and 1 otherwise.
x A vector with categorical variable indicating the population to which the observations

belongs.
kvector A vector specifying the number of groups of curves to be checking. By default it is

NULL.
kbin Size of the grid over which the survival functions are to be estimated.
nboot Number of bootstrap repeats.
algorithm A character string specifying which clustering algorithm is used, i.e., K-means

('kmeans') or K-medians ('kmedians').
alpha A numeric value, particularly, the signification level of the hypothesis test.
cluster A logical value. If TRUE (default) the code is parallelized. Note that there are cases

without enough repetitions (e.g., a low number of initial variables) that R will gain in
performance through serial computation. R takes time to distribute tasks across the
processors also it will need time for binding them all together later on. Therefore, if
the time for distributing and gathering pieces together is greater than the time needed
for single-thread computing, it could be better not to parallelize.

ncores An integer value specifying the number of cores to be used in the parallelized proce-
dure. If NULL, the number of cores to be used is equal to the number of cores of the
machine − 1.

seed Seed to be used in the procedure.
multiple A logical value. If TRUE (not default), the resulted pvalues are adjusted by using one

of several methods for multiple comparisons.
multiple.method Correction method: 'bonferroni', 'holm', 'hochberg', 'hommel', 'BH', 'BY'

regclustcurves() arguments

y A vector with variable of interest, i.e. response variable.
x A vector with independent variable.
z A vector with categorical variable indicating the population to which the observations

belongs.
kvector A vector specifying the number of groups of curves to be checking. By default it is

NULL.
kbin Size of the grid over which the survival functions are to be estimated.
h The kernel bandwidth smoothing parameter.
nboot Number of bootstrap repeats.
algorithm A character string specifying which clustering algorithm is used, i.e., K-means

('kmeans') or K-medians ('kmedians').
alpha A numeric value, particularly, the signification level of the hypothesis test.
cluster A logical value. If TRUE (default) the code is parallelized. Note that there are cases

without enough repetitions (e.g., a low number of initial variables) that R will gain in
performance through serial computation. R takes time to distribute tasks across the
processors also it will need time for binding them all together later on. Therefore, if
the time for distributing and gathering pieces together is greater than the time needed
for single-thread computing, it could be better not to parallelize.

ncores An integer value specifying the number of cores to be used in the parallelized proce-
dure. If NULL, the number of cores to be used is equal to the number of cores of the
machine − 1.

seed Seed to be used in the procedure.
multiple A logical value. If TRUE (not default), the resulted pvalues are adjusted by using one

of several methods for multiple comparisons.
multiple.method Correction method: 'bonferroni', 'holm', 'hochberg', 'hommel', 'BH', 'BY'

Table 2: Arguments of survclustcurves and regclustcurves
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positive nodes has been grouped from 1 to > 13 because of its low numbers onwards. Below, the steps
for this preprocessed are shown:

> table(gbcsCS$nodes)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
187 110 79 57 41 33 36 20 20 19 15 13 11 3 5 8 5 5 5 3 1
23 24 26 30 33 35 36 38 51
1 2 1 1 1 1 1 1 1

> gbcsCS[gbcsCS$nodes > 13,'nodes'] <- 14
> gbcsCS$nodes <- factor(gbcsCS$nodes)
> levels(gbcsCS$nodes)[14]<- '>13'
> table(gbcsCS$nodes)

1 2 3 4 5 6 7 8 9 10 11 12 13 >13
187 110 79 57 41 33 36 20 20 19 15 13 11 45

Estimates of the survival curves are obtained using the survclustcurves function. This function
allows determining groups using the optimization algorithm K-means or K-medians. The function
will verify if data has been introduced correctly and will create a 'clustcurves' object. The first three
arguments must be introduced, where time is a vector with event-times, status for their corresponding
indicator statuses, and x is the categorical covariate.

As we mentioned, note that the proposed procedure may deal with the problem of testing multiple
hypotheses, particularly relevant when the categorical variable has many levels. Thus, if the user
wants to apply some correction, it is possible to specify multiple = TRUE and select some of the
well-known techniques such as Bonferroni, Holm, etc., by means of the argument multiple.method.

The output of this function is the assignment of the survival curves to the group to which they
belong and an automatic selection of their number. The following input commands provide an
example of this output using the K-medians algorithm:

> fit.gbcs <- survclustcurves(time = gbcsCS$rectime, status = gbcsCS$censrec,
x = gbcsCS$nodes, nboot = 500, seed = 300716, algorithm = 'kmedians',
cluster = TRUE)

Checking 1 cluster...
Checking 2 clusters...
Checking 3 clusters...

Finally, there are 3 clusters.
> summary(fit.gbcs)

Call:
survclustcurves(time = gbcsCS$rectime, status = gbcsCS$censrec,

x = gbcsCS$nodes, nboot = 500, algorithm = "kmedians", cluster = TRUE,
seed = 300716)

Clustering curves in 3 groups

Number of observations: 640
Cluster method: kmedians

Factor's levels:
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13"
[14] ">13"

Clustering factor's levels:
[1] 1 1 1 3 3 3 3 2 3 2 2 2 2 2

Testing procedure:
H0 Tvalue pvalue

1 1 95.68626 0.000
2 2 56.03966 0.018
3 3 33.63386 0.830

Available components:
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[1] "num_groups" "table" "levels" "cluster" "centers" "curves"
[7] "method" "data" "algorithm" "call"

The graphical representation of the fit can be easily obtained with the function autoplot. Specifying
the argument groups_by_color = FALSE, the estimated survival curves for each level of the factor
nodes by means of the Kaplan-Meier estimator can be drawn. The assignment of the curves to the
three groups can be observed in Figure 1 simply typing groups_by_color = TRUE. As expected, the
survival of patients can be influenced by the number of lymph nodes. The patients’ recurrence time
rises with the decrease of lymph nodes. Note that having 3 or fewer positive nodes seems to be related
to higher recurrence-free probabilities. Patients with 9 or more positive nodes are more likely to
develop a recurrence. The group of patients with 8 positive nodes was assigned to the group with
highest recurrence probabilities. Though this was unexpected, further analysis confirm the poor and
unexpected behavior.
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Figure 1: Estimated survival curves for each of the levels of the variable nodes. A specific color is
assigned for each curve according to the group to which it belongs using the K-medians algorithm (in
this case, three groups, K = 3).

Equivalently, the following piece of code shows the input commands and the results obtained
with the algorithm = 'kmeans'. However, the number of groups and the assignments are different
from those obtained with the 'kmedians'. Although this situation is not so common, in some real
applications, it can happen.

> fit.gbcs2 <- survclustcurves(time = gbcsCS$rectime, status = gbcsCS$censrec,
x = gbcsCS$nodes, nboot = 500, seed = 300716, algorithm = 'kmeans',
cluster = TRUE)

Checking 1 cluster...
Checking 2 clusters...

Finally, there are 2 clusters.

> fit.gbcs2

Call:
survclustcurves(time = gbcsCS$rectime, status = gbcsCS$censrec,

x = gbcsCS$nodes, nboot = 500, algorithm = "kmeans", cluster = TRUE,
seed = 300716)

Clustering curves in 2 groups

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 173

Number of observations: 607
Cluster method: kmeans

The corresponding plot is shown in Figure 2. Note that having 9 or more positive nodes seems
to be related to a lower recurrence-free survival than having 9 or less, with the exception of the
survival curve for those patients with 8 positive nodes, which was assigned to the group with highest
recurrence probabilities.
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Figure 2: Estimated survival curves for each of the levels of the variable nodes. A specific color is
assigned for each curve according to the group to which it belongs using the K-means algorithm (in
this case, two groups, K = 2).

It is important to highlight that given a fixed value of K, one may also be interested in determining
the group to which each survival function belongs. This is possible by means of the ksurvcurves
function by considering, for example, the argument k = 3.

> ksurvcurves(time = gbcsCS$rectime, status = gbcsCS$censrec, x = gbcsCS$nodes,
seed = 300716, algorithm = 'kmedians', k = 3)

Call:
ksurvcurves(time = gbcsCS$rectime, status = gbcsCS$censrec, x = gbcsCS$nodes,

k = 3, algorithm = "kmedians", seed = 300716)

Clustering curves in 3 groups

Number of observations: 640
Cluster method: kmedians

More information related to the output above can be obtained running the summary function.

Application to Multiple Myeloma Study Data

In this case, a study of the survival in patients with multiple myeloma (MM) cancer was conducted.
256 individuals were included from the start of the follow-up to whom were analyzed and collected 16
variables. This data set is freely available in the survminer package. Below, it is shown the first rows
of the data.frame with columns such as treatment (treatment), life state indicator (event; censored –
0; 1 – dead), survival time (time, in months), among others.
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> library(survminer)
> data(myeloma)
> head(myeloma[,1:5])

molecular_group chr1q21_status treatment event time
GSM50986 Cyclin D-1 3 copies TT2 0 69.24
GSM50988 Cyclin D-2 2 copies TT2 0 66.43
GSM50989 MMSET 2 copies TT2 0 66.50
GSM50990 MMSET 3 copies TT2 1 42.67
GSM50991 MAF <NA> TT2 0 65.00
GSM50992 Hyperdiploid 2 copies TT2 0 65.20

In this example, it is interesting to analyze if the survival in patients with MM disease is the same
for the different molecular subgroups. If there is an effect of the molecular subgroups on the survival,
future therapies that might exploit molecular insights should lead to an improvement in outcome for
patients with these types of disease (Zhan et al., 2006).

Below, a summary of the results of the survclustcurves function obtained with time, event, and
molecular_group as input variables and for both kmedians and kmeans algorithms are shown.

> fit.mye <- survclustcurves(time = myeloma$time, status = myeloma$event,
x = myeloma$molecular_group, nboot = 500, seed = 300716,
algorithm = 'kmedians', cluster = TRUE)

Checking 1 cluster...
Checking 2 clusters...

Finally, there are 2 clusters.
> summary(fit.mye)

Call:
survclustcurves(time = myeloma$time, status = myeloma$event,

x = myeloma$molecular_group, nboot = 500, algorithm = "kmedians",
cluster = TRUE, seed = 300716)

Clustering curves in 2 groups

Number of observations: 248
Cluster method: kmedians

Factor's levels:
[1] "Cyclin D-1" "Cyclin D-2" "Hyperdiploid" "Low bone disease"
[5] "MAF" "MMSET" "Proliferation"

Clustering factor's levels:
[1] 1 1 1 1 1 2 2

Testing procedure:
H0 Tvalue pvalue

1 1 31.31603 0.026
2 2 14.94269 0.682

Available components:
[1] "num_groups" "table" "levels" "cluster" "centers" "curves"
[7] "method" "data" "algorithm" "call"

> fit.mye2 <- survclustcurves(time = myeloma$time, status = myeloma$event,
x = myeloma$molecular_group, nboot = 500, seed = 300716,
algorithm = 'kmeans', cluster = TRUE)

Checking 1 cluster...
Checking 2 clusters...

Finally, there are 2 clusters.
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> summary(fit.mye2)

Call:
survclustcurves(time = myeloma$time, status = myeloma$event,

x = myeloma$molecular_group, nboot = 500, algorithm = "kmeans",
cluster = TRUE, seed = 300716)

Clustering curves in 2 groups

Number of observations: 248
Cluster method: kmeans

Factor's levels:
[1] "Cyclin D-1" "Cyclin D-2" "Hyperdiploid" "Low bone disease"
[5] "MAF" "MMSET" "Proliferation"

Clustering factor's levels:
[1] 1 1 1 1 1 2 2

Testing procedure:
H0 Tvalue pvalue

1 1 4.500272 0.032
2 2 1.108812 0.730

Available components:
[1] "num_groups" "table" "levels" "cluster" "centers" "curves"
[7] "method" "data" "algorithm" "call"

When comparing the results obtained through the two methods (kmeans, kmedians), it is seen
that the obtained number of clusters is the same (2 groups), even the assignment of the curves to the
groups.

In particular, results obtained reveal that MMSET level and Proliferation level are associated with
a high-risk or damage on the lifetime, while MAF, Low bone disease, Hyperdiploid, Cycline D-1, and
Cycline D-2 have higher survival probabilities. This is observed in the plot shown in Figure 3, which
can be obtained using the following input command:

> autoplot(fit.mye, groups_by_color = TRUE)

Application to Barnacle’s Growth Study Data

This study was conducted on the Atlantic coast of Galicia (Northwest Spain), which consists of an
approximately 1000km long shoreline with extensive rocky stretches exposed to tidal surges and wave
action that are settled by the Pollicipes pollicipes (Gmelin, 1789) populations targeted for study. A total
of 5000 specimens were collected from five sites of the region’s Atlantic coastline and corresponded to
the stretches of coast where this species is harvested: Punta do Mouro, Punta Lens, Punta de la Barca,
Punta del Boy and Punta del Alba. Two biometric variables of each specimen were measured: RC
(Rostro-carinal length, maximum distance across the capitulum between the ends of the rostral and
carinal plates) and DW (Dry Weight). This data set (barnacle5) is available in the clustcurv package.
The idea of this study is to know the relation between RC and DW variables along the coast, i.e.,
to analyze if the barnacle’s growth is similar in all locations or by contrast, if it is possible to detect
geographical differentiation in growth. A sample of the dataset is shown as follow:

> data("barnacle5")
> head(barnacle5)

DW RC F
1 0.52 12.0 laxe
2 1.46 18.9 laxe
3 0.05 6.4 laxe
4 0.17 9.4 laxe
5 0.05 6.2 laxe
6 0.41 12.2 laxe
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Figure 3: Estimated survival curves for each of the levels of the variable molecular group. A specific
color is assigned for each curve according to the group to which it belongs using the K-medians
algorithm, two groups, K = 2.

For each location (F), nonparametric regression curves were estimated to modeling the dependence
between RC and DW. In order to determine groups, we used the proposed methodology in Subsection
2.2.2. Through executing the next piece of code, the following results can be obtained: one estimated
curve was attributed to the first group (Punta Lens), two estimated curves were assigned to group
2 (Punta de la Barca and Punta del Boy), and the other two belong to group 3 (Laxe do Mouro and
Punta del Alba) (Figure 4). In this example, the regclustcurves function was used with algorithm =
'kmeans' and the input variables y, x, z.

> fit.bar <- regclustcurves(y = barnacle5$DW, x = barnacle5$RC, z = barnacle5$F,
nboot = 500, seed = 300716, algorithm = 'kmeans', cluster = TRUE)

Checking 1 cluster...
Checking 2 clusters...
Checking 3 clusters...

Finally, there are 3 clusters.

> summary(fit.bar)

Call:
regclustcurves(y = barnacle5$DW, x = barnacle5$RC, z = barnacle5$F,

nboot = 500, algorithm = "kmeans", cluster = TRUE, seed = 300716)

Clustering curves in 3 groups

Number of observations: 5000
Cluster method: kmeans

Factor's levels:
[1] "laxe" "lens" "barca" "boy" "alba"

Clustering factor's levels:
[1] 2 1 3 3 2

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 177

Testing procedure:
H0 Tvalue pvalue

1 1 0.94353014 0.000
2 2 0.15463483 0.034
3 3 0.02348982 0.422

Available components:
[1] "num_groups" "table" "levels" "cluster" "centers" "curves"
[7] "method" "data" "algorithm" "call"

As can be seen, Figure 4 obtained using the following input command. The specimens from
Punta de la Barca and Punta del Boy have similar morphology, wide and short. This is due to these
zones present similar oceanographic characteristic, such as exposed rocky shore to waves and highly
articulated. Unlike, the barnacles collected from Laxe do Moure and Punta del Alba are narrow and
long because they are less exposed locations. Finally, Punta Lens is an intermediate coast, alternating
sections of steep coast with large sand.

> autoplot(fit.bar, groups_by_color = TRUE)
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Figure 4: Estimated regression curves for each of the levels of the factor. A specific color is assigned
for each curve according to the group to which it belongs using the K-means algorithm (in this case,
three groups, K = 3).

Application to simulated data

Finally, this subsection reports the capabilities of the clustcurv package in a more complicated simu-
lated scenario. We consider the regression models given in (1) for j = 1, . . . , 30, with

mj(Xj) =



Xj + 1 if j ≤ 5
X2

j + 1 if 5 < j ≤ 10
2 sin (2 Xj) if 10 < j ≤ 15
2 sin (Xj) if 15 < j ≤ 20
2 sin (Xj) + a eXj if 20 < j ≤ 25
1 if j > 25,

(3)

where a is a real constant, Xj is the explanatory covariate drawn from a uniform distribution [−2, 2],
and ε j is the error distributed in accordance to a N(0, σj(x)). We have considered the heteroscedastic
scenario where σj(x) = 0.5 + 0.05mj(x) · N(0, 1.5).
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We explore the methodology considering the null hypothesis H0(5) of assignment of the mj curves
into five groups (K = 5). To show the performance of our procedure, two values were considered
for a, 0 and 0.4. It should be noted that the value a = 0 corresponds to the null hypothesis, while
if a = 0.4 the number of groups is six. Particularly, we have defined an unbalanced scenario with
unequal sample sizes for each j curve, particularly, (n1, n2, . . . , nJ) ∼ Multinomial(n; p1, p2, . . . , pJ)

being pj = p∗j / ∑J
j=1 p∗j , with p∗j randomly drawn from {1, 1.5, 2, 2.5, 3} and n = 5000. Note that we

propose this procedure for generating the nj in order to obtain a completely unbalanced study.

The code for the generation of this dataset with a = 0 can be found below:

> m <- function(x, j) {
y <- numeric(length(x))
y[j <= 5] <- x[j <= 5] + 1
y[j > 5 & j <= 10] <- x[j > 5 & j <= 10] ^ 2 + 1
y[j > 10 & j <= 15] <- 2 * sin(2 * x[j > 10 & j <= 15]) #- 4
y[j > 15 & j <= 20] <- 2 * sin(x[j > 15 & j <= 20])
y[j > 20 & j <= 25] <- 2 * sin(x[j > 20 & j <= 25]) + a * exp(x[j > 20 & j <= 25])
y[j > 25] <- 1
return(y)

}

> seed <- 300716
> set.seed(seed)
> n <- 5000
> a <- 0.0
> x <- runif(n, -2, 2)
> prob <- sample(c(1, 1.5, 2, 2.5, 3), 30, replace = TRUE)
> prob <- prob/sum(prob)
> f <- sample(1:30, n, replace = TRUE, prob = prob)
> N <- length(unique(f))
> error <- rnorm(n,0,1.5)
> y <- m(x, f) + (0.5 + 0.05 * m(x, f)) * error
> data <- data.frame(x, y, f)

In order to determine groups of the generated curves, the user has to execute the next piece of
code. As expected, when a = 0, the number of groups selected is five.

> fit.sim <- regclustcurves(x = data$x, y = data$y, z = data$f, nboot = 500,
algorithm = 'kmedians', cluster = TRUE, seed = 300716)

Checking 1 cluster...
Checking 2 clusters...
Checking 3 clusters...
Checking 4 clusters...
Checking 5 clusters...

Finally, there are 5 clusters.
> fit.sim

Call:
regclustcurves(y = data$y, x = data$x, z = data$f, nboot = 500,

algorithm = "kmedians", cluster = TRUE, seed = 300716)

Clustering curves in 5 groups

Number of observations: 5000
Cluster method: kmedians
> autoplot(fit.sim, groups_by_colour = TRUE, centers = TRUE)

Additionally, for different values of a (a > 0), our procedure should determine 6 groups. For
instance, for a = 0.4, it selects the true number of groups (K = 6) typing the commands below:

> seed <- 300716
> set.seed(seed)
> n <- 5000
> a <- 0.4
> x <- runif(n, -2, 2)
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> prob <- sample(c(1, 1.5, 2, 2.5, 3), 30, replace = TRUE)
> prob <- prob/sum(prob)
> f <- sample(1:30, n, replace = TRUE, prob = prob)
> N <- length(unique(f))
> error <- rnorm(n,0,1.5)
> y <- m(x, f) + (0.5 + 0.05 * m(x, f)) * error
> data2 <- data.frame(x, y, f)
> fit.sim2 <- regclustcurves(x = data2$x, y = data2$y, nboot = 500, seed = 300716,

z = data$f, algorithm = 'kmedians', cluster = TRUE)
Checking 1 cluster...
Checking 2 clusters...
Checking 3 clusters...
Checking 4 clusters...
Checking 5 clusters...
Checking 6 clusters...

Finally, there are 6 clusters.
> fit.sim2

Call:
regclustcurves(y = data2$y, x = data2$x, z = data$f, nboot = 500,

algorithm = "kmedians", cluster = TRUE, seed = 300716)

Clustering curves in 6 groups

Number of observations: 5000
Cluster method: kmedians
> autoplot(fit.sim2, groups_by_colour = TRUE, centers = TRUE)

Figures 5 and 6 show the results with the simulated data with a = 0 and a = 0.4, respectively.
In this situation, the true number of groups is equal to 5 and 6. As can be appreciated, our method
seems to perform reasonably well for both values of a. For a = 0, the null hypothesis H0(5) is
accepted, curves assigned to each group are plotted with the same color. In the case of a = 0.4, the null
hypothesis H0(6) is accepted. Therefore, there are 6 groups of regression curves. Note that in both
plots, the centroids are colored in black because in the autoplot function, the argument centers =
TRUE.

Conclusion and further extensions of the R package

This paper discussed the implementation of some methods developed for determining groups of
multiple nonparametric curves in the R package clustcurv. In particular, the methods proposed are
focused on the framework of regression analysis and in the framework of survival analysis. In the
context of survival analysis, we restrict ourselves to survival curves. Hopefully, future versions of the
package will extend the methodology to determine groups in risk functions, cumulative hazard curves,
or density functions. The current version of the package implements two optimization algorithms, the
well-known K-means and K-medians. It can be interesting to let the user choose far from those, such
as Means-Shift or K-medoids algorithms.
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Benchmarking R packages for Calculation
of Persistent Homology
by Eashwar V. Somasundaram, Shael E. Brown, Adam Litzler, Jacob G. Scott, and Raoul R. Wadhwa

Abstract Several persistent homology software libraries have been implemented in R. Specifically,
the Dionysus, GUDHI, and Ripser libraries have been wrapped by the TDA and TDAstats CRAN
packages. These software represent powerful analysis tools that are computationally expensive and, to
our knowledge, have not been formally benchmarked. Here, we analyze runtime and memory growth
for the 2 R packages and the 3 underlying libraries. We find that datasets with less than 3 dimensions
can be evaluated with persistent homology fastest by the GUDHI library in the TDA package. For
higher-dimensional datasets, the Ripser library in the TDAstats package is the fastest. Ripser and
TDAstats are also the most memory-efficient tools to calculate persistent homology.

1 Introduction

Topological data analysis (TDA) is a broad set of methodologies that characterizes structural features
of datasets inspired by topological principles. It has a broad range of usage, from viral evolution to
physical chemistry (Chan et al., 2013; Offroy and Duponchel, 2016). Within the umbrella of TDA,
persistent homology represents an algebraic approach to understanding the number, characteristics,
and persistence of structural features in an n-dimensional point cloud. In the basic workflow of
persistent homology, a series of simplicial complexes are generated on point clouds to characterize
topological features. There are several methods to generate these complexes on point clouds. In this
paper, we focus on persistent homology of the Vietoris-Rips and alpha complexes, which use simplicial
complexes to approximate topologic relationships in point clouds. The exact method of constructing
these complexes is described in the Mathematics section. Essentially, we measure features that are
discovered by the algorithm at a particular stage and disappear at a later stage. The difference between
these stages is persistence. Features with larger persistence more likely represent real geometric
patterns rather than noise.

There are several C++ libraries available to researchers that calculate alpha and Vietoris-Rips
complexes, such as Dionysus, GUDHI, and Ripser (Morozov, 2018; Maria et al., 2016; Bauer, 2019).
These libraries have been wrapped in R by the TDA and TDAstats packages (Fasy et al., 2019; Wadhwa
et al., 2018). Although useful, calculating persistent homology for large datasets is often limited due to
computational complexity (Otter et al., 2017). As a result, researchers often limit persistent homology
analysis to lower dimensions. However, ignoring features in higher dimensions may cause significant
information loss, underutilizing persistent homology’s capabilities. Here, we aim to benchmark two
R packages - TDA and TDAstats - and enable researchers to most efficiently calculate persistent
homology in R.

2 Mathematics of Persistent Homology

An n-dimensional simplex is the convex hull of n + 1 points in a Euclidean space. More intuitively, an
n-dimensional simplex is the simplest n-dimensional object (e.g., a 0-simplex is a point, a 1-simplex
is a line, a 2-simplex is a triangle, 3-simplex is a tetrahedron). These simplices can be glued together
on common sub-simplices to form a simplicial complex (e.g., two triangles sharing a common side).
In a simplicial complex, topological features will arise that can be characterized by Betti numbers.
Each Betti number, denoted by Bk, k counts the number of features in dimension k. B0 counts the
number of connected components, B1 counts refer to loops, B2 counts the number of voids, and so on
(Edelsbrunner and Harer, 2008).

There are several different methods to construct a simplicial complex on a given point cloud S, but
this paper focuses on the Vietoris-Rips and alpha complexes. The Vietoris-Rips complex is perhaps
the most common method for constructing a simplicial complex to calculate persistent homology
(Hausmann, 1996). In a point cloud of k points in 2 dimensions, a distance parameter, δ > 0, can
be used to draw a circle of diameter δ around every point in S. For point clouds in 3 dimensions,
spheres of diameter δ are drawn around each point. For dimensions k greater than 3, a k-dimensional
hypersphere is drawn around each point. The remainder of this explanation will focus on the 2-
dimensional case. If δ is sufficiently large, then some of the resulting circles may intersect. In this case,
a line is drawn to connect the points at the center of the intersecting circles. When a triple of points
is connected, we add a triangle (2-simplex). When a quadruple of points are connected, we add a
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Figure 1: Basic Visualization of the Vietoris-Rips Complex. For a given parameter, δ, δ-diameter
circles are drawn around each point. If two circles intersect, a point is drawn between their centers. As
δ continues to grow, more circles intersect, filling out the simplicial complex. Features on the simplicial
complex appear and die as δ increases. These features’ dimensions, birth, and death are recorded in an
nx3 matrix. Eventually, the full convex hull is drawn, ending the "filtration" process.

tetrahedron (3-simplex) and so forth. However, we only add simplices at most of the dimension of
the space of the point clouds (e.g., only up to 3-simplices are added in a 3-dimensional point cloud).
This group of points and lines form the skeleton of a simplicial complex. For each distance parameter,
δ, there will be a single simplicial complex associated with it. As δ increases, different topological
features may appear, persist, and eventually disappear.

Once δ reaches the maximum Euclidean distance between any pair of points in the point cloud, a
convex hull will form around all k points creating a (k − 1)-dimensional simplex. A 3-column matrix
can be created recording the dimension of each feature, the δ at which that feature appeared, and the δ
at which it disappeared. This matrix characterizes the persistent homology of that point cloud.

Alpha complexes provide another method to generate simplicial complexes on the point cloud
S. For alpha complexes, we partition the whole space in which the data resides into cells such that
each cell contains exactly one data point x, and the cell of that data point is the set of all points closer
to x than any other data points. Such a partition is also known as a Voronoi diagram. The nerve of a
Voronoi diagram is equivalent to the Delaunay Triangulation (Edelsbrunner and Mücke, 1994). Alpha
complexes are simplicial complexes that are subsets of the Delaunay Triangulation. The parameter, α,
can describe the radius of a ball (dimension matches dimension of the space) of each point in the point
cloud S much, like δ describes the diameter of a circle in the Vietoris-Rips complex. We first intersect
the α radius balls with their own Voronoi cell and then search for intersections of these subsetted balls
to form simplices. Once α is large enough, the full Delaunay Triangulation is formed. In between these
stages, the birth and death of features at certain values of α can be captured in a 3-column persistent
homology matrix much like the Vietoris-Rips complex. One key difference from the Vietoris-Rips
complex is that edges can only form between neighboring points in the alpha complex.

In both methods, the boundary matrix records all simplicial complexes for each parameter value
(δ for Vietoris-Rips complexes and α for alpha complexes). Calculating persistent homology is divided

Figure 2: Basic visualization of the Alpha complex. For a given α, α-radius balls are drawn around
each point, and the union of the balls is taken. Then, an intersection between this union of α-balls and
the Vornoi diagram is taken. A connecting segment is drawn between points in adjacent Voronoi cells
once the α-ball fills out the Voronoi diagram. As α grows, more circles fill out the Voronoi cells. Once α
is large enough, the Delaunay Triangulation is formed.
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Figure 3: Calculating persistent homology of a torus with three TDA libraries. Median runtime (min
to max, n = 10 iterations per data point) for each TDA library (denoted by color) is plotted against
point cloud size. Homological features of up to 2 dimensions were calculated. Time complexity follows
a power law for all three libraries (see GitHub repo for regression details). Although the libraries
have similar runtimes for smaller point clouds, Dionysus has a clear disadvantage when the number
of points exceeds 100. When the number of points exceeds 200, Ripser has a clear advantage over
GUDHI, which maintains its advantage over Dionysus.

into two steps: (1) forming the boundary matrix and (2) reducing the boundary matrix to be able to
read off the topological features of each dimension and their birth/death values of the parameter. The
second step can be computed in at most O(kˆ3) steps, where k is the number of rows (and columns) of
the boundary matrix. The size of the boundary matrix can describe the memory complexity on the
random access memory (RAM) for persistent homology calculations. We compare memory complexity
between alpha and Vietoris-Rips complexes in this paper.

Alpha complex calculations have a run time complexity of O(nd/2), and Vietoris-Rips complex
calculations have a run time complexity of O(2n), where n is the number of points and d is the point
cloud dimension (Otter et al., 2017). Vietoris-Rips’s run time and memory are exponential with regards
to point number (but constant with data dimension) in contrast to alpha complexes where run time
and memory are polynomial with point number (but exponential with data dimension). Therefore,
we can predict that low dimensional point clouds favor alpha complexes, but fewer points in higher
dimension favor Vietoris-Rips complexes.

3 Methods

We use readr v1.3.1 to read rectangular data (Wickham et al., 2018), ggplot2 v3.2.1 (Wickham, 2016),
scatterplot3d v0.3-41 (Ligges and Mächler, 2003), recexcavAAR v0.3.0 (Schmid and Serbe, 2017), deldir
v0.1 (Turner, 2020), ggtda v0.1 (Brunson et al., 2020), and magick v2.2 (Ooms, 2019) to visualize data,
bench v1.0.4 to collect benchmark data (Hester, 2019), TDA v1.6.9 (Fasy et al., 2019) and TDAstats
v0.4.1 (Wadhwa et al., 2018) to calculate persistent homology of Vietoris-Rips and alpha simplicial
complices, and pryr v0.1.4 for calculations involving R objects (Wickham, 2018). Median runtime
calculations are shown along with the minimum and maximum of 10 iterations per benchmark.
Datasets were generated by sampling functions in base R to generate points uniformly distributed
over circles (dimension = 2), spheres (dimension = 3), filled squares (dimension = 2), filled cubes
(dimension = 3, 4), and tori (dimension = 3). The number of points per point cloud varied from 25 to
500 along with intervals of 25 points, which were empirical limits chosen after considering available
computational resources. For consistency between software libraries, the minimum and maximum
simplicial complex radii were predetermined for each point cloud and provided as parameters to
the TDA and TDAstats R packages. Within the TDA package, benchmark data was collected for the
GUDHI (Maria et al., 2016) and Dionysus (Morozov, 2018) libraries; within the TDAstats package,
benchmark data was collected for the Ripser (Bauer, 2019) library. As alpha complex calculation
was only implemented in GUDHI, alpha complex benchmark data was naturally only collected for
the single library. Measuring memory usage proved challenging since all the libraries calculating
persistent homology were implemented in either C++ or Java and then wrapped in R as part of a
CRAN package. Thus, memory burden was indirectly measured by using boundary matrix size as a
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Figure 4: Calculating persistent homology of round point clouds of varying dimensions with
three TDA libraries. Median runtime (min to max, n = 10 iterations per data point) for each TDA
library (denoted by color) is plotted against point cloud size and faceted by data dimension. The left
panel compares library performance for a 2-dimensional circular point cloud, the center panel for a
3-dimensional spherical point cloud, and the right panel for a 4-dimensional hyperspherical point
cloud. Maximum feature dimensions (one less than the data dimension) were calculated in each case.

proxy. Given that Ripser optimizes computation of persistent homology by avoiding calculation of a
boundary matrix, memory use benchmarks are not provided for Ripser and, consequently, TDAstats.

Benchmark data were collected twice - once on a local machine and once on a remote computing
node, each of which featured 16 GB RAM. Both datasets were compared for consistency and are
publicly available at the repository linked below. Data from the remote computing node is visualized
in this report. The larger point clouds required more than 16 GB of RAM to calculate persistent
homology using a subset of the libraries; attempts to compute results resulted in runtime errors, and the
corresponding output is missing from the corresponding figures and tables. Fully reproducible code for
all numerical results and figures can be found at https://github.com/eashwarsoma/TDA-benchmark.
This GitHub repository also contains instructions for generating the Supplement referenced in this
report’s results. Video explanations of TDA concepts and reproducing all results in this report can be
found at https://tinyurl.com/TDABench.

4 Results

Computing persistent homology of a canonical torus grants quick insight into efficiency of each library
(Figure 3). Dionysus exhibits the longest median runtime, and, although Ripser and GUDHI have
similar runtimes for smaller point clouds, as the number of points increases Ripser eventually has a
significant lead. Next, we compare library performance with multiple canonical datasets to ensure
that the noted pattern generalizes.

Tori do not trivially generalize to other dimensions, but circles do. Benchmarking on a circular
point cloud permits confirmation of the pattern in Figure 3 while also revealing how the libraries
compare as the dataset dimension increases. Figure 4 exhibits the resulting data for a 2-dimensional
circle (left panel), 3-dimensional sphere (center panel), and 4-dimensional hypersphere (right panel).
When the dataset dimension equals 2, GUDHI practically matches Ripser’s performance in outpacing
Dionysus. However, in the case of the 3-dimensional sphere, the pattern visualized in Figure 3 for
the 3-dimensional torus is again present. By the 4th dimension, the gap between Ripser and GUDHI
widens. Of note, missing points for larger datasets in Figure 4 are not plotted if and only if calculating
persistent homology caused an error due to insufficient RAM. Thus, for the hypersphere, Ripser was
able to calculate persistent homology for a dataset with approximately 3 times as many points as
Dionysus and over 2 times as many as GUDHI. Interestingly, all curves plotted in Figure 4 grow
polynomially with respect to the number of points (see Supplement for regression details).

Large data and feature dimensionality often restrict persistent homology calculations to small point
clouds due to computational limits. When calculating persistent homology on a high-dimensional
point cloud, as Vietoris-Rips feature dimension increases, there is a corresponding increase in runtime
(Figure 5). Dionysus is clearly outmatched by GUDHI and Ripser as feature dimension increases, with
the difference being clearest for larger point clouds; by feature dimension 5, Ripser outpaces GUDHI
as well (Figure 5). It is unclear whether runtime for each library grows polynomially or exponentially
(see Supplement for regression details).

Even with a constant feature dimension, the underlying data dimension could play a role in
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Figure 5: Comparison of Vietoris-Rips complex persistent homology calculation as a function of
feature dimension. Median runtime (min to max, n = 10 iterations per data point) for various point
cloud sizes (denoted by color) is plotted against the calculated feature dimension and faceted by TDA
library. Persistent homology was calculated on a uniformly distributed random sample of points
contained within a 1 unit, 8-dimensional cube. Computational limitations of calculating persistent
homology for a large number of feature dimensions restricted point clouds to relatively small sizes.

the runtime of persistent homology calculation. Figure 6 compares the handling of this issue by
the Vietoris-Rips complex and the alpha complex. Since GUDHI is the only library implementing
functionality with an alpha complex, we compare its implementations of the Vietoris-Rips and alpha
complices. Due to computational limitations, an alpha complex could not be calculated for any point
clouds with data dimensions exceeding 3. Two notable aspects of Figure 6 stand out. First, the
alpha complex calculation clearly runs faster than the Vietoris-Rips complex calculation, a trend that
becomes clearer as point cloud size increases. Second, although the Vietoris-Rips complex calculation
runtime appears to be independent of the underlying data dimension, the alpha complex calculation
is dependent on it. Figure 6 shows a subtle difference between data dimensions 2 and 3 as point cloud
size increases. Although unconcerning for a data dimension up to 3, failure to run any alpha complex
calculations with a data dimension of 4 could be cause for concern.

In addition to runtime differences, the three Vietoris-Rips homology engines differ in memory use.
All three engines appeared to follow power law growth, with a linear trend on log-log plots (Figure
7). However, for nearly all combinations of point cloud dimension and shape, TDAstats used the
least memory, and Dionysus used the most, with TDAstats also growing with the smallest power law
exponent as the number of points increased for most point clouds. For most point clouds, runtime and
memory complexity for TDAstats (Ripser) grew with a power function at least one degree less than
the other engines (Figure 8).

5 Discussion

As persistent homology calculations continue to become a more popular tool to analyze complex
multidimensional data, it will be important to understand from a computational perspective which
method to use. In this paper, we examined two forms of persistent homology complexes: Vietoris-
Rips and alpha complexes. Both algorithms describe topological features through the generation of
simplicial complexes. The advantage in saving computational time by choosing a particular algorithm
depends on point cloud characteristics.

Figure 9 shows that at high point cloud sizes, GUDHI’s alpha complex outperforms Ripser.
Theoretically, alpha complexes gain polynomial run time complexity as the number of points increases,
whereas Vietoris-Rips complexes gain exponential run time complexity (Otter et al., 2017). Specifically,
alpha complexes are O(nd/2), and Vietoris-Rips complexes are O(2n), where n is the number of points
on a point cloud and d is the dimensions on the point cloud. For the conditions in our paper, Vietoris-
Rips and alpha complexes both performed better than their theoretical maximums. Vietoris-Rips
complex calculations consistently had a polynomial growth for both runtime and memory, while alpha
complexes had linear runtime growth.

Based on the theoretical complexity and our results, alpha complexes are superior for point clouds
with 3 or fewer dimensions. This advantage becomes especially clear at a high number of points.
This difference in performance is clear in both runtime and memory use. Interestingly, while alpha
complexes had overall less memory use, the memory use varied depending on the shape. Alpha
complexes seem to require more memory for noisier data sets such as the annulus when compared to
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Figure 6: Comparing persistent homology calculation between Vietoris-Rips and alpha complices.
Median runtime (min to max, n = 10 iterations per data point) for various data dimensions (denoted
by color) are plotted against point cloud size and faceted by type of simplicial complex. Maximum of
feature dimension was kept constant at 1. Alpha complex runtimes are linear, in contrast to polynomial
Vietoris-Rips runtimes (see Supplement for regression details).
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Figure 7: Comparing memory use of Vietoris-Rips persistent homology engines. Each column title
corresponds to point cloud dimension; each row title lists point cloud shape; each persistent homology
engine is represented by points of a distinct shape and color. For point clouds containing more than
50 points, there appears to be a linear trend on the log-log axes. Data for 2- and 4-dimensional tori
were not collected because a torus does not trivially generalize to dimensions other than 3. Missing
points for GUDHI and Dionysus in the 4-dim plots indicate that persistent homology calculation was
terminated since memory requirement exceeded available RAM (32 GB).
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Figure 8: Big-O exponents for runtime and memory complexity as point cloud size varies. In the
majority of cases, Ripser (and consequently, TDAstats) has the lowest exponent, indicating the slowest
growth in complexity as point cloud size increases. Due to shape constraints, torus only has data
available in the third dimension.

Figure 9: Runtime comparison of persistent homology calculation between Ripser’s Vietoris-Rips
and GUDHI’s alpha complex functionality. Median runtime (min to max n = 10 iterations per data
point) for various 3-dimensional point cloud structures (facet) plotted against point cloud size for each
library (color). Benchmarking was conducted on an annulus (top-left), a sphere (top-right), a torus
(bottom-left), and a cube (bottom-right). Data was not collected for data dimensions greater than 3
due to computational limitations of calculating alpha complices.
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the sphere.

However, without sufficient computational resources, alpha complexes were not usable for point
cloud dimensions greater than 3. If a point cloud has more than 3 dimensions, then it could undergo
pre-processing with dimension reduction before using alpha complexes. Note, it is possible an
algorithm will eventually be developed to enable alpha complex computation of higher-dimensional
data. However, if data dimension cannot be reduced without significant information loss, then Vietoris-
Rips complexes should be used. It should be stated that if a point cloud is compatible with both
complexes, both analyses should be performed as there may be a variation in the persistent homology
matrix. This is because alpha complexes satisfy the Nerve Theorem (Edelsbrunner and Mücke, 1994),
which implies that they are topologically equivalent to the true underlying topology of the dataset;
in contrast, Vietoris-Rips complexes only approximate the underlying topology (Hausmann, 1996).
Among the tested Vietoris-Rips engines, Ripser (wrapped by TDAstats) has the fastest calculation
time. GUDHI and Dionysus (wrapped by TDA) significantly fall behind as feature dimension and
number of points increase.

On average, Ripser computed the persistent homology of a Vietoris-Rips complex with less
memory than either GUDHI or Dionysus. Thus, when efficiency is critical, useRs would likely find
TDAstats the appropriate library. However, TDA contains an entire library of features not available in
TDAstats. Specifically, TDA allows kNN density estimation, kernel density estimation, density-based
clustering, and dendrogram visualization, among other useful functionality. When computational
resources are plenty, when point clouds are small and low-dimensional, or when the aforementioned
functionality is required, TDA will likely be more appropriate than TDAstats. Both packages are
hosted on CRAN.

While Vietoris-Rips complexes can handle high-dimensional data well, the calculation still sig-
nificantly slows down when looking for higher dimension features. This is evidenced by the big-O
polynomial growth for runtime and memory that have degree less than 4 for most 2-dimensional point
clouds, but degree between 4 and 6 for most 4-dimensional point clouds (Figure 8); even higher degree
complexities should be expected as point cloud dimension increases. Thus, finding high-dimensional
topological features in high-dimensional point clouds remains a challenge. Methods to calculate
persistent homology do exist for other simplicial complexes, such as the Delaunay complex and the
Witness complex, but, to our knowledge, they are not currently implemented in CRAN packages.
Future challenges would be creating and implementing algorithms that reduce the computational
complexity of higher-dimensional topological feature calculations for R.
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Statistical Quality Control with the qcr
Package
by Miguel Flores, Rubén Fernández-Casal, Salvador Naya, Javier Tarrío-Saavedra

Abstract The R package qcr for Statistical Quality Control (SQC) is introduced and described. It
includes a comprehensive set of univariate and multivariate SQC tools that completes and increases
the SQC techniques available in R. Apart from integrating different R packages devoted to SQC (qcc,
MSQC), qcr provides nonparametric tools that are highly useful when Gaussian assumption is not
met. This package computes standard univariate control charts for individual measurements, x̄, S, R,
p, np, c, u, EWMA, and CUSUM. In addition, it includes functions to perform multivariate control
charts such as Hotelling T2, MEWMA and MCUSUM. As representative features, multivariate
nonparametric alternatives based on data depth are implemented in this package: r, Q and S control
charts. The qcr library also estimates the most complete set of capability indices from first to
the fourth generation, covering the nonparametric alternatives, and performing the corresponding
capability analysis graphical outputs, including the process capability plots. Moreover, Phase I and
II control charts for functional data are included.

1 Introduction

Throughout the last decades, there has been an increasing interest to measure, improve, and control
the quality of products, services, and procedures. This is connected to the strong relationship
between quality, productivity, prestige, trust, and brand image. In fact, implementing procedures of
statistical quality control (SQC) is currently related to increasing companies’ competitiveness.
The concept of quality control has been extended from the first definitions based on the idea
of adjusting production to a standard model to satisfy customer requirements and include all
participants. Nowadays, SQC is not only applied to manufactured products but to all industrial and
service processes.
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Figure 1: Statistical tools applied in each steps of the Six Sigma methodology.

The use of different SQC techniques was standardized With the development of the Six Sigma
method by Motorola in 1997 (Pande et al., 2000). Six Sigma is a methodology or even philosophy
focused on variability reduction that promotes the use of statistical methods and tools in order to
improve processes in industry and services. The Six Sigma application is composed of five stages:
Define, Measure, Analyze, Improve, and Control (DEMAIC). Figure 1 shows some representative
statistical techniques applied in each of the Six Sigma stages. The two most representative statis-
tical tools of SQC are the control charts and the process capability analysis (Montgomery, 2009).
Therefore, the proposed qcr package has been developed in order to provide users a comprehensive
and free set of programming tools to apply control charts and perform capability analysis in the
SQC framework.

The control stage is characterized by the use of tools based on anomaly detection and correction
(Montgomery, 2009). The most representative techniques of this stage and the primary tool of the
Statistical Process Control (SPC) are the control charts (Champ and Woodall, 1987). They have been
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developed to evaluate the process performance and at any time. The use of control charts prevents
the process from getting out of control, and helping to detect the assignable causes corresponding to
variations of the critical-to-quality features (CTQs), thus performing process changes when actually
required. Furthermore, control charts provide estimates of the natural range of process variation
(natural control limits), allowing us to compare this range with those limits specified by standards,
company managers, or customers (specification limits). Hence, the process monitoring can be carried
out by comparing each new observation with these natural limits, preventing defects in the final
product. Briefly, a control chart is a two-dimensional graph whose axis represents the variable or
attribute that is being monitored (CTQ variables). The estimation of natural control limits of the
CTQ variables is developed by a process composed of two phases: In Phase I, the natural control
limits are estimated using a preliminary sample (calibration sample) where we assume that the
causes of variation are only random. In Phase II, each new observation is plotted on the control
chart along with the natural limits obtained in the previous step. The set of new observations
(twhich are not used to calculate the natural control limits) make up the so-called monitoring sample.
Patterns, observations of out of control limits, runs of more than six observations on one side of the
central line, among others, are some of the different criteria to identify out of control states in a
specific process, providing also valuable information about the detection of any assignable causes of
variation in the monitoring.
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Figure 2: Control charts implemented in the qcr package.

The most used control charts are based on the assumptions of normality and independence of
the studied CTQ variables. These charts are used to control the position and dispersion of CTQ
attributes and variables. Figure 2 shows some of the most important types of control charts. These
can be classified according to the type of feature that is being controlled (attribute or variable),
the variable dimension (univariate or multivariate), and assuming or not a parametric distribution
of the variable (parametric or nonparametric). The qcr package provides charts for the mean (x̄),
standard deviation (s), range (R), individual measurements (I), moving ranges (MR), proportion
of nonconforming units (p), number of nonconforming units (np), number of defects per unit (c),
mean number of defects per control unit (u), exponentially weighted moving average (EWMA), and
cumulative sum control chart (CUSUM). The last two techniques are also called memory control
charts, and they are specially designed to detect shifts of less than two standard deviations, both
when using rational samples or individual measurements. On the other hand, new control charts
based on the concept of data depth and developed by Liu (1995) are implemented in qcr. Those
are the r, Q, and S control charts, the nonparametric alternatives for individual measurements,
mean control chart, and CUSUM control chart, respectively. When more than one variable defines
the process quality, multivariate control charts are applied. If the Gaussian assumption is met, the
Hotelling T2 control chart can be applied. If we want to detect small deviations, multivariate EWMA
(MEWMA) and multivariate CUSUM (MCUSUM) can be implemented. When no parametric
distribution is assumed, r, Q, and S charts can be used.

Another interesting SQC tool, which is very useful in the industry, is the Process Capability
Analysis (PCA). It estimates how well a process meets the tolerances defined by the company,
customers, standards, etc., by comparing the specification tolerances with respect to the natural
range of variation of CTQ features. The capability of the process is measured using capability
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indicators. Process Capability Ratio (PCR) is a numerical score that helps the manufacturers know
whether the output of a process meets the engineering specifications. Large PCR values show that
the industrial or service process is capable of meeting the customer requirements. There have been
many different PCRs developed in the last four decades that require the Gaussian assumption for
the CTQ variable (Boyles, 1991). However, many processes in industry and real applications do not
meet this hypothesis. Thus, we could innacuratelly estimate the capability using PCR. Hence, many
authors have studied different nonparametric alternatives to traditional PCR (Polansky, 2007).

The qcr package has been developed in R (R Core Team, 2021) under the GNU license. Nowadays,
there are other R packages that currently provide quality control tools for users. The use of each
one is shown in Figure 3.

The qcc package (Scrucca, 2004) was developed by Professor Luca Scrucca of the Department of
Economics, Finance, and Statistics at the University of Perugia. It enables us to perform Shewhart
quality control charts for variables and attributes, as well as the CUSUM and EWMA charts for de-
tecting small changes in the CTQ variable. Multivariate analysis is performed applying the Hotelling
T2 control chart. Additionally, it has functions implemented to obtain the operating characteristic
curves (OC) and to estimate process capability analysis indices. Pareto and Ishikawa diagrams are
also implemented. Otherwise, the IQCC package (Barros, 2017) is maintained by Professor Emanuel
P. Barbosa of the Institute of Mathematics in the State University of Campinas. It has a smaller
number of control charts implemented, but it incorporates multivariate graphics. The qualityTools
package (Roth, 2016) was developed to aid learning in quality sciences. Figure 3 shows some of
its utilities, e.g., capability analysis (providing a comprehensive set of parametric distributions)
and design of experiments. In addition, the SixSigma library (Cano et al., 2012, 2015) provides al-
ternative functions to qualityTools and qcc packages and the possibility of implementing process maps.
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Figure 3: Comparison between the main packages in R devoted to Statistical Quality Control and
the qcr package.

Furthermore, there are other libraries specifically focused on control chart applications. Namely,
the spcadjust (Gandy and Kvaloy, 2013) that allows us to estimate the calibration control limits of
Shewhart, CUSUM, and EWMA control charts, and the spc (Knoth, 2021) which provides tools
for the evaluation of EWMA, CUSUM, and Shiryaev-Roberts control charts by using Average Run
Length and RL quantiles criteria. Moreover, the MSQC package (Santos-Fernandez, 2013) is a set
of tools for multivariate process control, mainly control charts. It contains the main alternatives
for multivariate control charts such as Hotelling (T2), Chi-squared, MEWMA, MCUSUM, and
Generalized Variance control charts. It also includes some tools to evaluate the multivariate normal
assumption. The corresponding multivariate capability analysis can be performed using the MPCI
library (Santos-Fernández and Scagliarini, 2012) that provides different multivariate capability
indices. It is also interesting to mention the edcc package (Zhu and Park, 2013) for its economic
design of control charts by minimizing the expected cost per hour of the studied process.

It is important to emphasize that the qcr package also includes new applications such as
nonparametric approaches of control charts and capability indices (also covering the capability plots),
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which are currently unavailable in the R software.

2 Datasets in the qcr package

The qcr package contains new databases (see table 1) based on study cases tackled by the authors
during their professional activity as well as well-known datasets implemented on other packages
focused on statistical quality control such as:

• archery1: It consists of a stage in which the archer shoots 72 arrows. The information is
given in x and y coordinates. It is implemented in the MSQC package (Santos-Fernandez
2013).

• circuit: Number of nonconformities observed in 26 successive samples of 100 printed circuit
boards. It is implemented in the qcc package (Scrucca 2004).

• dowel1: Diameter and length of a dowel pin. It is implemented in the MSQC package
(Santos-Fernandez 2013).

• orangejuice: Frozen concentrated orange juice is packed in 6-oz cartons. These cartons are
formed on a machine by spinning them from a cardboard stock and attaching a metal bottom
panel. A can is then inspected to determine whether, when filled, the liquid could possibly
leak either on the side seam or around the bottom joint. If this occurs, a can is considered
nonconforming. The data were collected as 30 samples of 50 cans each at half-hour intervals
over a three-shift period in which the machine was in continuous operation. It is implemented
in the qcc package (Scrucca 2004).

• pcmanufact: A personal computer manufacturer counts the number of nonconformities per
unit on the final assembly line. He collects data on 20 samples of 5 computers each. It is
implemented in the qcc package (Scrucca 2004).

• pistonrings: Piston rings for an automotive engine are produced by a forging process. The
inside diameter of the rings manufactured by the process is measured on 25 samples, each
of size 5, drawn from a process being considered ‘in control’. It is implemented in the qcc
package (Scrucca 2004).

3 Univariate and multivariate parametric control charts in qcr

The construction of a control chart is equivalent to the plotting of the acceptance regions of a
sequence of hypothesis tests over time. Namely, the x̄ chart is a control chart used to monitor the
process mean µ. It plots the sample means, X̄’s, corresponding to subgroups of the {X1, X2, ...}
observations and is equivalent to test the hypotheses H0 : µ = µ0 versus Hα : µ ̸= µ0 (for some
target value µ0) conducted over time, using x̄ as the test statistic. Here we assume that {X1, X2, ...}
are the sample measurements of a particular CTQ feature that follows the F distribution with mean
µ and standard deviation σ. When there is insufficient evidence to reject H0, we can state that
the process is under control; otherwise, the process is out of control. In other words, processes are
under control when their sources of variation are only the sources common to the process (Brown
and Wetherill, 1990). The decision to reject or not H0 is based on the value of the sample mean
x̄ observed at each time interval (Liu and Tang, 1996). The control charts are easy to construct,
visualize, and interpret, and most important, have proven their effectiveness in practice since the
1920’s.

Control charts are defined, on the one hand, by a center line that represents the average value
of the CTQ feature corresponding to the in-control state and, on the other hand, two horizontal
lines, called the upper control limit (UCL) and the lower control limit (LCL). The region between
the control limits corresponds to the region where H0 is not rejected (defined in the previous
section). As a consequence, the process will be out of control when an observed rational sample
or an individual measurement falls outside the limits. Let w be a sample statistic that measures a
quality characteristic of interest, and suppose that the mean of w is µw and the standard deviation
of w is σw. Then the center line, the upper control limit, and the lower control limit become:

UCL = µw + Lσw

CL = µw

LCL = µw − Lσw,
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Name Description

counters

A water supply company wants to control the performance of the water
counters installed throughout a city. For this purpose, 60 rational
samples have been taken, each one composed by 3 measurements, from
the same age (10 years) and caliber water counters corresponding to
two different brands, and during a period of 5 years. This dataset
is based on a study case of A Coruña’s water supply company,
Empresa Municipal de Aguas de La Coruña (Emalcsa).

employment

A Spaniard-Argentinian hotel company wants to control the level of
occupancy (measured in %) in their establishments through the
application of a continuous control. For this purpose, 48 subsamples have
been taken from six hotels corresponding to two different countries.

oxidation

This database contains information about the resistance against the
oxidation of olive oil of the Picual variety. Five measurements of the
Onset Oxidation Temperature (OOT, index that measures the
resistance against the oxidation) are obtained from 50 batches of Picual
olive oil produced in chronological order. It is importantly to note
that OOT decreases as the oil is progressively mixed with other
olive oil varieties defined by a lower OOT.

plates

A chemical company is developing a patent for a new variant of artificial
stone mostly made of quartz (93wt% and polyester resin). This company
is launching a pilot plant where it begins to produce plates of this
material on an industrial scale. The CTQ variable of this product is the
Vickers hardness. In order to measure the hardness level and hardness
homogeneity of the product, 50 plates have been measured 5 times in
different sections. The characteristic learning curves, through gradual
level change, can be observed.

presion

A shipyard of recreational boats is intended to optimize and control the
mechanical properties of the yacht hulls made of a composite based on
epoxy resin. In this regard, the modulus of elasticity due to tensile
efforts is measured after applying two different curing pressures: 0.1
and 10 MPa. Overall, 60 subsamples, composed of three measurements,
obtained from 60 vessels, have been taken.

Table 1: Some of the specific datasets included in the qcr package

where L is the “distance” of the control limits from the center line, expressed in standard deviation
units.

When several random variables characterize the quality of a process/service, applying statistical
multivariate quality control techniques becomes necessary. In fact, if we analyze each variable
separately, the probability that an observation of a variable will fall within the calculated limits
when it is known that the process is actually under control will no longer be 0.9973 for 6σ amplitude.
Assuming independence, it will be 0.9973p, where p is the number of CTQ features, while the
probability of type I will actually lead to α′ = 1 − (1 − α)p. Therefore, the control limits are
different from those drawn, assuming the control of each CTQ variable independently from the
others. Moreover, if the variables are dependent, the calculation of α becomes more complex. This
subject is particularly important today, as automatic inspection procedures make it customary to
measure many parameters of each product over time. The more common multivariate parametric
control charts are the Hotelling T2 (to identify big shifts) and the multivariate CUSUM (MCUSUM)
and EWMA (MEWMA) for identifying small shifts.

The functions that compute the quality control statistics for the different univariate control
charts (involving continuous, attribute or count data) are shown in Table 2. For the sake of simplicity
and taking into account that these types of control charts are implemented in other packages, the
use of these functions is not shown in this work. More details are given in the help of qcr package
(Flores et al., 2021).
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Statistical quality control charts for
Function Chart name Variables

qcs.xbar X̄
Sample means of a continuous process variable are
plotted to control the process average.

qcs.R R
Sample ranges of a continuous process variable are
plotted to control the process variability.

qcs.S S
Sample standard deviations of a continuous variable
are plotted to control the process variability.

qcs.one I
Sample values from a I chart data of a continuous
process variable to control the level (position)
of the process.

Attributes

qcs.p p
Proportion of nonconforming units is plotted, the
number of defective items follow a binomial distribution.

qcs.np np
Number of nonconforming units is plotted, and the chart
is constructed based on the average of the process.

qcs.c c
Nonconformities per unit are plotted, number of defects
in a large population follow a Poisson distribution.

qcs.u u
Average nonconformities per unit are plotted, this chart
does not require a constant number of units.

qcs.g g
Number of non-events between events are plotted, it
counts the number of events between rarely-occurring
errors or nonconforming incidents.

Attributes and variables

qcs.cusum CUSUM
Cumulative sums for individual observations or for the
averages of rational subgroups are plotted to monitor
the process mean.

qcs.ewma EWMA
The exponential weighed average of CTQ variables are
plotted to identify small changes in the process
(measured as rational samples or individual observations).

Multivariate control charts

mqcs.t2 T2 Multivariante Hotelling T2 control chart for individual
observations (vectors).

mqcs.mcusum MCUSUM Multivariate Cumulative Sum control chart for individual
observations (vectors).

mqcs.ewma MEWMA Multivariate EWMA control chart for individual
observations (vectors).

Functional data control charts

fdqcs.depth Phase I Phase I control chart for functional data:
depth control chart and deepest curves envelope.

fdqcs.rank Phase II Phase II control chart for functional data:
rank control chart and deepest curves envelope.

plot.fdqcs FDA plots Graphical outputs for Phase I and Phase II control charts
for functional data.

Table 2: Univariate Shewhart, multivariate Hotelling T2, univariate and multivariate CUSUM and
EWMA and FDA control charts available in the qcr package

4 Nonparametric control charts based on data depth

The control charts presented in this section were proposed by Liu (1995) as an alternative to those
described in previous section. The main idea of its control graphs is to reduce each multivariate
measure to the univariate index, that is, its relative center-exterior classification induced by a depth
of data. This approach is completely nonparametric, and therefore, these control charts are not
defined by any parametric assumption regarding the process model. Thus, they are applicable in a
wider number of case studies than those counterparts such as T 2, MCUSUM, and MEWMA control
charts. In addition, these graphs allow the simultaneous detection of the change of location (shift of
the mean) and the increase of the scale (change in variability) in a process.
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Liu (1995) proposed and justified three types of control charts, the r, Q, and S charts which can
be considered as data-depth-based multivariate generalizations of the univariate X, x̄, and CUSUM
charts, respectively.

Data depth

In multivariate analysis, the term depth refers to the degree of centrality of a point regarding a data
cloud or a probability distribution. Therefore, it is possible to define a rank in the multidimensional
Euclidean space through the calculation of observation depth. According to Dyckerhoff (2004) and
Cascos et al. (2011), the depth function can be defined as a bounded function Dp : Rd −→ R, with
P the distribution set in Rd, that assigns at each point of Rd its degree of centrality with respect to
P . Depth functions with which control charts can be performed are the

• Simplicial depth (Liu 1990),
• Mahalanobis depth (Mahalanobis 1936),
• Halfspace or Tukey depth (Tukey 1975),
• Likelihood depth (Fraiman et al. 1997), and
• Random projection depth (Zuo and Serfling 2000).

Statistics derived from data depth

Let G a k-dimensional distribution, and let Y1, . . . , Ym be m random observations from G. The
sample Y1, . . . , Ym is generally the reference sample of a CTQ variable in the context of quality control,
composed of measurements from products obtained by an under control process. If X1, X2, . . . are
the new observations from the manufacturing process, assuming that the different Xi values follow
an F distribution if the quality of the studied product has been deteriorated or, in other words, if
the process is out of control. Otherwise, they follow a G distribution. Let DG(·) denote a notion of
depth, and assume that G and F are two continuous distributions. Thus, if all the DG(Yi) values
are sorted in increasing order, and Y[j] denotes the sample value associated with the jth smallest
depth value, then Y[1], . . . , Y[m] are the order statistics of Yi’s, with Y[m] being the most central
point. Therefore, the smaller the order (or the rank) of a point, the farther that point will be from
the underlying distribution G(·).

Liu (1995) defines the rank statistic as

rG (y) = P {DG (Y ) ≤ DG (y) | Y ∼ G}

whereby Y ∼ G indicates that the random variable Y follows the distribution G. When G is
unknown, the empirical distribution Gm of the sample {Y1, . . . , Ym} can be used instead, and the
statistic is defined by

rGm
(y) =

#
{

DGm
(Yj) ≤ DGm

(y) , j = 1, . . . , m
}

m

In the same way that rG and rGm
, the Q statistics can be also defined as follows

Q (G, F ) = P {DG (Y ) ≤ DG (X) | Y ∼ G, X ∼ F } = EF [rG (X)]

Q (G, Fn) =
1
n

n∑
i=1

rG (Xi)

Q (Gm, Fn) =
1
n

n∑
i=1

rGm
(Xi) ,

whereby Fn(·) denotes the empirical distribution of the sample {X1, . . . , Xn}. The control charts
corresponding to these statistics can be developed as described in the following sections.

The r chart

Calculate {rG (X1) , rG (X2) , . . . , rG (Xn)} or {rGm
(X1) , rGm

(X2) , . . . , rGm
(Xn)} if G is un-

known but Y1, . . . , Ym are available. As a result, the r chart consists of plotting the rank statistic in
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regard to time. The control chart central line is CL = 0.5, whereas the lower limit is LCL =α, with
α accounting for the false alarm rate. The process will be out of control if rG(·) falls under LCL. A
small value of the rank statistic rGm(X) means that only a very small proportion of Yi values are
more outlying than X. Therefore, assuming that X ∼ F , then a small value of rGm(X) suggests a
possible deviation from G to F . This may be due to a shifting in the location and/or an increase in
the scale of the studied CTQ variable. Taking into account that the UCL is not defined for the r
chart, the CL line serves as a reference to identify emerging patterns, runs, or trends. If rGm(X) is
greater than 0.5, there is evidence of scale decreasing, and also could take place a negligible location
shift. This case should be tackled as an improvement in quality given a gain in the accuracy, and
thus the process should not be considered as out of control.

The Q chart

The idea behind the Q chart is similar to the one behind the x̄ chart. If X1, X2, . . . are univariate
and G is a normal distribution, the x̄ chart plots the averages of consecutive subsets of the different
Xi. A goal of this type of chart is that it can prevent the identification of a false alarm when the
process is actually in control (even when some individual sample points fall out of control limits due
to random fluctuations).
The Q chart is the nonparametric alternative to the x̄ chart. It is performed by plotting the averages
of consecutive subsets of size n corresponding to the rank statistic (rG(Xi) or rGm(Xi)), given by
Q

(
G, F j

n

)
or Q

(
Gm, F j

n

)
, whereas F j

n is the empirical distribution of the Xi’s in the jth subset,
j = 1, 2, . . . . Accordingly, if only {Y1, Y2, . . . , Ym} are available, the Q chart plots the sequence{

Q
(

Gm, F j
n

)
, Q

(
Gm, F j

n

)
, . . .

}
.

Depending on the value of n, the corresponding control limits are as follows:

• If n ≥ 5, CL = 0.5 and

– LCL = 0.5 − Zα (12n)
1
2 for Q

(
G, F j

n

)
.

– LCL = 0.5 − Zα

√
1

12
( 1

m + 1
n

)
for Q

(
Gm, F j

n

)
.

• If n < 5, CL = 0.5 and LCL = (n!α)
1
n

n .

The S control chart

The S control chart is based on the CUSUM univariate control chart, which is basically the plot
of

∑n
i=1 (X − µ), which reflects the pattern of the total deviation from the expected value. As

mentioned above, it is more effective than the X chart or the x̄ chart in detecting small process
changes. The nonparametric CUSUM chart based on data depth suggests plotting Sn(G) and
Sn(Gm), defined by

Sn (G) =

n∑
i=1

(
rG (Xi) − 1

2

)
with control limits CL = 0 and LCL = −Zα

(
n
12

) 1
2 and

Sn (Gm) =

n∑
i=1

(
rGm

(Xi) − 1
2

)
.

If only Y1, . . . Ym are available, the control limits are CL = 0 and LCL = −Zα

√
n2 (

1
m + 1

n )
12 . The

LCL control limits in both cases constitute a curve instead of a straight line; if n is large, the control
chart S should be standardized as follows:

S∗
n (G) =

S∗
n (G)√

n
12

S∗
n (Gm) =

Sn (Gm)√
n2 (

1
m + 1

n )
12

Therefore, this S∗ chart is defined by CL = 0 and LCL = −Zα.
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Examples of r, Q and S control charts applied using synthetic data

A bivariate data set is used to illustrate how the previously discussed control charts arise. In fact,
a synthetic dataset composed of 540 observations of a bidimensional standard Gaussian variable
has been simulated, in addition to 40 individuals corresponding to another bidimensional Gaussian
variable with mean and standard deviation equal to 2.

R> mu <- c(0, 0)
R> Sigma <- matrix(c(1, 0, 0, 1), nrow = 2)
R> Y <- rmvnorm(540, mean = mu, sigma = Sigma)
R> u <- c(2, 2)
R> S <- matrix(c(4, 0, 0, 4), nrow = 2)
R> x <- rmvnorm(40, mean = u, sigma = S)

Prior to the application of nonparametric control charts, the dataset has to be converted into a
npqcsd object. The synthetic dataset is arranged as two matrices, G composed of the 500 first rows
(multivariate observations) of Y, and x with the remaining ones and including those belonging to the
second bidimensional variable

R> x <- rbind(Y[501:540, ], x)
R> G <- Y[1:500, ]
R> data.npqcd <- npqcd(x, G)

In the same way, the npqcd function creates a data object for non parametric quality control, the
npqcs.r(), npqcs.Q(), and npqcs.S() functions computes all the statistics required to obtain the r,
Q, and S control charts, respectively. The argument method = c("Tukey","Liu","Mahalanobis","RP","LD")
specifies the data depth function, and alpha is the signification level that defines the LCL. See
Flores et al. (2021) to obtain additional information about these functions and their arguments.

r chart

The r control chart can be obtained by applying the npqcs.r() function to the npqcd object and
plotting the result.

R> res.npqcs <- npqcs.r(data.npqcd, method = "Tukey", alpha = 0.025)
R> plot(res.npqcs, title = " r Control Chart")

The resulting chart is shown in Figure 4, where it can be observed that the process is out of control
from the 42nd observation, as expected, taking into account that most of the rGm(Xi) values are
falling below the LCL.

Q chart

In this case, the dataset is assumed to be composed of rational samples of size 4. Thus, the Q
nonparametric alternative of x̄ chart is proposed and applied to control the bidimensional process:

R> n <- 4 # samples
R> m <- 20 # measurements
R> k <- 2 # number of variables
R> x.a <- array( , dim = c(n, k, m))
R> for (i in 1:m) {
+ x.a[, , i] <- x[(1 + (i - 1) * n):(i * n), ]
+ }
R> data.npqcd <- npqcd(x.a, G)
R> res.npqcs <- npqcs.Q(data.npqcd, method = "Tukey", alpha = 0.025)
R> plot(res.npqcs, title = "Q Control Chart")

Figure 5 clearly shows that the process is out of control in the second half, from the 20th rational
sample. We can also see that the high random fluctuations of the r chart are attenuated in the Q
chart due to the averaging effect.

S chart

Finally, the nonparametric counterpart of CUSUM control chart is performed from the multivariate
individual observations.
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Figure 4: r control chart.
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Figure 5: Q control chart.

R> data.npqcd <- npqcd(x, G)
R> res.npqcs <- npqcs.S(data.npqcd, method = "Tukey", alpha = 0.05)
R> plot(res.npqcs, title = "S Control Chart")

Figure 6 shows that the process is out of control from the 48th observation. Note that the S graph
performs better in identifying small changes in a process. In this case, the performance of the Q
chart is better than the corresponding to the S chart.
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Figure 6: S control chart.

Control charts for functional data based on data depth

In the paradigm of Industry 4.0, processes and services are many times described by continuously
monitored data of hourly, daily, monthly curves or smooth functions. When the processes are defined
by functional data, the authors encourage to apply control charts based on Functional Data Analysis
(FDA) in order to implement control and improvement tasks. In this section, the use of control
charts presented in Flores et al. (Flores et al., 2020). Summarizing, this methodology consists of
the proposal of new Phase I and Phase II control charts to be applied in those case study in which
the datum unit is a curve. Phase I control chart is based on the computation of functional data
depth (specifically Fraiman and Muniz (Fraiman and Muniz, 2001), Mode (Cuevas et al., 2007),
and random projections (Cuevas et al., 2007) data depth) from which a data depth control chart
is developed. Once the in-control calibration sample is obtained, the Phase II control chart based
on functional data depth and rank nonparametric control chart can be applied. In addition to the
Phase I functional data depth and Phase II rank control charts, plots of functional envelopes from
the original curves are provided in order to help to identify the possible assignable causes of out of
control states.

Estimating a Phase I control chart for functional data (calibration)

A dataset is simulated in order to illustrate the use of FDA control charts for Phase I and II. A
functional mean, mu0, and a functional standard deviation, sigma, are defined as shown in (Flores
et al., 2020). An n0 = 100 hundred curves composed of m = 30 points are simulated. They account
for the calibration or retrospective sample.

R> library(fda.usc)
R> m <- 30
R> tt<-seq(0,1,len=m)
# H0
R> mu_0<-30 * tt * (1 - tt)^(3/2)
R> n0 <- 100
R> mdata<-matrix(NA,ncol=m,nrow=n0)
R> sigma <- exp(-3*as.matrix(dist(tt))/0.9)
R> for (i in 1:n0) mdata[i,]<- mu_0+0.5*mvrnorm(mu = mu_0,Sigma = sigma )

Prior to the application of control charts, the dataset is converted in a specific format by the
fdqcd function. A plot function is also programmed to properly show the original functional data,
plot.fdqcd. Figure 7 shows the original functional data consisting of curves.
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R> fdchart <- fdqcd(mdata)
R> plot(fdchart,type="l",col="gray",main="Functional data")
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Figure 7: Original curves that account for the calibration sample.

The following step is to identify those curves that account for the in-control process. This task is
done by the application of a Phase I control chart for functional data. This method is implemented
in the qcr package by the fdqcs.depth function. Specifically, the arguments and default values for
these functions are

R> fdqcs.depth.default <- function(x, data.name=NULL,func.depth = depth.mode,nb=200,
+ type = c("trim","pond"),ns = 0.01,
+ plot = TRUE, trim = 0.025, smo =0.05,
+ draw.control = NULL,...)

where func.depth is the type of depth measure, by default depth.mode, nb the number of bootstrap
resamples, type accounts for the method used to trim the data, trim or pond (Flores et al., 2020), ns is
the quantile to determine the cutoff from the bootstrap procedure (Flores et al., 2020), plot a logical
value indicating that it should be plotted, trim the percentage of the trimming, smo the smoothing
parameter for the bootstrap resampling (Flores et al., 2020), whereas draw.control specifies the
col, lty, and lwd for the fdataobj, statistic, IN and OUT objects. When the fdqcs.depth function
is applied to the curves of the calibration sample, the fddep object of fdqcs.depth class is obtained.
It is composed of the original data, the depth corresponding to each curve, the lower control limit of
the depth chart, the index of those curves out of control, the curves that account for the limits of
the envelope composed by the deepest cures, and the deepest curve or functional median.

R> fddep <- fdqcs.depth(fdchart)
R> summary(fddep)

Length Class Mode
fdata 100 fdata list
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Depth 100 -none- numeric
LCL 1 -none- numeric
out 1 -none- numeric
fmin 1 fdata list
fmax 1 fdata list
fmed 1 fdata list
ns 1 -none- numeric

R> class(fddep)

[1] "fdqcs.depth"

R> plot(fddep,title.fdata = "FDA chart",title.depth = "Depth chart")
R> out <- fddep$out; out

[1] 29

Figure 8 shows the control chart for the depth of the curves (right panel). The LCL is estimated
by a smoothed bootstrap procedure (Flores et al., 2020). In order to provide a tool to identify the
assignable cause of each out-of-control curve, the original curves with the envelope with the 99%
of the deepest curves are also shown (left panel). The analysis of the shape and magnitude of the
curves in and out of bounds can help to associate each curve out of control to an assignable cause,
allowing for processes control, maintenance, and improvement.

0 5 10 15 20 25 30

0
2

4
6

8
10

FDA chart

t

X
(t

)

Calibration curves
Median (Deepest)
Envelope 99 %
Outliers ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

5
10

15
20

Depth chart

t

D
ep

th

Figure 8: Left panel: Original curves with the envelope composed of 90% of the deepest curves.
Right panel: Control chart for the depths of the curves (the LCL has been estimated by bootstrap
procedures at a signification level of 10%.

Phase I ends when a calibration sample without curves out of control is obtained. The iterative
procedure to obtain an in control calibration sample is shown in the following lines.

R> alpha <- 0.1
R> trim <- 0.1
R> while (length(out)>0) {
R> mdata <- fddep$fdata$data[-out,]
R> fddep <- fdqcs.depth(mdata,ns = alpha, trim=trim, plot=FALSE)
R> out <- fddep$out
R> }
R> plot(fddep,title.fdata = "Envelope with the 90\% deepest curves",
+ title.depth = "Depth control chart")

Figure 9 is obtained from the application of plot function to fddep object. It shows that all the
curves of the calibration sample are in control, and thus, the natural variability of the process is
estimated.
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Figure 9: Results corresponding to the second iteration to obtain the in control calibration sample.
Left panel: Original curves with the envelope composed of the 90% of the deepest curves. Right panel:
Control chart for the depths of the curves (the LCL has been estimated by bootstrap procedures at
a signification level of 10%.

Estimating a Phase II control chart for functional data (monitoring)

The next step is to perform the Phase II of process control. The monitoring phase is performed by
the application of Phase II control charts for functional data based on multivariate nonparametric
control charts. Firstly, a monitoring sample composed of 50 curves is simulated by the following
code.

R> mu_a<- 30 * tt^(3/2) * (1 - tt)
R> n_a <- 50
R> mdata_a<-matrix(NA,ncol=m,nrow=n_a)
R> for (i in 1:n_a) mdata_a[i,]<- mu_a+0.5*mvrnorm(mu = mu_a,Sigma = sigma )

The curves of the monitoring sample are defined with fdqcd format and a control chart
for Phase II is developed by applying the fdqcs.rank function. It is composed by the follow-
ing arguments, fdqcs.rank(x,y = x,func.depth = depth.FM,alpha = 0.01,plot = TRUE,trim
= 0.1,draw.control = NULL,...).

R> fdchart_a <- fdqcd(mdata_a,"Monitoring curves")
R> phase2.chart <- fdqcs.rank(fdchart,fdchart_a)
R> plot(phase2.chart)
R> summary(phase2.chart)

Figure 10 accounts for the FDA chart with the calibration sample and its envelope composed
by the deepest curves. Moreover, the monitoring sample is also included and compared with the
calibration sample by using the FDA chart. In addition, the Phase II rank control chart for functional
data is shown including both calibration and monitoring samples or only the ranks corresponding
to the monitoring sample. The second population that corresponds with the monitoring sample is
identified by the control chart from the first monitored curve (panels below in Figure 10).

5 Process capability analysis

The analysis of the capability of a process in the case of statistical quality control is done through
the calculation of the so-called capability. These indices measure whether a process is capable or not
of meeting the corresponding technical specifications set by the customer, or the manufacturer, by
comparing those with the natural variability of the CTQ variable that characterizes the process.
The interpretation of these indices is associated with the result of this relation. Capability indices
are generally calculated as the ratio between the length of the specification interval and the natural
variability of the process in terms of σ. Large values of these indices mean that the corresponding
process is capable of producing articles that meet the requirements of the client and manufacturers.
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Figure 10: First row: the left and right panels show the FDA charts for the calibrating and
monitoring samples with a signification level of 0.01. Second row: The left and right panels show
the Phase II rank control chart for functional data, including calibration and monitoring sample
(left panel) and only monitoring sample (right panel).

In other words, the larger the value of the capability index, the smaller the number of products
outside the specification limits.

In this section, we describe the capability indices for processes whose underlying distribution
is normal and not normal (exponential, Weibull, etc.). However, it is important to note that the
development of programming tools for nonparametric capability analysis is one of the main goals
and contributions of the qcr package. In addition to the estimation of capability indices, a graphical
output is provided. Based on the proposal of qualityTools package, the qcr graphical output for
capability analysis includes a normality test for the CTQ variable, a Q-Q plot, a histogram with
the theoretical Gaussian distribution density, parametric and nonparametric estimates of capability
indices and a contour capability control chart. In the following lines, parametric and nonparametric
capability analysis utilities are described using different examples of applications.

Assuming a normal distribution

The most widely used capability indexes in the industry analyze the process capability under the
assumptions of a stabilized process (in control) and a Gaussian distributed CTQ variable. Table 3
shows the main parametric (assuming Gaussian distribution) indices, namely Cp, Cpk, Cpm, and
Cpmk.

Vännman (1995) proposed a general formulation of these indices by an expression that depends
on the non-negative parameters u and v:

Cp (u, v) =
d − u|µ − m|

3
√

σ2 + v (µ − T )2
,

whereby d = (USL − LSL)/2, m = (LSL+USL)/2, USL is the upper specification limit, the LSL
is the lower specification limit, σ is the theoretical standard deviation, µ accounts for the theoretical
mean of the CTQ variable, and T is the specification target (by default the mean between the LSL
and USL). The indices shown in Table 3 are obtained from this expression just considering values
of 0 or 1 for u and v: Cp (0, 0) = Cp, Cp (1, 0) = Cpk, Cp (0, 1) = Cpm, Cp (1, 1) = Cpmk.

The piston rings data set is used to illustrate the calculation of the capability indices using the
qcs.cp() function based on the expressions previously described in Table 3. From the statistics
obtained from the x̄ control chart of pistonrings dataset, the γ and β values are estimated, and the
corresponding capability index is computed.

R> data("pistonrings")
R> xbar <- qcs.xbar(pistonrings[1:125, ], plot = FALSE)
R> limits <- c(lsl = 73.99, usl = 74.01)
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Potential capability Ĉp = USL−LSL
6σ̂

Actual capability with respect
to the specification limits

Ĉp,lower = µ̂−LSL
3σ̂

Ĉp,upper = USL−µ̂
3σ̂

Ĉpk = min
[

USL−µ̂
3σ̂ , µ̂−LSL

3σ̂

]
Shifting of the mean with
respect to the target Ĉpm =

Ĉp√
1+

(
µ̂−T

σ̂

)2

Cpk correction for detecting
deviations with respect to the target Ĉpkm =

Ĉpk√
1+

(
µ̂−T

σ̂

)2

Table 3: PCR from first to fourth generation, USL is the upper specification limit, LSL is the lower
specification limit, µ is the real mean, µ̂ is the estimated mean, and σ̂ is the estimated standard
deviation.

R> # qcs.cp(object = xbar, parameters = c(0, 0), limits = limits,
R> # contour = FALSE)
R> # qcs.cp(object = xbar, parameters = c(1, 0), limits = limits,
R> # contour = FALSE)
R> # qcs.cp(object = xbar, parameters = c(0, 1), limits = limits,
R> # contour = FALSE)
R> qcs.cp(object = xbar, parameters = c(1, 1), limits = limits,
+ contour = FALSE)

Cpmk delta.usl gamma.usl
0.2984 0.1176 0.9785

Consequently, the obtained results are Cp = 0.3407, Cpk = 0.3006, Cpm = 0.3382, and
Cpmk = 0.2984, respectively. The argument parameters account for u and v values, while object is
the type of control chart from which the σ is estimated, limits are the specification control limits,
and contour is the parameter that indicates when the process capability contour chart is plotted.

Process capability plot

In Vännman (2001) and Deleryd and Vännman (1999), a graphical method (based on common
capability indices) to analyze the capability of a process is proposed. The goal of using this type
of plot (if compared with respect to only capability indices calculation) is to provide immediate
information of the location and spread of the CTQ feature and about the capability to meet the
specifications of the corresponding process. When using this chart, a process will be capable if the
process capability index is higher than a certain value k, with k > 1. The most used values for k
are k = 1, k = 4/3, or k = 5/3, even 2 at a Six Sigma level, taking into account the usual index
limits for which a process could be assumed capable. It will also be assumed that the target value
matches the center of the specification interval, that is, T = (USL+LSL)

2 = m. Then, one of the
indices defined by the Cp (u, v) family is used, e.g., Cpk or Cpm, and the process will be defined as
capable if Cp (u, v) > k, given the values of u, v, and k. Also note that if µ = T , all the Cp (u, v)
indices are defined by the same expression as the Cp. Moreover, different setting for u, v, and k
impose different constraints on the process parameters (µ, σ). This can be easily seen through a
process capability plot. This graph is a contour plot of Cp (u, v) = k as a function of µ and σ, but
it can also be defined as a function of δ and γ, with δ = µ−T

d and γ = σ
d . The contour line is

obtained by rewriting the index Cp (u, v) as a function of δ and γ as follows Cp (u, v) =
1−u|δ|

3
√

γ2+v(δ)2 .

Therefore, the Cp (u, v) = k equation is solved, plotting γ depending on the values of δ. The resulting
expressions are:

γ =

√
(1 − u|δ|)

9k2 − vδ2, |δ| ≤ 1
u + 3k

√
v

, (u, v) ̸= (0, 0)

When u = v = 0, that is, when we consider the index Cp = k, we have γ = 1
3k and |δ| ≤ 1. It is

important to highlight that the γ-axis accounts for the process spread, whereas the δ-axis accounts
for the process location. The values of the parameters µ and σ which provide values (δ, γ) within
the region bounded by the contour line Cp (u, v) = k and the δ-axis will provide a larger Cp (u, v)
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value than k, leading a capable process. Furthermore, values of µ and σ which provide values (δ, γ)
outside this region will provide a value Cp (u, v) smaller than k, i.e., a non-capable process. In the
case of the process not being capable, this type of plot is useful to understand if the corrective
actions have to be performed to decrease the process spread, or the process location (deviation with
respect to target), or even when both changes are needed to improve the process capability. This can
be observed by observing the distance with respect to the x and y-axis. Below are some examples of
capability plot application which can be generated through the application of the qcs.cp function
with contour=TRUE and k=1 (default values):

R> oldpar <- par(mfrow = c(2, 2))
R> qcs.cp(object = xbar, parameters = c(0, 0), limits = limits,
+ ylim = c(0, 1))
R> qcs.cp(object = xbar, parameters = c(1, 0), limits = limits,
+ ylim = c(0, 1))
R> qcs.cp(object = xbar, parameters = c(0, 1), limits = limits,
+ ylim = c(0, 1))
R> qcs.cp(object = xbar, parameters = c(1, 1), limits = limits,
+ ylim = c(0, 1))
R> par(oldpar)

The result is shown in Figure 11. In all the cases, the points in red are out of the area defined by the
line in blue and the δ axis. Thus, the corresponding process is not capable, no matter the capability
index that is used. In any case, note that the Cp index is useless in identifying non-capable processes
due to location shifts with respect to the target. In the same way, the Cpk index assumes as capable
processes that are far from the target as long as they were close to the specification limits (as shown
in Figure 11). Thus, the use of the Cpm and Cpmk are recommended due to they take into account
both shifts from the target and the spread. In the present case, the process is not capable due to
the spread rather than the target shift. Therefore, the process changes could be due to decreases in
the variability process.
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Figure 11: Process capability plots using the Cp, Cpk, Cpm, and Cpmk indexes.
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Estimated process capability plot

In practice, the process parameters are unknown and we need to estimate them. We can perform a
decision rule based on the sample statistics that provide a sample estimate of the capability index
and, finally the so called estimated process capability plot, also called γ∗ − δ∗ plot (Deleryd and
Vännman, 1999). It allows us to decide whether a process is capable or not assuming that µ and
σ parameters are unknown and estimated by µ̂ = X̄ and σ̂2 = 1

n

∑n
i=1 X2

i − X̄2. They are the
maximum likelihood estimators when the CTQ variable of the process is normally distributed, and
X1, X2, . . . , Xn is a random sample of a normal distribution with µ mean and σ2 variance.
The qcr package only provides the γ∗ − δ∗ plot corresponding to the Cpm index taking into account
that the other capability indices do not consider shifts from the target value in their calculations.
For the general case, see the work of Vännman (2001). In order to obtain an appropriate decision
rule for the case of Cpm index, we test the hypotheses H0 : Cpm ≤ k0 versus H1 : Cpm > k0, using

Ĉpm =
d

3
√

σ̂2 + (µ̂ − T )2

as test statistic. The null hypothesis will be rejected if Ĉpm > cα, where the constant cα is
determined by previously defining a signifition test level α . Vännman (2001) showed that the null
hypothesis H0 : Cpm ≤ k0 can be reduced to H0 : Cpm = k0. Thus, for given values of α and n, the
process will be considered capable if Ĉpm > cα, with cα > k0. Hubele and Vannman (2004) proved
that, when the Cpm index is used, the critical value for a given α is obtained as

cα = k0

√
n

χ2
α,n

,

where χ2
α,n is the quantile α of a χ2 distribution with n degrees of freedom. The qcr package

includes the qcs.hat.cpm() function to obtain both the theoretical capability plot and the estimated
capability plot from sample statistics. Among other options, the user can indicate the control chart
from which the estimates µ̂ and σ̂ are obtained (alternatively, µ̂ and σ̂ can be introduced through mu
and std.dev), and the specification limits using limits. Furthermore, the signification level and the
capability limit can be modified, as they are set to α = 0.05 and k0 = 1 by default. The following
code illustrates its application to pistonrings data.

R> xbar <- qcs.xbar(pistonrings[1:125, ], plot = FALSE)
R> limits <- c(lsl = 73.99, usl = 74.01)
R> # qcs.hat.cpm(object = xbar, limits = limits, ylim = c(0,1))
R> mu <- xbar$center
R> std.dev <- xbar$std.dev
R> qcs.hat.cpm(limits = limits, mu = mu, std.dev = std.dev, ylim = c(0,1))

The result is shown in Figure 12. The contour line corresponding to the capability region obtained
from the capability index sample is always more restrictive than the corresponding theoretical one.

Nonparametric capability analysis

Traditional assumptions about data such as normality or independence are frequently violated in
many real situations. Thus, in scenarios in which assumptions of normality are not verified, the
indices defined in the previous sections are not valid. Pearn and Chen (1997) and Tong and Chen
(1998) proposed generalizations of Cp (u, v) for the case of arbitrary distributions of data

CNp (u, v) =
d − u|M − m|

3
√(

F99.865−F0.135
6

)2
+ v (M − T )2

,

where Fα is the percentile α% of the corresponding distribution and M the median of the process.
However, the distribution of the underlying process is always unknown. Chang and Lu (1994)
calculated estimates for F99.865, F0.135 and M based on the sample percentiles.

Pearn and Chen (1997) proposed the following estimator

ĈNp (u, v) =
d − u|M̂ − m|

3
√(

Up−Lp

6

)2
+ v

(
M̂ − T

)2
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Figure 12: Comparison between theorical and estimated process capability plots.

where Up is an estimator for F99.865, Lp is an estimator for F0.135, and M̂ is an estimator for M ,
obtained from the tables developed by Gruska et al. (1989).

The qcs.cpn() function of qcr calculates CNp, CNpk, CNpm, and CNpmk using the formulation
described by Tong and Chen (1998). The code that illustrates its use is shown below. To obtain the
nonparametric capability indices it is necessary to indicate the u and v parameters.

R> xbar <- qcs.xbar(pistonrings[1:125, ], plot = FALSE)
R> limits <- c(lsl = 73.99, usl = 74.01)
R> # x <- xbar$statistics[[1]]
R> # median <- median(x)
R> # q = quantile(x, probs = c(0.00135, 0.99865)) # c(lq, uq)
R> # qcs.cpn(parameters = c(0, 0), limits = limits, median = median, q = q)
R> # qcs.cpn(object = xbar, parameters = c(0, 0), limits = limits)
R> # qcs.cpn(object = xbar, parameters = c(1, 0), limits = limits)
R> # qcs.cpn(object = xbar, parameters = c(0, 1), limits = limits)
R> qcs.cpn(object = xbar, parameters = c(1, 1), limits = limits)

CNpmk
0.9015

Thus, the values obtained are CNp = 1.0082, CNpk = 0.9275, CNpm = 0.9799 and CNpmk = 0.9015.
If a capability limit of k = 1 or k = 1.33 is assumed, we can infer that the process is not actually
capable to meet the customers or manager’s requirements.

Tools for a comprehensive processs capability analysis

Function qcs.ca() provides a comprehensive information of the capability of a process, summarized
through a graphical output. This function calculates the process capability indices Cp, Cpk, CpL,
CpU , Cpm, Cpmk from a qcs object, assuming a Gaussian distribution. Moreover, it computes
confidence limits for Cp using the method described by Chou et al. (1990). Approximate confidence
limits for Cpl, Cpu, and Cpk are also estimated using the method described in Bissell (1990), while
the confidence limits for Cpm are based on the approximated method of Boyles (1991) that assumes
the target is the mean of the specification limits. Moreover, the CNp, CNpk, CNpm, and CNpmk

nonparametric capability indices are also obtained. There is also a specific box within the summary
plot that shows the proportion of observations and expected observations under the Gaussian
assumption out of the specification limits (nonconforming observations). Further, a histogram of the

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=qcr


Contributed research article 213

data sample is provided, in addition to the corresponding Gaussian density curves obtained from
the sample estimates (one per standard deviation estimate procedure). They are displayed along
with the specification limits, a quantile-quantile plot for the specified distribution, and a process
capability plot obtained from the Cpm index (both using theoretical and sample alternatives). In
order to describe the qcs.ca() performance, the following code corresponds to the analysis of the
first 125 observations of the pistonrings dataset (the corresponding output is shown in Figure 13).

R> qcs.ca(xbar, limits = c(lsl = 73.99, usl = 74.01))

Process Capability Analysis

Call:
qcs.ca(object = xbar, limits = c(lsl = 73.99, usl = 74.01))

Number of obs = 125 Target = 74
Center = 74 LSL = 73.99
StdDev = 0.009785 USL = 74.01

Paremetric Capability indices:

Value 0.1% 99.9%
Cp 0.3407 0.2771 0.4065
Cp_l 0.3807 0.2739 0.4875
Cp_u 0.3006 0.2021 0.3991
Cp_k 0.3006 0.1944 0.4068
Cpm 0.3382 0.2749 0.4038

Non parametric Capability indices:

Value
CNp 1.0082
CNpK 0.9275
CNpm 0.9799
CNpmk 0.9015

PPM:

Exp<LSL 1.267e+07 Obs<LSL 0
Exp>USL 1.836e+07 Obs>USL 8e+05

Exp Total 3.103e+07 Obs Total 8e+05

Test:

Anderson Darling Test for normal distribution

data: xbar
A = 0.1399, mean = 74.001, sd = 0.005, p-value = 0.9694
alternative hypothesis: true distribution is not equal to normal
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Figure 13: A complete analysis of the process capability.

6 Conclusions

The qcr package has been developed to provide users with a comprehensive set of functions that
manage statistical process control, ranging from univariate parametric analysis to multivariate and
FDA nonparametric statistics. This package includes the main types of control charts and capability
indices. It combines the main features of reputed SQC packages in R such as qcc and qualityTools
with the proposal of a new graphical appearance and the implementation of new SQC tools with
increasing importance in Industry 4.0 such as multivariate and nonparametric analysis.
In addition to some utilities provided by reference R packages such as qcc, SixSigma, and qualityTools,
qcr implements very important statistical techniques of Control and Analysis tasks of the Six Sigma
procedure that are not included in other libraries. In the case of multivariate control charts, these
tools are the MEWMA and MCUSUM multivariate control charts, on the one hand, and the r, Q
and S nonparametric control charts based on data depth, on the other hand. In addition, Phase I
and Phase II control charts for functional data (monthly, daily, hourly curves) based on functional
data depth, bootstrap procedures, and nonparametric rank charts have also been implemented in the
qcr package. These control charts for functional data provide tools to control and improve processes
when their CTQ variables are obtained as hourly, monthly, daily, yearly smooth curves.
It is also very important to note that qcr provides functions to perform nonparametric capability
analysis. In addition, the new implementation of the process capability plots for the main parametric
capability indices allows us to analyze if improvements in process spread or/and process location are
needed to obtain a capable process. The comparison between suppliers, machines, etc., is enabled
through capability plots.
All these utilities intend to make qcr a useful tool for users of a wide variety of industries, providing
a competitive alternative to commercial software.
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pdynmc: A Package for Estimating Linear
Dynamic Panel Data Models Based on
Nonlinear Moment Conditions
by Markus Fritsch, Andrew Adrian Yu Pua and Joachim Schnurbus

Abstract This paper introduces pdynmc, an R package that provides users sufficient flexibility
and precise control over the estimation and inference in linear dynamic panel data models. The
package primarily allows for the inclusion of nonlinear moment conditions and the use of iterated
GMM; additionally, visualizations for data structure and estimation results are provided. The current
implementation reflects recent developments in literature, uses sensible argument defaults, and
aligns commercial and noncommercial estimation commands. Since the understanding of the model
assumptions is vital for setting up plausible estimation routines, we provide a broad introduction
of linear dynamic panel data models directed towards practitioners before concisely describing the
functionality available in pdynmc regarding instrument type, covariate type, estimation methodology,
and general configuration. We then demonstrate the functionality by revisiting the popular firm-level
dataset of Arellano and Bond (1991).

1 Introduction

This paper introduces the contributed package pdynmc (Fritsch et al., 2020) – a unified framework
for estimating linear dynamic panel data models based on linear and nonlinear moment conditions
(Ahn and Schmidt, 1995). Our implementation of the commands in pdynmc allows the user to exert
precise control over the available functionality, reflects recent developments in literature, uses sensible
argument defaults, aligns commercial and noncommercial estimation commands, and provides
visualizations of data structure and estimation results. Additionally, this paper provides a concise
introduction into linear dynamic panel data models directed towards the practitioner, describes the
functionality available in pdynmc, and walks the reader through estimation of linear dynamic panel
data models by replicating the analysis in Arellano and Bond (1991).

Practitioners have a variety of recent packages that enable linear dynamic panel data modeling
meant for a fixed number of time periods. In particular, contributed R packages such as OrthoPanels
(Pickup et al., 2017), plm (Croissant and Millo, 2019), and panelvar (Sigmund and Ferstl, 2019) have
considerably enlarged the set of noncommercial routines available. All of these packages implement
some default routines for estimating common parameters in linear dynamic panel data models.
OrthoPanels implements a likelihood-based orthogonal reparameterization procedure for first-order
autoregressive linear panel data models with strictly exogenous covariates. plm implements one-step
and two-step GMM-based procedures for pth-order autoregressive linear panel data models. panelvar
implements iterated (or “m-step”, compare Sigmund and Ferstl, 2019) GMM procedures for pth-order
vector autoregressive linear panel data models. For the latter two packages, linear moment conditions
are used to identify common parameters.

Additional functionality of our contributed package pdynmc includes nonlinear moment con-
ditions which are generally not available across standard GMM estimation routines. To the best of
our knowledge, there is currently only the xtdpdgmm-implementation provided by (Kripfganz, 2019)
for the commercial statistical software Stata (StataCorp, 2015). The current implementation in Stata
restricts accessibility to the routine as it requires a recent Stata version (version 13 or higher). Another
key estimation option provided by pdynmc is iterated GMM. Hansen and Lee (2021) recently outlined
the merits of the technique and developed the theory under potential misspecification of moment
conditions. The availability of iterated GMM for dynamic panels may help to apply the results found
in, for example, Hwang and Sun (2018). Visualizations of the estimation results of iterated GMM are
also included.

The structure of the paper is as follows. Section Framework and methodology briefly sketches
the linear dynamic panel data model, states underlying assumptions frequently used in literature,
and describes moment conditions arising from different sets of model assumptions. Section R im-
plementation covers details on the arguments of the model fitting function pdynmc and connects the
description with the estimation methodology. Section Empirical example illustrates the estimation of
linear dynamic panel data models with pdynmc for the dataset of Arellano and Bond (1991), while
Section Conclusion concludes.
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2 Framework and methodology

Linear dynamic panel data models account for dynamics and unobserved individual-specific hetero-
geneity. Due to the presence of lagged dependent variables, applying ordinary least squares including
individual-specific dummy variables is inconsistent (see, e.g., Hsiao, 2014). A suitable alternative for
obtaining parameter estimates of linear dynamic panel data models is deriving moment conditions (or
population orthogonality conditions) from the model assumptions. The moment conditions may be
linear (Anderson and Hsiao, 1982; Holtz-Eakin et al., 1988; Arellano and Bover, 1995) or nonlinear
(Ahn and Schmidt, 1995) in parameters and determine the natural instruments available for estimation.
Usually, the number of moment conditions exceeds the number of parameters, and the moment
conditions need to be aggregated appropriately. This can be achieved by the generalized method of
moments (GMM), where weighted linear combinations of moment conditions are employed to obtain
parameter estimates.

Theoretical results and evidence from Monte Carlo simulations in the literature suggest that
incorporating nonlinear (quadratic) moment conditions proposed by Ahn and Schmidt (1995) is
valuable for identification. For example, when the lag parameter exhibits high persistence, linear
moment conditions fail to identify the model parameters, while quadratic moment conditions can still
provide identification (Bun and Kleibergen, 2021; Bun and Sarafidis, 2015; Gørgens et al., 2019; Pua
et al., 2019a,b). Note that the quadratic moment conditions are immediate by-products of imposing
standard assumptions, which are the basis of the Arellano and Bond (1991) estimator – the most
popular default routine in dynamic panel data estimation.

Since the moment conditions employed in GMM estimation of linear dynamic panel data models
are derived from model assumptions, a basic understanding of these assumptions is vital for setting
up a plausible estimation routine. We briefly review the assumptions implied when using particular
moment conditions in the estimation below and add to the exposition in the plm vignette (Croissant
and Millo, 2019), where the function pgmm is used to estimate linear dynamic panel data models. For
further reading on the methodology, we suggest Fritsch (2019).

Linear dynamic panel data model

For a given dataset with cross-section dimension n and time series dimension T, consider a linear
dynamic panel data model of the form:

yi,t = αyi,t−1 + βxi,t + ui,t, i = 1, . . . , n; t = 2, . . . , T, (1)

ui,t = ηi + εi,t. (2)

Variables yi,t and yi,t−1 denote the dependent variable and its lag, α is the lag parameter, and xi,t is
a single covariate with corresponding slope coefficient β. The second equation separates the com-
posite error term ui,t into an unobserved individual-specific effect ηi and an idiosyncratic remainder
component εi,t.

Combining Equations (1) and (2) yields the single equation form:

yi,t = αyi,t−1 + βxi,t + ηi + εi,t. (3)

We only include one lag of the dependent variable, one covariate, and omit unobserved time-
specific effects in this section for simplicity of exposition and notational convenience. Extending the
representation is straightforward, and pdynmc can also accommodate AR(p) models and time effects.
The initial time period is denoted by t = 1.

The unobserved individual-specific effects ηi may be eliminated from Equation (3) by taking first
differences:

∆yi,t = α∆yi,t−1 + β∆xi,t + ∆εi,t. (4)

Since the first difference of the lagged dependent variable ∆yi,t−1 = yi,t−1 − yi,t−2 and the first
difference of the idiosyncratic remainder component ∆εi,t = εi,t − εi,t−1 are not orthogonal, ordinary
least squares estimation of Equation (4) is inconsistent. Linear dynamic panel data models are usually
estimated by GMM, where corresponding moment conditions are derived from model assumptions.
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Standard assumptions and associated moment conditions

Researchers have focused on the following standard assumptions, henceforth StA, (see Ahn and
Schmidt, 1995):

The data are independently distributed across i, (5)

E(ηi) = 0, i = 1, ..., n,

E(εi,t) = 0, i = 1, ..., n, t = 2, ..., T,

E(εi,t · ηi) = 0, i = 1, ..., n, t = 2, ..., T,

E(εi,t · εi,s) = 0, i = 1, ..., n, t ̸= s,

E(yi,1 · εi,t) = 0, i = 1, ..., n, t = 2, ..., T,

n → ∞, while T is fixed, such that
T
n
→ 0.

We assume that StA hold for the rest of this paper.

Under StA, Holtz-Eakin et al. (1988) (henceforth HNR) propose the moment conditions:

E(yi,s · ∆ui,t) = 0, t = 3, . . . , T; s = 1, . . . , t − 2. (6)

Equation (6) provides 0.5(T − 1)(T − 2) moment conditions. Equivalent moment conditions can
be derived from the covariate xi,t – depending on its correlation with the idiosyncratic remainder
component εi,t. Endogenous, predetermined, and (strictly) exogenous covariates provide the following
linear moment conditions, respectively:

E(xi,s · ∆ui,t) = 0, t = 3, . . . , T, where (7)

s = 1, . . . , t − 2, for endogenous x,

s = 1, . . . , t − 1, for predetermined x,

s = 1, . . . , T, for strictly exogenous x.

After solving Equation (1) for ui,t and inserting this as ∆ui,t = ui,t − ui,t−1, it is apparent that the HNR
moment conditions are linear in parameters (α and β). In literature, the HNR moment conditions also
appear as “moment conditions with instruments in levels” (w.r.t. yi,s, xi,s) and “moment conditions
from equations in differences” (w.r.t. ∆ui,t).

Ahn and Schmidt (1995) (henceforth AS) have shown that under StA the following T − 3 additional
moment conditions hold:

E(ui,T · ∆ui,t−1) = 0, t = 4, . . . , T. (8)

These moment conditions are nonlinear in parameters (quadratic in α and β).

Extended assumptions and associated moment conditions

Another set of moment conditions, beyond those implied by StA, that is popular in theoretical and
applied research is derived from the assumption:

E(∆yi,t · ηi) = 0, i = 1, . . . , n. (9)

This expression requires that the dependent variable and the unobserved individual-specific effects
are constantly correlated over time for each individual and has thus been called “constant correlated
effects” (Bun and Sarafidis, 2015). This assumption is also called “effect stationarity” (Kiviet, 2007) or
“mean stationarity” (Arellano, 2003).

From this assumption, Arellano and Bover (1995) derive T − 2 additional moment conditions
(henceforth ABov):

E(∆yi,t−1 · ui,t) = 0, t = 3, . . . , T. (10)

By rewriting these moment conditions, it can be shown that the ABov moment conditions encompass
the nonlinear AS moment conditions (for a derivation see Fritsch, 2019).

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 221

Depending on the assumptions about xi,t, additional ABov moment conditions can be derived:

E(∆xi,v · ui,t) = 0, where

v = t − 1; t = 3, . . . T, for x endogenous,

v = t; t = 2, . . . , T, for x strictly exogenous or x predetermined.

Deviations from the assumption are required to be unsystematic over both the cross-section and the
time series dimension (see Section 6.5 in Arellano, 2003, which also provides an empirically relevant
example). Employing the constant correlated effects assumption implicitly constrains the relationship
between ∆xi,t and ηi (see Blundell et al., 2001). If the statistician is not willing to impose this restriction,
nonlinear AS moment conditions can be used instead.

3 R implementation

Similar to function pgmm in the package plm, pdynmc provides one-step and two-step closed-form
GMM estimators and standard specification testing such as overidentifying restrictions tests, serial
correlation tests, and Wald tests. These features are shared by other packages implemented in Gauss,
Ox (Doornik et al., 2012), R, and Stata. We provide options to match results from other statistical
software estimation routines. In contrast to OrthoPanels and plm, pdynmc does not include a formula
interface to allow the user to exert full control over all functionality.

GMM estimation, inference, and testing

We provide one-step, two-step, and iterated estimation for the coefficients. The weighting matrix of
the moment conditions plays a prominent role in estimation (Arellano and Bond, 1991; Blundell et al.,
2001; Kripfganz, 2019). An optimal weighting matrix is proportional to the inverse of the covariance
matrix of the moment conditions (see, e.g., Arellano, 2003). The default weighting matrix used in
pdynmc is based on the proposal of Arellano and Bond (1991). For details on available alternatives,
see the documentation of pdynmc and the corresponding package vignette (Fritsch et al., 2020).

Details on the computation of asymptotic one- and two-step standard errors can be found in
Doornik et al. (2012). As asymptotic two-step GMM standard errors for the estimated coefficients ex-
hibit a downward bias in small samples, they can be substantially lower than one-step GMM standard
errors (see, e.g., Arellano and Bond, 1991). Windmeijer (2005) relates the bias to the dependence of the
two-step weighting matrix on one-step parameter estimates and proposes an analytic correction of
two-step standard errors. Robust and non-robust versions of the standard errors are available.

Coefficient estimates and standard errors from one- and two-step GMM estimation can be mislead-
ing. An example of high practical relevance is when the estimated model is a reasonable approximation
instead of the true functional relationship (Hansen and Lee, 2021; Hwang et al., 2021): This may render
some of the moment conditions invalid. Hansen and Lee (2021) highlight the arbitrariness of the initial
weighting matrix and note that iterated GMM provides a remedy. Across iterations, the weighting
matrix is updated based on the residuals of the previous estimation step (for more details, see Hansen
and Lee, 2021, p. 4–6). Iterated GMM is used as a default in pdynmc.

We implement the following tests:

• The serial correlation test of Arellano (2003).

• The overidentifying restrictions test of Hansen (1982), called “J-test”.

• A Wald test of joint significance of (i) coefficients of lagged-dependent variable(s) and covariates;
(ii) time dummy coefficients; (iii) both, (i) and (ii).

When nonlinear moment conditions are used in GMM estimation, nonlinear optimization tech-
niques are required to obtain coefficient estimates. By default, GMM estimation by pdynmc is based
on numerical optimization. For the optimization procedure, we rely on R-package optimx (Nash
and Varadhan, 2011; Nash, 2014). All optimization routines implemented in optimx are available in
pdynmc. Based on our experience, we recommend using the Variable Metric method (Fletcher, 1970;
Nash, 1990, 2020) in the estimation of linear dynamic panel data models. The technique is labeled
BFGS in optimx and serves as the default procedure in pdynmc.

Function arguments explained

In package pdynmc, the eponymous function is intended for model fitting. The most important
function arguments for applied work are summarized in Table 1.
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Argument Description

dat Dataset with rows (i.e., observations) and columns (i.e., variables).
varname.i Cross-section identifier (column name).
varname.t Time series identifier (column name).

use.mc.diff Use moment conditions from Equation (6) (i.e., equations in differences,
instruments in levels).

use.mc.lev Use moment conditions from Equation (10) (i.e., equations in levels,
instruments in differences).

use.mc.nonlin Use nonlinear (quadratic) moment conditions from Equation (8).
use.mc.nonlinAS If turned to FALSE, the nonlinear moment conditions are used in a mod-

ified version (that is also valid under StA), where T in Equation (8) is
replaced by t.

include.y Derive instruments from lags of dependent variable.
varname.y Name of dependent variable in dataset.
lagTerms.y Number of lags of dependent variable.
maxLags.y Maximum number of lags of dependent variable from which to derive

instruments.

include.x Derive instruments from covariates.
varname.reg.end Name(s) of covariate(s) to be treated as endogenous (replace suffix end

by pre for predetermined; by ex for exogenous covariates).
lagTerms.reg.end Number of lags of endogenous covariate(s) (also for pre or ex).
maxLags.reg.end Maximum number of lags of endogenous covariate(s) used to derive

instruments (also for pre or ex).

fur.con Include further control variables (i.e., covariates that are not used for
deriving instruments).

fur.con.diff Logical variable indicating whether to include further control variables
in equations in differences.

fur.con.lev Logical variable indicating whether to include further control variables
in equations in levels.

varname.reg.fur Name(s) of covariate(s) in dataset to be treated as further controls.
lagTerms.reg.fur Number of lags of further controls.

include.dum Include time dummies. Note: Can be constructed from multiple vari-
ables.

dum.diff Include time dummies in equations in first differences.
dum.lev Include time dummies in equations in levels.
varname.dum Variable name(s) for creating time dummies (can be different from

varname.t).

w.mat Type of initial weighting matrix to be used, iid.err (as proposed by
Arellano and Bond (1991)), identity, or zero.cov.

std.err Type of standard errors to be used, either bias-corrected (corrected)
according to Windmeijer (2005) or not (unadjusted).

estimation Type of estimation, onestep, twostep, or iterative.

Table 1: Most-used arguments of function pdynmc.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 223

Besides the arguments described in Table 1, various further configuration options exist for function
pdynmc. The function allows for the inclusion of further covariates which are only used as instruments
(i.e., covariates from which moment conditions are derived, but for which no parameters are estimated;
compare arguments include.x.instr and varname.reg.instr) as well as the opposite, covariates
which are instrumented (i.e., covariates for which parameters are estimated, but from which no
moment conditions are derived; compare arguments include.x.toInstr and varname.reg.toInstr).

Further, thresholds for collinearity checks can be adjusted via col_tol. The total number of
instruments above which a generalized inverse is used to invert the weighting matrix can be specified
by inst.thresh.

When only linear moment conditions are used, a closed-form solution exists for the estimator, and
nonlinear optimization can be turned off (by opt.meth = "none"). Package optimx is employed for
nonlinear optimization and argument hessian controls whether the Hessian matrix is approximated
in estimation. All other control arguments for optimx can be provided in a list via optCtrl. Starting
values for initializing nonlinear optimization are drawn from the uniform distribution in the interval
[-1, 1] via start.val.lo = -1 and start.val.hi = 1; a seed (seed.input = 42) ensures reproducibility
(limits and seed can be adjusted). Alternatively, specific starting values can be provided via argument
start.val (note that custom.start.val has to be set to TRUE).

For iterated estimation, termination criteria can be set via max.iter (maximum number of itera-
tions) and iter.tol (tolerance for determining convergence).

The Stata packages xtabond2 (Roodman, 2018) and xtdpdgmm have somewhat different usage and
weighting of moment conditions. If HNR and ABov moment conditions are available for estimation,
some of the ABov moment conditions are redundant (see Fritsch, 2019, for a derivation). While the
Stata routines fully expand the linear ABov moment conditions when setting up the instrument matrix
(including the redundant moment conditions), pdynmc omits the redundant moment conditions. The
pdynmc arguments inst.stata and w.mat.stata are included to allow for conformity to Stata and to
reproduce estimation results.

4 Empirical example

The functionality of pdynmc is illustrated by replicating Arellano and Bond (1991) in a wide sense
as we incorporate linear ABov and nonlinear AS moment conditions into the analysis; we also draw
comparisons between pdynmc, the pgmm (Croissant et al., 2020) function in R-package plm, and Stata
implementations xtabond2 and xtdpdgmm (Kripfganz, 2019).

Arellano and Bond (1991) employ an unbalanced panel of n = 140 firms located in the UK. The
dataset spans T = 9 time periods and is available from R package plm. Arellano and Bond (1991)
investigate employment equations and consider the dynamic specification:

ni,t =α1ni,t−1 + α2ni,t−2+ (11)

β1wi,t + β2wi,t−1 + β3ki,t + β4ki,t−1 + β5ki,t−2 + β6ysi,t + β7ysi,t−1 + β8ysi,t−2+

γ3d3 + · · ·+ γTdT + ηi + εi,t, i = 1, ..., n; t = 3, ..., T,

where i denotes the firm, and t is the time series dimension. The natural logarithm of employment
(n) is explained by its first two lags and the further covariates natural logarithm of wage (w), the
natural logarithm of capital (k), the natural logarithm of output (ys), and their lags of order up to one
(for w) or two (for k and ys). Variables d3, . . . , dT are time dummies with corresponding coefficients
γ3, . . . , γT ; unobserved individual-specific effects are represented by η, and ε is an idiosyncratic
remainder component.

We load the dataset and compute logarithms of the four mentioned variables via:

data(EmplUK, package = "plm")
dat <- EmplUK
dat[,c(4:7)] <- log(dat[,c(4:7)])
names(dat)[4:7] <- c("n", "w", "k", "ys")

As GMM estimation with linear and/or nonlinear moment conditions in pdynmc allows for
arbitrary unbalancedness, we included the functions data.info and strucUPD.plot to provide an
overview of the panel data structure. Both functions require the column name of cross-section (i.name)
and time series identifier (t.name). Using data.info(dat,i.name = "firm",t.name = "year") yields:

Unbalanced panel dataset with 1031 rows and the following time period frequencies:
1976 1977 1978 1979 1980 1981 1982 1983 1984
80 138 140 140 140 140 140 78 35
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The command strucUPD.plot(dat,i.name = "firm",t.name = "year") gives the visual represen-
tation of the panel data structure shown in Figure 1. Figure 1 indicates the time periods (compare
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Figure 1: Unbalanced panel structure plot.

abscissa) available for each cross-sectional unit (ordinate). Blank areas represent missing observations.
The coloring scheme shows the number of time series units that are available for the corresponding
cross-sectional units. We see that the given dataset has already been ordered by the number of time
periods available.

The goal of the empirical analysis is to estimate the lag parameters α1 and α2 and the coefficients
β j of the j = 1, . . . , 8 further covariates while controlling for (unobserved) time effects and accounting
for unobserved individual-specific heterogeneity. In the following, we first apply pdynmc to replicate
the original results of Arellano and Bond (1991) that are based on HNR moment conditions only
and introduce the implemented tests. Then, we provide results for adding ABov moment conditions
to the analysis. Finally, we discuss results for HNR moment conditions extended by AS moment
conditions and apply iterated GMM. All results on estimated coefficients and robust standard errors are
summarized in Table 2. Details on employed moment conditions are provided in the table footnotes.

GMM estimation with HNR moment conditions

When reproducing the results in Table 4 on p. 290 of Arellano and Bond (1991) with pdynmc, the
model structure underlying Equation (11) can be specified and estimated by:

m1 <- pdynmc(
dat = dat, varname.i = "firm", varname.t = "year",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = FALSE,
include.y = TRUE, varname.y = "n", lagTerms.y = 2,
fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
varname.reg.fur = c("w", "k", "ys"), lagTerms.reg.fur = c(1,2,2),
include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = "year",
w.mat = "iid.err", std.err = "corrected",
estimation = "onestep", opt.meth = "none"

)

The standard output is accessed via summary(m1) and can be found in panel (a) of Table 2. The
estimated coefficients reproduce the estimates in Table 4, column (a1) on p. 290 of Arellano and Bond
(1991) when one specifies all arguments as stated in this section. Changing the argument estimation
to twostep yields two-step GMM coefficient estimates (the pdynmc-output object is assigned to m2)
from Table 4, column (a2) on p. 290 of Arellano and Bond (1991). These results may be found in
panel (b) of Table 2. Note that the standard errors presented in column (b) of Table 2 are based on
the Windmeijer-correction and deviate from the conventional standard errors reported in Arellano
and Bond (1991). Standard errors from the original analysis can be reproduced by setting std.err =
"unadjusted".
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(a) (b) (c) (d) (e)
1-Step Estimate 2-S. Estimate 2-S. Estimate 2-S. Estimate Iterated Est.

HNR only HNR only HNR & ABov HNR & AS HNR & AS
(SE Rob.) (SE Rob.) (SE Rob.) (SE Rob.) (SE Rob.)

L1.n 0.686*** 0.629** 1.103*** 1.112*** 1.197***
(0.145) (0.193) (0.050) (0.066) (0.069)

L2.n -0.085 -0.065 -0.104* -0.071 -0.126
(0.056) (0.045) (0.047) (0.069) (0.068)

w -0.608*** -0.526*** -0.448** -0.417** -0.219
(0.178) (0.155) (0.149) (0.153) (0.127)

L1.w 0.393* 0.311 0.423** 0.413** 0.258
(0.168) (0.203) (0.156) (0.160) (0.138)

k 0.357*** 0.278*** 0.290*** 0.309*** 0.255***
(0.059) (0.073) (0.050) (0.053) (0.056)

L1.k -0.058 0.014 -0.153* -0.189** -0.155*
(0.073) (0.092) (0.067) (0.068) (0.077)

L2.k -0.020 -0.040 -0.137*** -0.154** -0.156**
(0.033) (0.043) (0.041) (0.050) (0.055)

ys 0.609*** 0.592*** 0.548** 0.582** 0.530**
(0.173) (0.173) (0.194) (0.178) (0.183)

L1.ys -0.711** -0.566* -0.666** -0.624** -0.379
(0.232) (0.261) (0.221) (0.216) (0.223)

L2.ys 0.106 0.101 0.127 0.023 -0.208
(0.141) (0.161) (0.156) (0.151) (0.152)

1979 0.010 0.011 0.024* 0.027* 0.031**
(0.010) (0.012) (0.011) (0.011) (0.010)

1980 0.022 0.023 0.041* 0.047** 0.053**
(0.018) (0.020) (0.020) (0.018) (0.018)

1981 -0.012 -0.021 0.002 0.018 0.026
(0.030) (0.033) (0.034) (0.030) (0.030)

1982 -0.027 -0.031 0.018 0.022 0.034
(0.029) (0.034) (0.023) (0.021) (0.023)

1983 -0.021 -0.018 0.043* 0.037* 0.041*
(0.030) (0.037) (0.018) (0.019) (0.021)

1984 -0.008 -0.023 0.029 0.015 0.021
(0.031) (0.037) (0.022) (0.022) (0.024)

(a, b) Equations in differences: L (2/8) .n, D.w, L.D.w, D.k, L.D.k, L2.D.k, D.ys, L.D.ys, L2.D.ys, D.1979 − D.1984

(c) Equations in differences: L (2/8) .n, D.w, L.D.w, L2.D.w, D.k, L.D.k, L2.D.k, D.ys, L.D.ys, L2.D.ys, D.1979 − D.1984

Equations in levels: L (1/7) .D.n, w, L.w, L2.w, k, L.k, L2.k, ys, L.ys, L2.ys

(d, e) Equations in differences: L (2/8) .n, u, D.w, L.D.w, L2.D.w, D.k, L.D.k, L2.D.k, D.ys, L.D.ys, L2.D.ys, D.1979 − D.1984

Equations in levels: w, L.w, L2.w, k, L.k, L2.k, ys, L.ys, L2.ys

* p < 0.05, ** p < 0.01, *** p < 0.001 (refers to t-test of the null that the coefficient is equal to zero)

Table 2: Estimates in the spirit of Table 4 in Arellano and Bond (1991). Use of L(a1/a2) indicates lag
transformation by a minimum of a1 and a maximum of a2 time periods; D indicates first differences.
Table footnotes indicate available instruments and corresponding equations.
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The command mtest.fct(m2,t.order = 2) is used to perform the test of Arellano and Bond
(1991) for second order serial correlation and yields:

Arellano and Bond (1991) serial correlation test of degree 2

data: 2step GMM Estimation; H0: no serial correlation of order 2 in the error terms
normal = -0.37133, p-value = 0.7104

The test does not reject the null hypothesis at any plausible significance level and provides no indication
that the model specification might be inadequate.

Computing the Hansen J-test of overidentifying restrictions by jtest.fct(m2) yields:

J-Test of Hansen

data: 2step GMM Estimation; H0: overidentifying restrictions valid
chisq = 31.381, df = 25, p-value = 0.1767

As the test does not reject the null hypothesis, there are no indications that the validity of the instru-
ments (i.e., the model assumptions) employed in estimation may be in doubt.

For the Wald test of the null hypothesis that the population parameters of all coefficients included
in the model are jointly zero, which is tested by wald.fct(m2,param = "all"), we obtain:

Wald test

data: 2step GMM Estimation; H0: all parameters are jointly zero
chisq = 1100, df = 16, p-value < 2.2e-16

The test rejects the null hypothesis. Hence, all tests shown here provide no indications that the model
in column (b) of Table 2 is misspecified.

Comparing the results to xtabond2 shows that degrees of freedom and p-values differ for the
latter two tests. We consider 25 degrees of freedom to be the appropriate number in the J-test, as 41
instruments are employed in estimation to obtain 16 coefficient estimates. The latter number (16) is the
appropriate number of degrees of freedom in the Wald test. It seems that the function xtabond2 does
not correct the degrees of freedom for the number of dummies dropped in estimation1. The difference
in the p-value is due to the differences in the degrees of freedom. Our results are equivalent to the
results of pgmm for the overidentifying restrictions test (referred to as “Sargan test” in pgmm).

Using many instruments may have undesirable side effects such as biased coefficient estimates and
standard errors. This may result in misleading inference and specification tests (see, e.g., Roodman,
2009). The number of lags of the dependent variable which are used to derive moment conditions
can be limited by setting maxLags.y (equivalently lags of, for example, endogenous covariates can be
limited via maxLags.reg.end). Setting maxLags.y = 4 reduces the number of HNR moment conditions
for the GMM estimation above from 27 to 17 and the total number of instruments employed in the
estimation from 41 to 31.

GMM estimation with HNR and ABov moment conditions

When the “constant correlated effects” assumption stated in Equation (9) holds, the HNR moment
conditions from equations in differences employed in Section GMM estimation with HNR moment
conditions can be extended by the ABov moment conditions from equations in levels.

The ABov moment conditions are particularly useful for data generating processes, which are
highly persistent (Blundell and Bond, 1998). In this case, identification by the HNR moment conditions
from equations in differences may fail, and GMM estimation based on HNR moment conditions is
documented to possess poor finite sample performance (see, e.g., Blundell and Bond, 1998; Blundell
et al., 2001; Bun and Sarafidis, 2015).

In pdynmc, the ABov moment conditions from equations in levels can be (additionally) incorpo-
rated by:

use.mc.lev = TRUE

In principle, both time dummies and further covariates can be included in the equations in first
differences and the level equations. It is recommended, though, to include the dummies only in one
of the equations, as it can be shown that incorporating them in both equations renders one set of

1Dummies are dropped by the estimation routine in case of high collinearity.
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dummies redundant for estimation – while for non-lagged dependent covariates, this equivalence
does not hold.2 We accommodate non-lagged dependent covariates in the levels equations by:

fur.con.lev = TRUE

for all subsequent estimations of this example. The results presented in column (c) of Table 2 are
two-step estimates of column (a2) of Table 4 in Arellano and Bond (1991) extended by ABov moment
conditions.

Including ABov moment conditions into the analysis leads to substantial changes in the coefficient
estimates of the first lag of the dependent variable. Note that the results indicate a markedly higher
persistence of employment and render including two lags of the dependent variable questionable
(Blundell and Bond, 1998, e.g., estimate a version of the equation which contains only one lag of all
covariates). Note that the coefficient estimates of the covariates, besides the first lag of the dependent
variable, appear to be similar across estimations.

Equivalent results to column (c) of Table 2 can be obtained from the pgmm function in the plm-
package. When replicating the results with xtabond2, inst.stata = TRUE in pdynmc ensures that
results are equivalent.

GMM estimation with HNR and AS moment conditions

Recall that the linear ABov moment conditions from equations in levels encompass the nonlinear
AS moment conditions (Blundell and Bond, 1998; a derivation is provided in Fritsch, 2019). Both
sets of moment conditions may be useful in GMM estimation when the lag parameter is close to
unity, and it can be shown that extending the HNR moment conditions by either the ABov or the
AS moment conditions may identify the lag parameter – even when individual moment conditions
fail to do so (Blundell and Bond, 1998; Bun and Kleibergen, 2021; Gørgens et al., 2019). The ABov
moment conditions require the “constant correlated effects” assumption to hold, while the AS moment
conditions only require standard assumptions to hold. Therefore, the latter may be useful in situations
where the “constant correlated effects” assumption is in doubt, and the statistician aims to investigate
a highly persistent dynamic process with a structure similar to Equation (3). In pdynmc, including
nonlinear moment conditions into the analysis is available via:

use.mc.nonlin = TRUE

When extending the analysis of Arellano and Bond (1991) by the nonlinear AS moment conditions, the
results differ substantially from column (b) of Table 2 and are very similar to the coefficient estimates
shown in column (c) of Table 2. This indicates high persistence in the employment process that leads
to lag parameters not being identified by the HNR moment conditions (Bun and Kleibergen, 2021;
Gørgens et al., 2019).

Additionally, we employ iterated GMM via:

estimation = "iterative", max.iter = 100, iter.tol = 0.01,

Iterated GMM results are shown in column (e) of Table 2. The moment conditions employed are the
same as in column (d) of the table. The parameter estimates obtained after 13 steps are relatively
similar to those in columns (c)-(d). The ranges of the coefficient estimates across GMM iterations are
displayed in Figure 2. This plot is available for two-step and iterated GMM estimates via command
plot(m5,type = "coef.range",omit1step = TRUE). Using command plot(m5) yields a scatterplot
of fitted values and residuals of a fitted model object, instead.

Figure 2 indicates coefficient estimates at iteration 2 as grey open circles (the first iteration is
ignored due to omit1step = TRUE) and estimates at the last iteration as blue diamonds. For the
estimates displayed in column (e) of Table 2, we observe that the lag parameters are relatively stable
across iterations and resemble the two-step estimates; for the further covariates, larger changes in
coefficient estimates across iterations occur for coefficients with larger standard errors (compare w, k,
and ys).

As an additional tool to investigate coefficient estimates from iterated GMM, coefficient path
plots (compare Hansen and Lee, 2021, Figure 1) are provided. Figure 3 illustrates the path of coef-
ficient estimates for lag parameter α1 across GMM iterations and is obtained via plot(m5,type =
"coef.path",co = "L1.n"). Argument co allows to draw the path(s) of particular coefficient esti-
mates; per default, all coefficients (apart from time dummies) are included in the plot. Approximate
95% confidence bands were added to the plot for the final iteration (available by setting argument
add.se.approx = TRUE).

2Note that this is the case in balanced panels. The results may also not be numerically identical across function
calls for different choices of the one-step weighting matrix. For a discussion, see https://www.statalist.org/
forums/forum/general-stata-discussion/general/1357268-system-gmm-time-dummies.
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Figure 2: Estimated coefficients and corresponding coefficient ranges during iterated GMM estimation
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Figure 3: Estimated coefficient path for lag parameter α1 during iterated GMM estimation and
corresponding approximate 95% confidence bands for final iteration.

Overall, the results displayed in columns (c)-(e) of Table 2 suggest that the employment process
may be highly persistent and that using only HNR moment conditions may not be sufficient to identify
the parameters. In practice, contrasting GMM estimates based on HNR and AS moment conditions
with GMM estimates based on HNR and ABov moment conditions can be used as a robustness check
of the “constant correlated effects” assumption: When estimates differ, this may cast doubt on the
assumption. Here, this is not the case as the results in column (c) are very close to those in (d) and (e).

5 Conclusion

R-package pdynmc provides a function to estimate linear dynamic panel data models based on linear
and nonlinear moment conditions. The implementation reflects recent developments in the literature
by including iterated GMM and offers a wide variety of configuration options. The package provides
the only open source solution for GMM estimation of dynamic panels with linear and nonlinear
moment conditions, aligns commercial and non-commercial software, and is implemented to enable
the user to exert precise control over all functionality. Additionally, suitable visualizations of panel
data structures and ranges and paths of coefficient estimates across GMM iterations are provided.

The functionality of pdynmc includes that it allows for general lag structures of the covariates;
further controls and external instruments (if available) may also be added. The estimation routine
can handle balanced and unbalanced panel datasets and provides one-step-, two-step-, and iterated
estimation. Accounting for (unobserved) time-specific effects is possible by including time dum-
mies. Estimation relies on numerical optimization of the GMM objective function. Corresponding
closed-form solutions are computed – where possible – and stored beside the results from numerical
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optimization. Different choices for the weighting matrix, which guides the aggregation of moment
conditions in one-step GMM estimation are available. Robust standard errors are available for in-
ference and specification testing. Nonlinear moment conditions provide a robustness check of the
frequently employed constant correlated effects assumption.
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DChaos: An R Package for Chaotic Time
Series Analysis
by Julio E. Sandubete and Lorenzo Escot

Abstract Chaos theory has been hailed as a revolution of thoughts and attracting ever-increasing
attention of many scientists from diverse disciplines. Chaotic systems are non-linear deterministic
dynamic systems which can behave like an erratic and apparently random motion. A relevant field
inside chaos theory is the detection of chaotic behavior from empirical time-series data. One of the
main features of chaos is the well-known initial-value sensitivity property. Methods and techniques
related to testing the hypothesis of chaos try to quantify the initial-value sensitive property estimating
the so-called Lyapunov exponents. This paper describes the main estimation methods of the Lyapunov
exponent from time series data. At the same time, we present the DChaos library. R users may
compute the delayed-coordinate embedding vector from time series data, estimates the best-fitted
neural net model from the delayed-coordinate embedding vectors, calculates analytically the partial
derivatives from the chosen neural nets model. They can also obtain the neural net estimator of the
Lyapunov exponent from the partial derivatives computed previously by two different procedures
and four ways of subsampling by blocks. To sum up, the DChaos package allows the R users to test
robustly the hypothesis of chaos in order to know if the data-generating process behind time series
behaves chaotically or not. The package’s functionality is illustrated by examples.

1 Introduction

According to the literature, countless techniques have been developed and used to estimate the
complexity of time series data; for a review see, e.g., Faggini (2014), Bradley and Kantz (2015), Tang
et al. (2015). We have focused on methods derived from chaos theory which estimates the complexity
of a dataset through exploring the structure of the attractor. Particularly, we have been interested in
the so-called Lyapunov exponent (λ) as an attractor invariant measure. Quantifing chaos through this
kind of quantitative measure is a key point for understanding chaotic behavior. Hence, our interest
will be to test the hypothesis of chaos defined as follows:

H0 : λ̂k > 0
H1 : λ̂k ⩽ 0,

(1)

for k = 1, 2, 3, . . . on a k-dimensional system. Reject the null hypothesis H0 : λ̂k > 0 means lack of
chaotic behavior. That is, the data-generating process does not have a chaotic attractor because it does
not show the property of sensitivity to initial conditions, see Gençay and Dechert (1992). The existence
of a positive Lyapunov exponent makes it possible to distinguish whether an apparently erratic,
non-cyclical, and aperiodic dynamic system is random or chaotic. In this sense, a positive Lyapunov
exponent allows us to evidence that a deterministic generating system exists behind that chaotic system
in spite of showing an apparently random dynamic behavior. This fact would provide us to take
advantage of this deterministic character to be able to seek modeling of time series using non-linear
dynamic models, make reliable predictions, at least within the limits established by the sensitivity to
the initial conditions, and control over the variables of these chaotic deterministic dynamic systems,
see Fernández-Díaz (2019).

This ergodic measure can be defined as follows. Let Xt = f (Xt−1) be a difference equation where
f : Rk → Rk for t = 1, 2, 3, . . . , n. For a k-dimensional system, there will be k Lyapunov exponents
which are given by

λk (X0) = lim
t→∞

1
t
{log (|D f (Xt)| · . . . · |D f (X0)|)}

= lim
t→∞

1
t
{

log
(∣∣D f t (X0)

∣∣)} (2)

This relation indicates the average rate of divergence or convergence of an orbit f t (X0) starting
at point X0, where D f t (X0) is the Jacobian evaluated along the trajectory {X0, X1, . . . , Xt}. If one
knows the data-generating process behind the time series, the theoretical Lyapunov exponent can be
calculated directly using its own definition as outlined in eq.2. However, we have assumed that
the true dynamics of the system is unknown because in most real-world observed time series, the
data-generating process is rarely known a priori.
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For this reason, we will not take into consideration estimation methods that presuppose the
knowledge of the equations of the dynamical system. There are basically two kinds of methods
in order to compute the estimated Lyapunov exponent from time-series data. The first one, the so-
called direct approach, which directly measures the growth rate of the divergence between two
neighboring trajectories with an infinitesimal difference in their initial conditions. The second one,
the so-called indirect approach (or Jacobian-based method), which first fits a model to the data based
on approximations of the trajectories in the reconstructed state space, and then the Jacobian matrices
of the estimated dynamic system are used to compute the Lyapunov exponent. We will discuss both
methods, although we have focused in greater detail on the Jacobian indirect methods for the reasons
set out later.

There are some R packages recently developed related to nonlinear time series analysis and chaos.
For instance, the tseriesChaos written by Narzo (2019), nonlinearTseries proposed by Garcia (2019)
and fNonlinear provided by Wuertz et al. (2017). These R packages are based on ideas inspired by the
time series analysis (TISEAN) project suggested by Hegger et al. (1999). All of them implement the
algorithm written by Kantz (1994) using exclusively the direct method for estimating the Lyapunov
exponent. The main drawbacks of the direct methods are the following: (i) it does not allow the
estimation of the full spectrum of Lyapunov exponents; (ii) it is not robust to the presence of (small)
measurement noise because these estimators can produce a linear scaling region giving a wrong
chaotic Lyapunov exponent value even for non-chaotic systems; (iii) it does not have a satisfactory
performance in detecting existing non-linearities on time-series data of moderate sample sizes; (iv) the
asymptotic distribution of the estimator cannot be derived, means that it does not allow the building
of formal tests.

Function Description

embedding Provides the delayed-coordinate embedding vectors backwards
gauss.sim Simulates time series data from the Gauss map
henon.sim Simulates time series data from the Hénon system
jacobian.net Computes the partial derivatives from the best-fitted neural net model
logistic.sim Simulates time series data from the Logistic map
lyapunov Estimates the Lyapunov exponent through several methods
lyapunov.max Estimates the largest Lyapunov exponent by the Norma-2 procedure
lyapunov.spec Estimates the Lyapunov exponent spectrum by the QR decomposition
netfit Fits any standard feed-forward neural net model from time series data
rossler.sim Simulates time series data from the Rössler system
summary.lyapunov Summary method for a lyapunov object
w0.net Estimates the initial parameter vector of the neural net model

Table 1: A summary of the functions available in the DChaos package

In this paper, we present the DChaos package written by Sandubete and Escot (2021), which
provides the following contributions. First, as far as we know, the DChaos package is the first R
library that provides the Jacobian indirect methods proposed by Eckmann and Ruelle (1985) and
Gençay and Dechert (1992) for estimating the Lyapunov exponents. These Jacobian indirect methods
solve all drawbacks which belong to the direct methods. Particularly, this package has focused on
the neural net approach following McCaffrey et al. (1992) and Nychka et al. (1992) by approximating
the unknown non-linear system through a feed-forward single hidden layer neural network. Those
neural net methods provide a well-fit of any unknown linear or non-linear model. They also have
the advantage to allow the analytical derivation, rather than numerically, the jacobian needed for the
estimation of the Lyapunov exponents.

Second, the DChaos package allows the use of full sample estimation, but it also provides three
different blocking methods for estimating the Lyapunov exponents following McCaffrey et al. (1992)
and Shintani and Linton (2004). One of them is a new proposal based on the bootstrap method. The
results provided by the three blocking methods improve the case of the full sample being very similar
between them. Although, on average, the bootstrap method gives better results.

Third, the DChaos package provides new algorithms implementing the formal test proposed by
Shintani and Linton (2004), who provided a statistical framework for testing the hypothesis of chaos,
based on the theoretical asymptotic properties from the neural net estimator and its variance. R users
might make statistical inferences about Lyapunov exponents’ significance and test the hypothesis of
chaos (eq.1). Remember that the asymptotic distribution of the estimator obtained from direct methods
does not exist, and that is, there is no chance to make statistical inference about chaos.
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Fourth, any methods for estimating the Lyapunov exponent from time series data are previously
based on the state space reconstruction procedure. Note that a key point to create a suitable reconstruc-
tion of the state-space is to fix criteria in order to estimate the embedding parameters. Researchers
usually estimate them using heuristic approaches based on prescriptions proposed by, e.g., Abarbanel
(1996) or Kantz and Schreiber (2004). The main drawbacks of these heuristic approaches are the
following: they are not intrinsically statistical; their results are not robust; they lead to estimators
whose properties are unknown or largely unexplored; they do not take into account the results of
any model fit. Although the Dchaos package also allows the use of heuristic methods, we have
implemented some alternative and consistent statistical methods based on model selection criteria
following Chan and Tong (2001) which solves those disadvantages.

Fifth, instead of considering only time-series data with uniform time-frequency, e.g., 1-month,
1-day, 1-hour, 30-min, 5-min, 1-min, and so on, as R packages mentioned above, the DChaos package
also allows the use of time series data with non-uniform time-frequency. As far as we know, the
DChaos package is the first R library that provides the reconstruction of the pseudo-estate space
from time series data with non-uniform time-frequency (which are not equally spaced in time). In
this sense, this package provides a new algorithm implementing the theorem proposed by Huke and
Broomhead (2007), who extended the reconstruction theorem when the dynamical system is sampled
non-uniformly in time. Their results have allowed us to get the non-uniform delayed-coordinate
embedding vectors from time series data with non-uniform time-frequency, e.g., tick-by-tick financial
time series.

To sum up, the DChaos package provides a novel R interface for researchers interested in the field
of chaotic dynamic systems and non-linear time series analysis and professors (and students) who
teach (learn) courses related to those topics. There are 12 functions available in the DChaos package;
see table 1. We are going to describe all of them as we go on to explain the theoretical procedure. The
rest of the paper is organized as follows. Section 2 presents the state space reconstruction procedure
from time series data. Section 3 gives an overview about the main estimation methods of the Lyapunov
exponents and provides some technical details about the DChaos package. Section 4 illustrates some
examples showing the package’s functionality. Section 5 contains some concluding remarks.

2 State space reconstruction from time series data

From now on, we assume that the true data-generating process is unknown. Hence, we do not have the
advantage of observing directly the state of the system Xt, let alone knowing the functional form f that
generates the dynamic associated with it. Instead of that, there is an observer function that includes an
additive measurement error ψ : Rk+1 → R which generates observations as xt = ψ (Xt, εt), where εt
is a sequence of independent and identically distributed random variables such that εt is independent
of Xj, 0 ⩽ j ⩽ t, for t = 1, 2, 3, . . . , n. Therefore, it is assumed that all information available is the
noise-contaminated sequence {xt}n

t=1 as a time series data. We have considered it appropriate to add
a measurement noise term in the observation function because most real-world, observed time series
data are usually noise-contaminated signals.

The embedding procedure allows us to get all the relevant information (invariant properties) about
the unknown underlying dynamical system that generates the time series data, e.g., the Lyapunov
exponents defined previously must have approximately the same value in both the true and the
reconstructed state space. This fact allows us to test the hypothesis of chaos in the unknown original
dynamic system (1). Any methods for estimating the Lyapunov exponent from some observed time
series data are based previously on the state space reconstruction procedure. The embedding theorem
proposed by Takens (1981) provides a framework to reconstruct an unknown dynamical system which
gave rise to a given observed scalar time series simply by reconstructing a new state space out of
successive values of the time series. We have considered the method of delayed-coordinates proposed
by Ruelle and Takens (1971) to get the delayed-coordinate embedding vectors as follows. Let {xt}n

t=1
be the time series data. We form a sequence of delayed vectors by associating for each time period a
vector in a reconstructed state space Rm, whose coordinates satisfy the following equation:

xm
t =

(
xt, xt−τ , xt−2τ , . . . , xt−(m−2)τ , xt−(m−1)τ

)
, (3)

where m is the embedding dimension and τ is the reconstruction time-delay (or lag).
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We can construct a vector space whose axes represent all the relevant variables given by

xm
1 =

(
x1, x1−τ , . . . , x1−(m−2)τ , x1−(m−1)τ

)
xm

2 =
(

x2, x2−τ , . . . , x2−(m−2)τ , x2−(m−1)τ

)
...

xm
n =

(
xn, xn−τ , . . . , xn−(m−2)τ , xn−(m−1)τ

)
The underlying idea is to make copies of the measured signal with uniform time-lapse between

observations and consider these delayed values as coordinates of a reconstructed state space, retrieved
from the data. Notice that the reconstruction theorem assumes that the dynamical system is sampled
uniformly in time. There has, however, been increasing interest in situations where observations are
not uniform in time. That is, the data does not come from a series of values measured periodically
in time. For instance, a motivating example would be the case of financial markets. The information
generated by the interactions between traders who buy (bid orders) and sell (ask orders) financial
instruments such as stocks, bonds, commodities, currencies, derivatives, and so on is apparently
encoded in frequencies which are not usually equally spaced in time. Thus, if we observe a particular
financial asset, i.e., a currency pair on the Foreign Exchange Market, the quotes or rates of this financial
asset are sampling, by tick-by-tick intervals, which do not follow a constant rhythm. Each tick will
appear when there is a change, upward or downward, in the trade price of each transaction. Can we
use this kind of information to build a dynamical system model, and if so, how is it related to the
true data-generating process? Huke and Broomhead (2007) showed how to extend the reconstruction
theorem under certain conditions when the dynamical system is sampled non-uniformly in time. So,
we can use their results to get the non-uniform delayed-coordinate embedding vectors from time
series data with non-uniform time-frequency.

The three R packages mentioned before have implemented their algorithms considering only the
state space reconstruction from time series data sampled uniformly in time. The fNonlinear package
has a function called embeddPSR. buildTakens is the function that belongs to the nonlinearTseries
package, and the tseriesChaos package includes the function embedd. Note that such packages consider
the delayed-coordinate embedding vectors forward while we consider them backward. Both ways
of reconstructing the attractor are correct, but we think it more convenient to define the delayed-
coordinate embedding vectors backward since in time series analysis we explain the initial and future
instants from what has happened in the past as in equation 3. Let us show some brief examples of
how to deal with the state space reconstruction procedure from time series data.

Uniform delayed-coordinate embedding vectors. On the one hand, the first five values are shown using
the embedd function, which belongs to tseriesChaos package for an embedding dimension m=5 and a
time delay equal to d=2 . We have simulated time series data from the logistic equation contained in
the DChaos package. The command set.seed(34) will set the seed for reproducibility.

## Simulates time-series data from the Logistic map with chaos
ts <- DChaos::logistic.sim(a=4, n=1000)
[1] 7.47e-01 7.57e-01 7.37e-01 7.76e-01 6.95e-01 8.48e-01 5.16e-01 9.99e-01 4.22e-03

## Provides the uniform delayed-coordinate embedding vectors forwards
data <- tseriesChaos::embedd(ts, m=5, d=2)
show(head(data, 5))

V1/0 V1/2 V1/4 V1/6 V1/8
[1,] 0.7466701 0.7365940 0.69509054 0.51625546 0.00422337
[2,] 0.7566155 0.7760930 0.84775873 0.99894304 0.01682213
[3,] 0.7365940 0.6950905 0.51625546 0.00422337 0.06615659
[4,] 0.7760930 0.8477587 0.99894304 0.01682213 0.24711960
[5,] 0.6950905 0.5162555 0.00422337 0.06615659 0.74420600

On the other hand, the DChaos package provides the function embedding which arguments are
(x, m, lag, timelapse) to get the delayed-coordinate embedding vectors backward considering both
the uniform and the non-uniform case. If the observations are sampled at uniform time intervals,
then timelapse=FIXED. Otherwise, timelapse=VARIABLE has to be specified. Note that if FIXED has
been selected, data must be a vector or a time series object ts or xts. Otherwise, VARIABLE has to be
specified. In this case, data must be a data.frame, a data.table, or a matrix with two columns, the
date and the univariate time series as a sequence of numerical values, in that order. The date can have
the following three classes: POSIXt, Date, or Factor.
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In the latter case, the date should come in the following format YMD H:M:OS3 considering millisec-
onds, e.g., 20190407 00:00:03.347. If the R users do not consider milliseconds, they must put .000 after
the seconds. The function embedding returns the uniform or non-uniform delayed-coordinate embed-
ding vectors backward by columns from univariate time series considering the parameter set selected
by the R users. Let us show an example. Firstly, the first five values corresponding to the uniform
embedding vectors set for m=5, lag=2, and timelapse=FIXED are shown considering the time series
previously simulated from the logistic map. As we said before, we consider the delayed-coordinate
embedding vectors backward while other R packages (i.e., tseriesChaos) consider them forward.

## Provides the uniform delayed-coordinate embedding vectors backwards
data <- DChaos::embedding(ts, m=5, lag=2, timelapse="FIXED")
show(head(data, 5))

y x1 x2 x3 x4
1 0.00422337 0.51625546 0.69509054 0.7365940 0.7466701
2 0.01682213 0.99894304 0.84775873 0.7760930 0.7566155
3 0.06615659 0.00422337 0.51625546 0.6950905 0.7365940
4 0.24711960 0.01682213 0.99894304 0.8477587 0.7760930
5 0.74420600 0.06615659 0.00422337 0.5162555 0.6950905

Non-uniform delayed-coordinate embedding vectors. We have used a data set called sbux, which
belongs to the highfrequency package. It contains the bid quote price data for Starbucks company.
This R package provides several tools for high-frequency time series data analysis. The first five values
corresponding to the non-uniform embedding vectors set for m = 3, lag = 4, and timelapse=VARIABLE
are shown. We can get the non-uniform delayed-coordinate embedding as follows. Let {xti}

n
i=1 be our

time series taking ti − ti−1 ̸= ts − ts−1 ∀i ̸= s. We form a sequence of delayed vectors by associating
with each time a vector in a reconstructed state space Rm, whose coordinates satisfy the following
equation:

xm
ti
=
(

xti , xti−τ , xti−2τ , . . . , xti−(m−2)τ , xti−(m−1)τ

)
, (4)

where m is the embedding dimension and τ is the reconstruction delay (or lag). As in the uniform case
(eq.3), we can construct a vector space whose axes represent all the relevant variables.

## Simulates tick-by-tick data from bid quote price for Starbucks company
ts2 <- highfrequency::sbux

## Provides the non-uniform delayed-coordinate embedding vectors backwards
data <- DChaos::embedding(ts2, m=3, lag=4, timelapse="VARIABLE")
show(head(data, 5))

y x1 x2
2010-07-01 15:30:09 -0.0012327924 -0.0010255359 0.0008179960
2010-07-01 15:30:11 0.0000000000 -0.0002053177 -0.0004090816
2010-07-01 15:30:12 -0.0004112688 -0.0002053177 -0.0020479221
2010-07-01 15:30:15 0.0004112688 0.0000000000 -0.0002053177
2010-07-01 15:30:16 -0.0004112688 -0.0004112688 -0.0002053177

Note that a key point to create a suitable reconstruction of the state space is to fix criteria in order
to estimate the embedding parameters (τ and m). Researchers in this area usually estimate them using
two different alternatives: a heuristic approach that mostly relies on physical or geometrical arguments
and by a statistical approach. Under the heuristic approach regarding the estimation of the time delay
τ, although there are other criteria, see, e.g.Abarbanel (1996), Kantz and Schreiber (2004). τ = 1 is
commonly used following the prescription proposed by Takens (1981). Concerning the embedding
dimension m, most of the papers published consider the false nearest neighbors criteria proposed
by Kennel et al. (1992). Another criteria widely used by the scientific community is to estimate the
correlation dimension as a proxy of the embedding dimension using the algorithm proposed by
Grassberger and Procaccia (1983).

The main drawbacks of these heuristic approaches are the following: (i) they are not intrinsically
statistical; (ii) they lead to estimators whose properties are unknown or largely unexplored; (iii)
they do not take into account the results of any model fit. The alternative proposed by the statistical
approach solves those 3 disadvantages. The statistical approach to state space reconstruction can be
viewed as the best subset selection problem within the nonparametric regression context as argued
Chan and Tong (2001). The idea behind it is to select the embedding parameters, τ and m, that provide
the best fit in the estimation of the Lyapunov exponents taking into account some information criteria.
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For instance, the Akaike’s information criterion (AIC), the bayesian information criterion (BIC), the
Hannan-Quinn information criterion (HQC), or the focused information criterion (FIC).

In any case, we think that the information derived from the heuristic approaches might be still
useful and should not be disregarded as complementary information. The DChaos allows the R users
to choose between both methods. By default, it uses the statistical approach based on model selection
procedures instead of heuristic techniques. Now, once we have shown how to deal with the state space
reconstruction, we are going to focus on the next step.

3 Estimating the Lyapunov exponents from time series data

In this section, we are going to discuss the main estimation methods of the Lyapunov exponents from
time series data briefly. As we said before, we have assumed that the true data-generating process is
unknown because in most real-world, observed time series data, the underlying generator system is
rarely known. For this reason, we will not take into consideration estimation methods that presuppose
the knowledge of the equations of the dynamical system. There are mainly two kind of methods to
compute the estimated Lyapunov exponent from time-series data: the direct methods and the Jacobian
indirect methods. Let us begin by focusing on the direct methods.

Direct method

The direct method was first proposed by Wolf et al. (1985), and then revisited by Rosenstein et al. (1993),
and by Kantz (1994); Kantz and Schreiber (2004). The underlying algorithm is explained in detail in
Kantz and Schreiber (1997). The three R packages already mentioned are based on ideas inspired by
the time series analysis (TISEAN) project proposed by Hegger et al. (1999). All of them implement
the algorithm proposed by Kantz using exclusively the direct method. The tseriesChaos package
includes the function lyap.k, the nonlinearTseries package has a function called maxLyapunov, and
lyapunovPlot is the function that belongs to the fNonlinear package. We will compare the results from
these packages with those provide by the DChaos library later. Notice that the function lyapunovPlot
has considered exactly the same code as the function lyap.k, which belongs to tseriesChaos. For this
reason, we are going to consider only the algorithms included in the R packages tseriesChaos and
nonlinearTseries.

The idea behind this direct approach can be described as follows. Given a time series data of length
n, embedded in a m-dimensional space reconstructed with a time delay τ, the main aim is to compute
a local average of the distances between every point xi in the embedding space and its neighbors for
1 ⩽ i ⩽ n − (m − 1) τ. That is, the evolution of the logarithm of this (local) mean distance L (∆) is
monitored for a finite number ∆ of step ahead in time. The formula for this distance can be written as

L (∆) =
1
T

T

∑
i=1

ln

 1
#U (xi, ϵ) ∑

xj∈U (xi ,ϵ)

∣∣∣xi+∆ − xj+∆

∣∣∣
, (5)

where T = n− (m − 1) τ is the number of points in the state space that are involved in the computation,
#U (xi, ϵ) is the number of neighbors of each point that are closer than a distance equal to ϵ and have
a temporal separation greater than a certain value. We compute the log-average distance between
every point and its neighbours, and we follow it for ∆ time steps ahead. Thus, for every point xi, we
have approximately a straight line which represents the evolution of the logarithm of the local mean
distance. The average line of all these straight lines gives the evolution of the mean distance for the
whole attractor. The slope of this average line gives us the estimated values of the Lyapunov exponent.
Note that the algorithm suggested by Kantz includes the one proposed by Rosentein, Collins, and De
Luca as a special case (their number of neighbors are equal to 1).

Hence, the presence of a sharp linear region in the plot of the evolution of the logarithm of the mean
distance between nearby points could be a strong signal of chaotic behavior. The main advantages
of the direct methods are the following: (i) their low number of estimation parameters; (ii) easy
implementation; (iii) they provide direct visual feedback to the R users whether the available time
series data really exhibits exponential divergence on small scales; (iv) do not involve any kind of
modeling; (v) do not require assumptions on the nature of the process. Despite this, there are certain
drawbacks, as we pointed before: (i) it does not allow the estimation of the full spectrum of Lyapunov
exponents; (ii) it is not robust to the presence of (small) noise because these estimators can produce a
linear scaling region giving a positive estimate of the Lyapunov exponent even for non-chaotic systems;
(iii) it does not have a satisfactory performance in detecting existing non-linearities on time series
data of moderate sample sizes; (iv) the asymptotic distribution of the estimator cannot be derived,
which means that it does not allow the building of formal tests.
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For these reasons, we have focused on another alternative called the jacobian indirect methods. Let us
move on to explain how we have implemented this approach.

Jacobian indirect method

The DChaos package is the first R library that provides the Jacobian indirect methods proposed
by Eckmann and Ruelle (1985) for estimating the Lyapunov exponents. The procedure behind the
Jacobian indirect method can be described as follows. We have assumed following Gençay and

Dechert (1992) that there exist a function g : Rm → Rm such that xm
ti

= g
(

xm
ti−τ

)
, where xm

ti
are

the non-uniform delayed-coordinate embedding vectors which contains the uniform case taking
ti − ti−1 = ts − ts−1 ∀i ̸= s. Under the assumption that the embedding is a homeomorphism, the map
g is topologically conjugate to the unknown dynamic system f in equation 2. This implies that certain
dynamical properties of f and g are the same. In our case, the Lyapunov exponents of f and g should
be the same, so we can focus on estimating the exponents from the map g. The dynamical system g
may be expressed as a matrix by


xti

xti−τ

...
xti−(m−2)τ
xti−(m−1)τ

 = g


xti−τ

xti−2τ
...

xti−(m−1)τ
xti−mτ

 =


υ
(

xti−τ , xti−2τ , . . . , xti−(m−2)τ , xti−(m−1)τ , xti−mτ

)
xti−τ

...
xti−(m−2)τ
xti−(m−1)τ


(6)

The Jacobian corresponding to the dynamical system g will be as follows:

Dg =



∂υ
∂xti−τ

∂υ
∂xti−2τ

∂υ
∂xti−3τ

· · · ∂υ
∂xti−(m−1)τ

∂υ
∂xti−mτ

1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0

 (7)

Notice that the estimation of the Lyapunov exponent by the jacobian indirect method is reduced
to the estimation of the unknown nonlinear function υ : Rm → R. The different approaches that
compose the indirect method differ in the algorithm used for the estimation of this function υ in the
Jacobian (eq.7). The main contributions focus on two different approaches. Firstly, those who use
some kind of local linear regression, see Sano and Sawada (1985), Eckmann et al. (1986), Brown et al.
(1991), or their extension in the form of local polynomial regression proposed by Lu and Smith (1997).
Second, other approaches use nonlinear models based on neural networks, see McCaffrey et al. (1992),
Nychka et al. (1992), Dechert and Gençay (1992), Whang and Linton (1999), Shintani and Linton (2003,
2004). In this sense, there are no analogous functions in the R packages already mentioned since they
consider exclusively the direct method. In addition, those packages do not allow us to make inferences
about the Lyapunov exponents and test if the estimated values of the Lyapunov exponents are or not
statistically significant.

We have focused on the neural net approach, which is a global nonparametric method that tries
to estimate the underlying dynamic system without imposing the restriction of local linearity. This
approach has the following advantages over all other methods: (i) its robustness to the presence of
(small) noise as the measurement errors present in most real-world, observed time series data; (ii) their
satisfactory performance in detecting existing non-linearities on time series data of moderate sample
sizes; (iii) allows the estimation of the full spectrum of Lyapunov exponents; (iv) the asymptotic
distribution of the estimator can be derived, allowing the building of formal tests.

Neural network approach

The neural network (or neural net) estimator of the Lyapunov exponent was first proposed by Mc-
Caffrey et al. (1992) and Nychka et al. (1992) and then revisited by Gençay and Dechert (1992) and
by Shintani and Linton (2003, 2004). Note that in our case, the main reason for using neural network
models is not to look for the best predictive model but to estimate a model that captures the non-linear
time dependence well enough and, additionally, allows us to obtain in an analytical way (instead of
numerical) the jacobian functional of the unknown data-generating process (eq.7).
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The estimation of this Jacobian will allow us to contrast the hypothesis of chaos (eq.1) using
equation 2. Hornik et al. (1989) showed that any standard feed-forward networks with as few as one
hidden layer using arbitrary squashing functions are capable of approximating any Borel measurable
function from one finite-dimensional space to another for any desired degree of accuracy, providing
sufficiently many hidden units. In this sense, the feed-forward networks are a class of universal
approximations. Theoretically, neural nets are expected to perform better than other approximation
methods, especially with high-dimensional models, since the approximation form is not so sensitive
to the increasing dimension. The results proposed by the authors mentioned above have enabled
us to consider a neural network with just one single hidden layer. The number of hidden units (or
neurons) in the single hidden layer is determined by statistical methods based on model selection
criteria, as it appears in the results of the paper. Let us show how we have obtained a consistent neural
net estimator based on the robust estimation of the function υ in the Jacobian (eq.7). Note that if we
consider the m-dimensional reconstruction vector as defined by eq.6,

xti = υ
(

xti−τ , xti−2τ , . . . , xti−(m−2)τ , xti−(m−1)τ , xti−mτ

)
,

the neural network estimator can be obtained by approximating the unknown non-linear function υ
through a feed-forward single hidden layer network with a single output by

υ ≈ υ̂ = Φ0

α̂0 +
h

∑
q=1

ω̂qoΦq

α̂q +
m

∑
j=1

ω̂jqxti−jτ

 , (8)

where Φ0 ∈ I, α̂0 is the estimated network bias from input, h is the number of neurones (or nodes) in
the single hidden layer, ω̂q0 are the estimated layers connection weights from input to hidden layer, Φq
is the transfer function, which in our case is the logistic function, α̂q is the estimated network bias from
hidden layer, m is the embedding dimension, and ω̂jq are the estimated layers connection weights
from hidden layer to output. The issue of parameter estimation is reduced to a least squares problem
in which the quantity to be minimized is defined by

n

∑
i=1

xti −

α0 +
h

∑
q=1

ωqoΦq

αq +
m

∑
j=1

ωjqxti−jτ

2

Note that in our case, the main reason for using neural network models is not to look for the
best predictive model but to estimate a model that captures the non-linear time dependence well
enough and, additionally, allows us to obtain in an analytical way (instead of numerical) the jacobian
functional of the unknown underlying generator system (eq. 7). The estimation of this jacobian or
partial derivatives will later allow us to contrast our hypothesis of chaos using equation 2. We have
obtained the partial derivates of the Jacobian in eq.7, applying the chain rule to eq.8 as

∂υ̂

∂xti−jτ
= Φ′

0 (z0)
h

∑
q=1

ω̂q0Φ′
0
(
zq
)

ω̂jq, (9)

where

z0 = α̂0 +
h

∑
q=1

ω̂q0Φq
(
zq
)
, zq = α̂q +

m

∑
j=1

ω̂jqxti−jτ ,

and the estimated partial derivates are given by

D̂g =



∂υ̂
∂xti−τ

∂υ̂
∂xti−2τ

∂υ̂
∂xti−3τ

· · · ∂υ̂
∂xti−(m−1)τ

∂υ̂
∂xti−mτ

1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0

 (10)

The DChaos package provides the function netfit whose arguments are serie, m, lag, timelapse,
h, w0maxit, wtsmaxit, pre.white, trace, seed.t, seed, to fit the unknown non-linear function υ in eq.8
through a feed-forward single hidden layer network. See R documentation for the interpretation of
this parameter set. We have considered the nnet function that belongs to the nnet package to fit the
neural net models. Notice that the process of adjustment to a neural network often suffers from being
trapped in local optima, and different initialization strategies should be taken into account.
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For this reason, we have implemented the function w0.net whose arguments are x, y, m, h, rangx,
w0maxit, seed.t, seed. This function estimates previously the initial parameter vector of the neural
network being able to set the maximum number of iterations that we want to obtain, setting w0maxit.
In addition, by default, the neural network estimation is initialized with a fixed seed denoted by
seed.t=TRUE with a value equal to seed=56666459. The R users can let the seed be fixed either
randomly by seed.t=FALSE or even fix other values of the seed to be able to replicate the results
obtained.

Best-fitted neural network models. We are going to illustrate an example considering the time series
data previously simulated from the logistic map. The netfit function returns several objects. The
best-fitted feed-forward single hidden layer neural net model is saved. It also contains some useful
information about the best set of weights found, the fitted values, the residuals obtained, or the best
embedding parameters set chosen. The best 10 models are displayed on the console as we show below
for m ∈ {1 : 4}, lag ∈ {1 : 3} and h ∈ {2 : 10}. The first column is the neural net number, the second
column is the embedding dimension, the third column is the lag or reconstruction delay considered,
the fourth column is the number of neurons (or nodes) in the single hidden layer, and the fifth column
is the Bayesian Information Criterion (BIC) value corresponding to that neural net. Notice that the
neural net models are sorted from lowest to highest BIC values. In this case, the best-fitted neural
net model has the following parameter set values m=1, lag=1, and h=9. The BIC criterion is defined
following Shintani and Linton (2003) by

BIC = log (RSS) +
log (n)

n
[1 + h (m + 2)] ,

where RSS is the residual sum of squares, n is the number of observations, m is the embedding
dimension, and h is the number of neurones (or nodes) used in the single hidden layer as noted above.

## Provides the best-fitted neural network models for certain parameter set
model <- DChaos::netfit(ts, m=1:4, lag=1:3, timelapse="FIXED", h=2:10)

Best models:
m lag h BIC

85 1 1 9 -15.96086
73 1 1 8 -15.95343
97 1 1 10 -15.91173
37 1 1 5 -15.29339
61 1 1 7 -15.26654
63 3 1 7 -15.04988
49 1 1 6 -15.04090
3 3 1 2 -14.74957
98 2 1 10 -14.17451

## Summary method for a nnet object
## Provides the best set of weights found for the best-fitted neural net model (#85)
summary(model)

a 1-9-1 network with 28 weights
options were - linear output units
b->h1 i1->h1
-0.91 0.38
b->h2 i1->h2
-6.29 4.61
b->h3 i1->h3
3.06 -3.11

b->h4 i1->h4
1.49 6.10

b->h5 i1->h5
0.11 0.64

b->h6 i1->h6
0.70 3.02

b->h7 i1->h7
-0.19 0.57
b->h8 i1->h8
-1.37 0.84
b->h9 i1->h9
-0.03 -1.44
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b->o h1->o h2->o h3->o h4->o h5->o h6->o h7->o h8->o h9->o
-4.75 -0.16 -3.30 2.97 0.64 -0.39 5.07 -0.45 -2.02 -2.27

Partial derivatives are calculated analytically from the best-fitted neural net model. The DChaos package
provides as well the function jacobian.net which arguments are model, data, m, lag, timelapse, h,
w0maxit, wtsmaxit, pre.white, trace, seed.t, seed, to compute the partial derivatives of the Jacobian
in eq.10 from the best-fitted feed-forward single hidden layer network. See R documentation for the
interpretation of this parameter set. This function returns several objects considering the parameter
set selected by the user. Partial derivatives are calculated analytically from the best-fitted neural net
model. It also contains some useful information about the best-fitted feed-forward single hidden layer
neural net model saved, the best set of weights found, the fitted values, the residuals obtained, or
the best embedding parameters set chosen. This function allows the R user uses the data previously
obtained from the best-fitted neural network estimated by the netfit function if model is not empty.
Otherwise, data has to be specified. Let us show an example. Firstly, we provide the first seven partial
derivatives values (dx1) corresponding to the best-fitted neural net model estimated above (neural net
#85).

## Computes analytically the partial derivatives from the best-fitted neural net model
## showed in the netfit example (#85)
jacobian <- DChaos::jacobian.net(model=model)
show(head(jacobian$jacobian))

dx1
1 -1.9701373
2 -2.0499734
3 -1.8893034
4 -2.2064735
5 -1.5568866
6 -2.7836348
7 -0.1313633

Now, we are going to provide the results obtained from the function jacobian.net without
setting the best-fitted neural net model estimated previously. We have considered the dataset sim-
ulated from the logistic map again. We have chosen the following parameter set values m=3, lag=1,
timelapse=FIXED, h=2:10, w0maxit=100, wtsmaxit=1e6, pre.white=FALSE, trace=1, seed.t=TRUE, and
seed=56666459. We show below the first seven partial derivatives values (dx1, dx2, dx3) corresponding
to compute the partial derivatives of the Jacobian following eq.10 from the best-fitted feed-forward
single hidden layer network (neural net #6).

## Partial derivatives are calculated analytically without setting previously
## any neural net model
jacobian <- DChaos::jacobian.net(data=ts, m=3:3, lag=1:1, timelapse="FIXED", h=2:10)

Best models:
m lag h BIC

6 3 1 7 -15.04988
1 3 1 2 -14.74957
7 3 1 8 -13.73532
4 3 1 5 -13.63287
3 3 1 4 -13.29422
8 3 1 9 -13.08082
2 3 1 3 -11.79369
9 3 1 10 -11.78703
5 3 1 6 -11.61098

show(head(jacobian$jacobian))

dx1 dx2 dx3
1 -1.8880449 -0.0003353808 0.0020567805
2 -2.2071082 -0.0007068399 0.0014469903
3 -1.5552770 0.0001417462 0.0026879632
4 -2.7896525 -0.0011615596 0.0003214048
5 -0.1343617 0.0029934521 0.0053918764
6 -3.9235626 -0.0012869863 -0.0015386951
7 3.9269526 0.0116947029 0.0046071740
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Lyapunov exponent estimation and inference

In this section, we provide the right procedure to obtain a consistent estimator of the Lyapunov
exponent from the partial derivates estimated following eq.10. In addition, we are going to illustrate
how to test the hypothesis of chaos (eq.1) based on the theoretical asymptotic properties of the neural
net estimator. The kth Lyapunov exponent is given by

λ̂k = lim
M→∞

1
M

log µk

(∣∣∣D̂gM
∣∣∣) , (11)

where µk is the kth largest eigenvalue provided by D̂gM = D̂g (xtM ) · D̂g (xtM−1 ) · . . . · D̂g (xt1 ) for
k = 1, 2, 3, . . . , m. D̂g () are the partial derivates estimated above following eq.10. Note that it is
necessary to distinguish between the sample size n used for estimating the partial derivatives of
the Jacobian in eq.9 and the block length M, defined in eq.11, which is the number of evaluation
points (number of products of the Jacobian) used for estimating the kth Lyapunov exponent. Since
the number of evaluation points is less than or equal to n, M can be also understood as the sample
size of a subsample. We have taken into account in our algorithms both the full sample and three
different methods of subsampling by blocks, as we show below in table 2. The first column shows the
blocking methods considered. The second, third, and fourth column give the sample size, the block
length, and the block number of each subsampling method, respectively. The fifth column provides
the way in which the algorithm picks the position of each element inside the block where each block B
corresponds to one row. The bootstrap blocking method takes random samples without replacement
by each block.

Blocking method Sample size Block length Block number Block subset

Full n

Non-overlapping Blocks M B = n/M


1, 2, . . . , M
M + 1, M + 2, . . . , 2M
...
(B − 1) M + 1, (B − 1) M + 2, . . . , BM

Equally spaced Blocks M B = n/M


1, 1 + B, 1 + 2B, . . . , 1 + (M − 1) B
2, 2 + B, 2 + 2B, . . . , 2 + (M − 1) B
...
B, 2B, 3B, . . . , BM

Bootstrap Blocks M B = 100 Randomly

Table 2: Blocking methods for figuring out the neural network estimator of the kth Lyapunov exponent
by Jacobian indirect methods.

The asymptotic properties of the non parametric neural network estimator of the Lyapunov
exponent λ̂k was derived by Shintani and Linton Shintani and Linton (2004). They provided a
statistical framework for testing the hypothesis of chaos (eq.1) based on the neural net estimator of the
Lyapunov exponent and the consistent estimator of its variance. Their results showed the asymptotic
normality of the Lyapunov exponent estimator by

√
M
(
λ̂k − λk

)
∼ N (0, φk) , (12)

where φk is the variance of the kth Lyapunov exponent estimator (eq.2). They proved that φ̂k is a
consistent variance estimator of φk. It can be defined as follows:

φ̂k ≡ Var
(
λ̂k
)
= lim

M→∞
Var

(
1√
M

M

∑
t=1

ηk,t

)
, (13)

where M is the subsampling size, that is equal to n for the full sample. The quadratic spectral kernel
function ηk,t is given by ηk,t = ξk,t − λ̂k following Shintani and Linton (2004). The parameter ξk,t is
obtained by
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ξk,t =
1
2

log µk
(∣∣D̂gt∣∣)− 1

2
log µk

(∣∣∣D̂gt−1
∣∣∣) , (14)

where t = 1, 2, . . . , M. Then, a feasible test statistics were introduced, and a one-sided test was
proposed for the purpose of testing the hypothesis of chaos (eq.1) based on the theoretical asymptotic
properties of the neural net estimator. That is, we would know if the estimated Lyapunov exponent
values are or not statistically significant. Hence, our interest will be to test the null hypothesis
H0 : λ̂k > 0 against the alternative H1 : λ̂k ⩽ 0. The test statistics can be defined as follows:

t̂k =
λ̂k√

φ̂k/M
∼ N (0, φ̂k) (15)

Hence, we will reject the null hypothesis if t̂k ⩽ −zα, where zα is the critical value that satisfies
Pr [Z ⩾ zα] = α with Z being a standard normal random variable and α is the significance level. Under
the null hypothesis H0 that the data-generating process is chaotic, the neural net estimator λ̂k leads
to asymptotically valid inferences in that the associated p-value follows a normal distribution on
N (0, φ̂k). Rejecting the null hypothesis H0 : λ̂k > 0 means lack of chaotic behavior. Thus, we have
used these results to calculate the standard error of the Lyapunov exponent estimator and investigate
the statistical significance of the sign of the exponents.

Lyapunov exponent estimator by jacobian indirect method using a neural net approach. The DChaos
package provides several ways to figure out robustly the neural net estimator of the kth Lyapunov
exponent. On the one hand, if the R users have previously obtained the partial derivatives from
the jacobian.net function, they can apply directly the function lyapunov.spec, which estimates the
Lyapunov exponent spectrum taking into account the QR decomposition procedure. They can also
use the function lyapunov.max, which estimates only the largest Lyapunov exponent considering the
Norma-2 procedure. The arguments of both functions are the same (data, blocking, B, doplot). See
R documentation for the interpretation of this parameter set. Hence, the DChaos package allows
the R users to choose between two different procedures to obtain the neural net estimator of the kth
Lyapunov exponent and four ways of subsampling by blocks: full sample, non-overlapping sample,
equally spaced sample, and bootstrap sample; for a review see table 2.

Note that the DChaos package provides 8 internal functions (one for each procedure and block-
ing method), which estimate the Lyapunov exponents consistently (eq.11). These functions return
several objects considering the parameter set selected by the user. The largest Lyapunov exponent
(lyapunov.max) or the Lyapunov exponent spectrum (lyapunov.spec) by each blocking method are
estimated. They also contain some useful information about the estimated jacobian, the best-fitted
feed-forward single hidden layer neural net model, the best set of weights found, the fitted values, the
residuals obtained, the best embedding parameters set chosen, the sample size, or the block length
considered by each blocking method. These functions provide the standard error, the z test value, and
the p-value for testing the hypothesis of chaos (eq.1). Rejecting the null hypothesis H0 means lack of
chaotic behavior. That is, the data-generating process does not have a chaotic attractor because it does
not show the property of sensitivity to initial conditions. The blocking methods split the time-series
data into several blocks to estimate a Lyapunov exponent for each subsample. The R users can choose
the non-overlapping sample (blocking = NOVER), the equally spaced sample (blocking = EQS), or
the bootstrap sample (blocking = BOOT). The mean and median values of the Lyapunov exponent
for each block or subsample are saved. By default, we recommend using the median value as it is
more robust to the presence of outliers. Notice that parameter B (a non-negative integer denoting the
number of bootstrap iterations) will only be considered if the R users choose the bootstrap blocking
method.

Now, we are going to compare the results obtained from the lyapunov.max and lyapunov.spec
functions for estimating the largest Lyapunov exponent and the Lyapunov exponent spectrum respec-
tively. We have considered the dataset simulated from the logistic map again, the best-fitted neural
net model estimated previously (neural net #6) which the best embedding parameters set chosen
is m=3, lag=1, h=7, and the partial derivatives are dx1, dx2, dx3. We show below the estimation of
the largest Lyapunov exponent provided by the Norma-2 procedure and the Lyapunov exponent
spectrum taking into account the results obtained by the QR decomposition procedure (bootstrap
blocking method). The results provided by both methods are very similar between them (0.6943782
and 0.6942063 respectively), but thelyapunov.spec function also allows the estimation of the full
spectrum of the Lyapunov exponents. The estimated values by both methods are certainly close to the
theoretical value (0.6931472), and they are statistically significant at the 99% confidence level. This fact
evidences the consistency of the proposed algorithms.
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## Provides the largest Lyapunov exponent by the Norma-2 procedure considering the
## bootstrap blocking method from the best-fitted neural net model and the partial
## derivatives showed in the jacobian.net example.
exponent <- DChaos::lyapunov.max(data=jacobian, blocking="BOOT", doplot=FALSE)

## Provides summary statistics of the results given in an object of class lyapunov
summary(exponent)

Call:
Largest Lyapunov exponent

Coefficients:
Estimate Std. Error z value Pr(>|z|)

Exponent 0.6943782 0.00443619 1783.442 1
---
Procedure: Norma-2 by bootstrap blocking method
Embedding dimension: 3, Time-delay: 1, No. hidden units: 7
Sample size: 997, Block length: 82, No. blocks: 1000

## Provides the Lyapunov exponent spectrum by the QR decomposition procedure considering
## the bootstrap blocking method from the best-fitted neural net model and the partial
## derivatives showed in the jacobian.net example as well.
exponent <- DChaos::lyapunov.spec(data=jacobian, blocking="BOOT", doplot=FALSE)

## Provides summary statistics of the results given in an object of class lyapunov
summary(exponent)

Call:
Lyapunov exponent spectrum

Coefficients:
Estimate Std. Error z value Pr(>|z|)

Exponent 1 0.6942063 0.00309979 1670.773 1
Exponent 2 -3.5818150 0.00915042 -3873.927 0
Exponent 3 -3.7257022 0.00898081 -4053.132 0
---
Procedure: QR decomposition by bootstrap blocking method
Embedding dimension: 3, Time-delay: 1, No. hidden units: 7
Sample size: 997, Block length: 82, No. blocks: 1000

On the other hand, the DChaos package provides an all-in-one function called lyapunov. We have
considered it appropriate to incorporate a function that unifies the whole process to make it easier and
more intuitive for the R users. The lyapunov() function has the following usage:

lyapunov(data, m, lag, timelapse, h, w0maxit, wtsmaxit, pre.white, lyapmethod,
blocking, B, trace, seed.t, seed, doplot)

This function has fifteen main arguments where only the first one is mandatory. These are:

data: a vector, a time-series object ts or xts, a data.frame, a data.table, or a matrix depend-
ing on the method selected in timelapse. If FIXED has been selected, data must be a vector or a
time-series object ts or xts. Otherwise, VARIABLE has to be specified. In this case, data must be
a data.frame, a data.table, or a matrix.

m: a non-negative integer denoting a lower and upper bound for the embedding dimension
(Default 1:4).

lag: a non-negative integer denoting a lower and upper bound for the the reconstruction delay
(Default 1:1).

timelapse: a character denoting if the time-series data are sampled at uniform time-frequency
e.g., 1-month, 1-day, 1-hour, 30-min, 5-min, 1-min, and so on, FIXED or non-uniform time-
frequency, which are not equally spaced in time VARIABLE (Default FIXED).

h: a non-negative integer denoting a lower and upper bound for the number of neurons (or
nodes) in the single hidden layer (Default 2:10).

w0maxit: a non-negative integer denoting the maximum iterations to estimate the initial param-
eter vector of the neural net models (Default 100).
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wtsmaxit: a non-negative integer denoting the maximum iterations to estimate the weights
parameter vector of the neural net models (Default 1e6).

pre.white: a logical value denoting if the user wants to use as points to evaluate the partial
derivatives the delayed vectors filtered by the neural net model chosen TRUE or not FALSE
(Default TRUE).

lyapmethod: a character denoting the procedure chosen to estimate the Lyapunov exponent. If
LLE has been selected, the function will estimate only the largest Lyapunov exponent through
the Norma-2 method. If SLE has been selected, the function will estimate the Lyapunov exponent
spectrum through the QR decomposition. Otherwise, ALL has to be specified. In this case, the
function will estimate the Lyapunov exponent considering both procedures (Default SLE).

blocking: a character denoting the blocking method chosen for figuring out the Lyapunov
exponent. Available options are FULL if the user considers the full sample, NOVER if the user
considers the non-overlapping sample, EQS if the user considers the equally spaced sample,
BOOT if the user considers the bootstrap sample, or ALL if the user considers all of them (Default
BOOT).

B: a non-negative integer denoting the number of bootstrap iterations (Default 1000).

trace: a binary value denoting if the user wants to print the output on the console 1 or not 0
(Default 1).

seed.t: a logical value denoting if the user wants to fix the seed TRUE or not FALSE (Default
TRUE).

seed: a non-negative integer denoting the value of the seed selected if seed.t = TRUE (Default
56666459).

doplot: a logical value denoting if the user wants to draw a plot TRUE or not FALSE. If it is TRUE,
the evolution of the Lyapunov exponent values are represented for the whole period considering
the different procedures and blocking methods chosen by the user. The default value is TRUE.

The lyapunov() function provides (at the same time) the delayed-coordinate embedding vector
from time-series data (eq.3), estimates the best-fitted neural net model from the delayed-coordinate
embedding vectors (eq.8), calculates analytically the partial derivatives from the chosen neural nets
model (eq.10). Finally, the neural net estimator of the kth Lyapunov exponent (eq.11) is obtained
from the partial derivatives computed previously. This function returns several objects considering
the parameter set selected by the user. The largest Lyapunov exponent (lyapmethod = LLE), the
Lyapunov exponent spectrum (lyapmethod = SLE), or both (lyapmethod = ALL) by each blocking
method are estimated. They also contain some useful information about the estimated Jacobian, the
best-fitted feed-forward single hidden layer neural net model, the best set of weights found, the fitted
values, the residuals obtained, the best embedding parameters set chosen, the sample size, or the block
length considered by each blocking method. This function also provides the standard error, the z test
value, and the p-value for testing the hypothesis of chaos (eq.1). As we said before, rejecting the null
hypothesis H0 means lack of chaotic behavior. That is, the data-generating process does not have
chaotic attractor because it does not show the property of sensitivity to initial conditions.

Now, we are going to show an example of this all-in-one function. We provide the results obtained
from the lyapunov function considering the dataset simulated from the logistic map again for the fol-
lowing parameter set values m=3:3, lag=1:1, timelapse=FIXED, h=2:10, w0maxit=100, wtsmaxit=1e6,
trace=1, seed.t=TRUE, seed=56666459, and doplot=FALSE. In this case, we have estimated the Lya-
punov exponent spectrum taking into account the results provided by the QR decomposition procedure
(lyapmethod=SLE) and all blocking methods (blocking=ALL). Note that the delayed-coordinate embed-
ding vector, the best-fitted neural net model (with a lower BIC value), and the partial derivatives are
internally calculated according to the parameter set chosen (all-in-one way). The DChaos package
provides the summary method for class "lyapunov" called summary.lyapunov as we show below.

Let us point out briefly some useful information to understand the results presented in this
example. For the estimation based on blocking methods, median values of all used blocks are given.

For the block length M, the DChaos package uses M = int
[
c × (n/ log n)1/6

]
with c = 36.2 where

int [A] signifies the integer part of A following Shintani and Linton (2004). The number of blocks B
depends on the sample size n of each time series data; for a review, see table 2. QS Kernel with optimal
bandwidth has been used for the heteroskedasticity and autocorrelation consistent covariance matrix
estimation following Andrews (1991). In this example, the results provided by the three blocking
methods improve the case of the full sample being very similar between them. This result is consistent
with the recommendation proposed by Shintani and Linton (2004) on the use of blocking methods
instead of full sampling when estimating the Lyapunov exponent.
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## Provides the Lyapunov exponent spectrum by several blocking methods (all-in-one)
exponent <- DChaos::lyapunov(ts, m=3:3, lag=1:1, timelapse="FIXED", h=2:10, w0maxit=100,

wtsmaxit=1e6, pre.white=TRUE, lyapmethod="SLE", blocking="ALL",
B=100, trace=1, seed.t=TRUE, seed=56666459, doplot=FALSE)

Best models:
m lag h BIC

8 3 1 9 -13.37732
9 3 1 10 -12.90353
7 3 1 8 -12.76361
4 3 1 5 -12.60372
2 3 1 3 -12.20489
5 3 1 6 -11.88894
6 3 1 7 -11.85880
1 3 1 2 -11.75219
3 3 1 4 -10.76974

## Summary method for a lyapunov object
## Provides summary statistics of the results given in an object of class lyapunov
summary(exponent)

Call:
Lyapunov exponent spectrum

Coefficients:
Estimate Std. Error z value Pr(>|z|)

Exponent 1 0.6922016 0.08452517 74.15722 1
Exponent 2 -2.7082326 0.09158355 -267.77832 0
Exponent 3 -3.2056094 0.10913227 -265.98941 0
---
Procedure: QR decomposition by bootstrap blocking method
Embedding dimension: 3, Time-delay: 1, No. hidden units: 9
Sample size: 997, Block length: 82, No. blocks: 100

... only the first method is shown (see lyapunov object)

4 Analysis of chaotic time-series data adding a measurement noise

Firstly, let us illustrate how adding just a (small) measurement noise to a well-known deterministic
dynamic system as the logistic map. This fact increases the dispersion of the huge amount of points
that describe the attractor with the consequent inaccuracy; see figure 1. We have added to each
time-series data a normal multinomial error term denoted by εt ∼ N (0, s) with different variance
values s. The R code used to obtain the graphs shown below is the following. We have used the dataset
simulated previously from the logistic map with chaotic behavior.

## The user should make a loop adding a measurement noise with several variance values
par(mfrow=c(2,3))
noise <- c(0,0.01,0.02,0.03,0.04,0.05)
for (i in 1:length(noise)){
X <- logistic.sim(a=4, n=1000, s=noise[i])

plot(X[c(1:999)],X[c(2:1000)], cex=.4, xlab= "X(t-1)",ylab="X(t)",
main=paste("Measurement noise","s =",noise[i]))

}

In order to test the robustness of the different methods available to estimate the Lyapunov exponent,
we are going to compare the results provided by the tseriesChaos package and the nonlinearTseries
package with those of the DChaos package taking into account different measurement noise levels.
We have considered four well-known chaotic dynamic systems. These datasets are available on the
DChaos library; see Table 3.

The commands install.packages("DChaos") and library(DChaos) will download, install, and
load the DChaos package so it can be used. The command set.seed(34) also will set the seed for
reproducibility. To save CPU time, we have set the embedding dimension 1 ⩽ m ⩽ 7, the time delay
τ = 1, the number of nodes in the single hidden layer 2 ⩽ h ⩽ 10, and the length of all time series data
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Figure 1: Logistic map attractor adding a measurement noise with several variance values

is n = 1000. We have considered only the bootstrap blocking method, and the number of bootstrap
iterations is B = 1000. In this case, 63 different neural nets models have been estimated from each of
the 24000 simulated series in order to obtain the results shown in table 4.

Note that the neural net models are sorted from lowest to highest BIC values. Then each best-fitted
neural net model (with a lower BIC value) is considered to estimate the 24000 largest Lyapunov
exponents. The mean square error (MSE) is calculated between the theoretical value and the value
estimated by several direct and indirect methods. To do that, we have used the Monte Carlo method.
We have done 1000 repetitions by different initial conditions when simulating the time-series data
from the four dynamic systems and six measurement noise levels considered.

The MSE values based on the estimation of the largest Lyapunov exponent from the direct methods
provided by the tseriesChaos and nonlinearTseries packages are denoted by D1 and D2, respectively.
Those obtained by the Jacobian indirect methods through the DChaos library are denoted by N2
(lyapunov.max) and QR (lyapunov.spec) regarding the Norma-2 and QR decomposition procedures,
respectively. The results shown in table 4 provide the following comments.

First, we can remark that our algorithms are robust to the presence of (small) measurement errors
because the results obtained are comparable to those which are noise-free. Although as the noise
increases, the error committed increases, but it is not proportional in any case. Second, the indirect
methods provide better estimates than direct methods in all the experiments we have conducted. The
algorithms proposed by the tseriesChaos package behave better than those of the nonlinearTseries
library. Between the two methods available in the DChaos package, we do not observe significant
differences.

Dynamic system Equations Parameters λth
Logistic xt = µxt−1 (1 − xt−1) µ = 4 0.69314
Gauss xt = e−αx2

t−1 + β α = 6.2, β = −0.5 0.38367
Hénon xt = 1 − ax2

t−1 + yt−1 a = 1.4 0.41921
yt = bxt−1 b = 0.3 -1.63479

Rössler ẋ = −y − z a = 0.2 0.07143
ẏ = x + ay b = 0.2 0.00000
ż = b + (x − c) z c = 5.7 -0.53943

Table 3: Theoretical Lyapunov exponents (λth) from time-series data available on DChaos package.
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Logistic map s = 0 s = 0.01 s = 0.02 s = 0.03 s = 0.04 s = 0.05
D1 direct method 0.0001220 0.0056643 0.0030120 0.003006 0.0033485 0.0030913
D2 direct method 0.4802315 0.4765133 0.4814125 0.4815446 0.4790305 0.4830895
N2 indirect method 0.0000324 0.0000382 0.0000691 0.0000994 0.0001314 0.0001532
QR indirect method 0.0000331 0.0000348 0.0000672 0.0000986 0.0000997 0.0001124
Gauss map
D1 direct method 0.0015270 0.0111180 0.0205349 0.0293853 0.0275621 0.0336681
D2 direct method 0.1474216 0.1480353 0.1477251 0.1464405 0.1481204 0.1476371
N2 indirect method 0.0000436 0.0000526 0.0000555 0.0000678 0.0000719 0.0000944
QR indirect method 0.0000618 0.0000656 0.0000672 0.0000782 0.0000817 0.0000924
Hénon system
D1 direct method 0.0035650 0.0067221 0.0092761 0.0100339 0.0141379 0.0189926
D2 direct method 0.3121588 0.3133259 0.3145991 0.3115671 0.3226997 0.3178221
N2 indirect method 0.0000365 0.0000486 0.0000635 0.0000761 0.0000899 0.0000917
QR indirect method 0.0000318 0.0000451 0.0000589 0.0000601 0.0000866 0.0000932
Rössler system
D1 direct method 0.0024471 0.0049521 0.0063189 0.0072719 0.0127326 0.0174911
D2 direct method 0.6398841 0.6412752 0.6388524 0.6396631 0.6451333 0.6499127
N2 indirect method 0.0002477 0.0003529 0.0005997 0.0006122 0.0009521 0.0019947
QR indirect method 0.0003168 0.0004891 0.0006070 0.0007155 0.0008190 0.0009268

Table 4: The mean square error (MSE) values based on the estimation of the largest Lyapunov
exponent from direct methods provided by the tseriesChaos (D1) and nonlinearTseries (D2) packages
are showed. Also, those obtained by the Jacobian indirect methods through the DChaos library are
presented (N2 for lyapunov.max and QR for lyapunov.spec).

Third, the direct methods are surely less flexible and robust but much faster and still informative. The
Jacobian indirect methods based on the neural net approach seems to perform well for every noisy
time series data. The price we have to pay is a greater computational complexity from two points of
view, the computing time and the tuning parameters (node weights). Fourth, we have only focused on
the largest Lyapunov exponent as direct methods do not estimate the full spectrum. In addition, those
methods do not allow us to make inferences about it. In our case, we will be able to do so. Hence, we
are going to focus on the reliability of the proposed methods. We want to know the power and size of
our algorithms.

Finally, we will focus on testing the reliability of the algorithms provided by the DChaos package.
For this purpose, we have calculated the so-called size and power of our hypothesis test. Due to the
test is based on probabilities, there is always a chance of making an incorrect conclusion. When one
does a hypothesis test, two types of errors are possible. As a reminder, when the null hypothesis is
true, and we reject it, we make a type I error. The probability of making a type I error is denoted by α,
which is the significance level that we set for our hypothesis test. An α of 0.05 indicates that we are
willing to accept a 5% chance that we are wrong when we reject the null hypothesis. To lower this risk,
we must use a lower value for α. However, using a lower value for alpha means that we will be less
likely to detect a true difference if one really exists. The probability of not rejecting the null hypothesis
when it is true (not committing a type I error) is called the size of the test. When the null hypothesis is
false, and we fail to reject it, we make a type II error. The probability of making a type II error is called
beta, and is often denoted by β. We can decrease our risk of committing a type II error by ensuring
our test has enough power. We can do this by ensuring our sample size is large enough to detect a
practical difference when one truly exists. The probability of rejecting the null hypothesis when it is
false (not committing a type II error) is called the power of the test.

In order to understand the interrelationship between the type error I and II, in this case, consider the
following. As we pointed out before, feasible test statistics were introduced, and a one-sided test was
proposed for the purpose of testing the hypothesis of chaos (eq.1) based on the theoretical asymptotic
properties of the neural net estimator. Under the null hypothesis H0 that the data-generating process
is chaotic, the neural net estimator λ̂k leads to asymptotically valid inferences in that the associated p-
value follows a normal distribution on N (0, φ̂k). Hence, our interest will be to test the null hypothesis
H0 : λ̂k > 0 against the alternative H1 : λ̂k ⩽ 0. We will reject the null hypothesis if t̂k ⩽ −zα, where zα

is the critical value that satisfies Pr [Z ⩾ zα] = α with Z being a standard normal random variable and
α is the significance level. Rejecting the null hypothesis H0 : λ̂k > 0 means lack of chaotic behavior.
That is, the data-generating process does not have a chaotic attractor because it does not show the
property of sensitivity to initial conditions. Thus, we have used these results to calculate the standard
error of the Lyapunov exponent estimator and investigate the statistical significance of the sign of the
exponents in order to test the reliability of the proposed algorithms.
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n = 50 s = 0 s = 0.01 s = 0.02 s = 0.03 s = 0.04 s = 0.05
Logistic map 2.40 2.60 3.60 3.50 3.30 4.10
Gauss map 2.70 3.60 4.20 4.70 4.30 4.70
Hénon system 2.90 3.70 3.90 4.00 4.50 4.30
Rössler system 3.10 3.50 4.70 4.90 4.50 5.10
n = 100
Logistic map 1.20 1.50 2.30 2.50 3.40 3.90
Gauss map 1.50 1.70 1.90 2.70 3.10 3.50
Hénon system 1.70 1.90 2.20 3.30 3.70 4.00
Rössler system 1.70 1.80 2.30 4.10 3.70 4.70
n = 200
Logistic map 0.30 0.50 1.20 1.40 1.50 2.10
Gauss map 0.50 0.80 0.90 1.10 1.40 2.50
Hénon system 0.40 0.60 0.70 1.80 1.90 2.20
Rössler system 0.50 1.10 1.30 1.70 2.50 3.30

Table 5: Rejection percentages at the 5% significance level from the dynamic systems considered with
a chaotic behaviour. These results provide the size of our hypothesis test.

Note that the results shown in tables 5-6 are given in terms of rejection percentages of the tests at the
5% significance level over 1000 Monte Carlo replications. The rejection percentages give an indication
of the size of the tests (tab.5) and the power of the tests (tab.6). We have chosen n = 50, 100, 200 as
we want to check the reliability of the algorithms in small sample sizes. The four dynamic systems
used are listed in tab.3. Table 5 provides the results from chaotic dynamic systems which have the
following parameter set values: µ = 4 (logistic map); α = 6.2, β = −0.5 (Gauss map); a = 1.4, b = 0.3
(Hénon system), and a = 0.2, b = 0.2, c = 5.7 (Rössler system). Table 6 gives the results from non-
chaotic dynamic systems which have the following parameter set values: µ = 3.2 (logistic map);
α = 4.9, β = −0.58 (Gauss map); a = 1.2, b = 0.1 (Hénon system), and a = 0.1, b = 0.1, c = 7 (Rössler
system).

The data given in tables 5-6 provide the following comments. First, we can point out that the
reliability of the tests is solid at the 5% significance level. The rejection percentages in almost every
situation, even for n = 50, are low when the null hypothesis H0 is true and high when H0 is false.
Second, the results provide satisfactory performance in moderate sample sizes. This fact is really
important for those researchers who work with short time series data. Third, the empirical size
decrease and the empirical power increase as the sample size increase which means that our tests are
consistent as well. Fourth, the noise-contaminated data are comparable to those which are noise-free.
Although as the noise increases, the errors committed increase but not significantly. Fifth, the results
shown are fairly robust with respect to the parameter values of the four dynamic systems considered.

5 Conclusion

The main feature of chaos is the well-known initial-value sensitivity property. The study of measures
to quantify the initial-value sensitive property began with the introduction of Lyapunov exponents. So
quantifying chaos through this kind of quantitative measure is a key point for understanding chaotic
behavior. This paper describes the main statistical estimation methods of the Lyapunov exponent
from time series data. At the same time, we present the DChaos library. This package provides an R
interface for chaotic time series data analysis. R itself and all packages used are available from the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/.

R users may compute the delayed-coordinate embedding vectors from time series data, estimates
the best neural net model, calculates the partial derivatives directly from the chosen neural network
model. Finally, they can estimate both the largest Lyapunov exponent through the Norma-2 procedure
and the Lyapunov exponent spectrum through the QR decomposition procedure taking into account
the full sample and three different methods of subsampling by blocks. The results provided by Shintani
and Linton (2004) have enabled us to obtain a consistent Lyapunov exponent estimator and test the
chaotic hypothesis based on the theoretical asymptotic properties of our neural net estimators.

Finally, looking to the future, our focus will be on extending the functionality of this package.
Let us remark that the different contributions that compose the Jacobian indirect methods differ in
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n = 50 s = 0 s = 0.01 s = 0.02 s = 0.03 s = 0.04 s = 0.05
Logistic map 99.30 98.90 98.40 97.70 97.50 96.90
Gauss map 99.40 99.00 98.70 98.50 97.10 97.00
Hénon system 99.20 98.90 98.60 97.90 97.40 96.90
Rössler system 98.70 98.10 97.40 97.00 96.70 96.20
n = 100
Logistic map 99.70 99.00 98.70 98.20 97.70 97.20
Gauss map 99.70 99.30 98.90 98.70 98.40 97.70
Hénon system 99.60 99.00 98.80 98.20 97.70 97.10
Rössler system 99.40 98.80 98.30 97.70 97.20 96.90
n = 200
Logistic map 99.90 99.40 99.00 98.70 98.20 97.90
Gauss map 100.00 99.60 99.30 99.00 98.80 98.20
Hénon system 99.80 99.30 99.00 98.60 98.10 97.80
Rössler system 99.70 99.00 98.70 98.20 97.50 97.00

Table 6: Rejection percentages at the 5% significance level from the dynamic systems considered with
a non-chaotic behaviour. These results provide the power of our hypothesis test.

the algorithm used for the estimation of the Jacobian. So far, we have focused on the neural net
approach, which tries to estimate the underlying dynamic system without imposing the restriction
of local linearity. We are working on three more Jacobian indirect methods that try to estimate the
Jacobian by local polynomial kernel regressions, by local neural nets models, and by convolutional
neural nets models. We are interested in developing the proposed algorithms from multivariate time
series data. We are also focusing on how to apply parallelization and big data techniques to the design
of the proposed algorithms in order to obtain computational efficiency when applying them to massive
databases. We will keep providing useful tools and robust algorithms related to the analysis of chaotic
time-series data.
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IndexNumber: An R Package for
Measuring the Evolution of Magnitudes
by Alejandro Saavedra-Nieves and Paula Saavedra-Nieves

Abstract Index numbers are descriptive statistical measures useful in economic settings for comparing
simple and complex magnitudes registered, usually in two time periods. Although this theory has
a large history, it still plays an important role in modern today’s societies where big amounts of
economic data are available and need to be analyzed. After a detailed revision on classical index
numbers in literature, this paper is focused on the description of the R package IndexNumber with
strong capabilities for calculating them. Two of the four real data sets contained in this library
are used for illustrating the determination of the index numbers in this work. Graphical tools are
also implemented in order to show the time evolution of considered magnitudes simplifying the
interpretation of the results.

1 Introduction

The problem of reducing a large amount of available microeconomic data is common in dynamic and
modern economies. Individuals of today’s societies consume services of hundred of commodities
over a year, and most producers use and produce hundreds of individual products and services.
This overwhelming abundance of data is usually summarized through index numbers theory. Index
numbers are descriptive statistical measures useful in order to compare or measure changes in simple
and complex magnitudes over time. The goal is usually to determine possible increases or decreases
and, more generally, trend changes. The situations to be compared are in no way restricted; they may
be two time periods (hours, days, months, or years); two places (two cities or countries); or two groups
of people (economically active and inactive population). For simplicity in the exposition, we refer
to temporal index numbers in this paper. The rest of the situations mentioned could be considered
modifying the notation slightly.

Although index numbers are considered a classical statistical tool, the problem of how to construct
them is as much one of economic theory as of statistical technique, see Frisch (1936). This can be
checked by analyzing their considerable history. Initial works involving index numbers date back
to the early 18th century. During the creation of a college in 1440–1460, it was stipulated that any
member had to leave it if his richness exceeded five pounds per year. The Anglican Bishop Fleetwood
desired to know if, according to the price evolution, this promise could be kept three centuries later.
Then, he studied the evolution of prices corresponding to four products (wheat, meat, drink, and
clothing) from 1440 to 1700. He concluded that five pounds in 1440–1460 had the same value as 30
pounds in 1700. More details can be found in Fleetwood (1707). Dûtot (1754) studied the diminution
of the money value analyzing the incomes of kings Louis XII and Louis XV. In order to know which
of them had the largest disposable income, he considered the prices of several goods of different
nature as such as a chicken, a rabbit, a pigeon, or the day’s work value. From the discovery of the
Americas, the astronomy professor of Padoue analyzed the evolution of prices in 1764. He considered
the prices of three commodities (grains, wine, and cooking oil), and he studied their variation from
1500 to 1750. Evelyn (1798) can be seen as a precursor of index numbers establishing a price index
number from 1050 to 1800. In this work, notions as the year of reference and relative prices were
introduced. According to Kendall (1977), the real father of index numbers is Joseph Lowe. Many
problems dealing with their construction were presented in Lowe (1822). In fact, Lowe’s measurement
would be known as the Laspeyres index later. In the second half of the 19th century, statisticians
developed many advances in this setting. Jevons (1863) recommended considering the geometrical
mean in order to construct an index number. Between 1864 and 1880, Laspeyres (1864, 1871), Drobisch
(1871), and Paasche (1874) worked on the evolution of prices for material goods from the approach of
weighted index numbers. Palgrave (1886) proposed to weigh the relative prices by the total amount of
the considered good. Fisher (1922) defined a new index number calculated as the geometric mean of
the Laspeyres and the Paasche index numbers. In the same period, Marshall and Edgeworth proposed
to calculate weighted means. For an in-depth review on this topic, see Kendall (1969), Allen (1982) or
more recently, CPI Manual (2004), or Dodge (2008).

Nowadays, economists continue to use index numbers to make comparisons over time despite
their long background. In fact, the main applications of index numbers are either economic, or they
occur in related fields as demography or technology. In such settings, the magnitudes to be compared
through index numbers usually come in pairs, one of price and the other a matching one of quantity.
This pair may be designed to account for the variation in an aggregate value, as when movements
in the aggregated expenditure of consumers are analyzed into the two components of changes in
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prices and in real consumption. Some more recent contributions in index numbers theory are exposed
next. Barnett (1980) focused on economic monetary aggregates from this approach. Changes in food
prices were analyzed in Lamm (1980). Index numbers in chain, or more commonly chain indices, are
considered in Forsyth and Fowler (1981). Boyle (1988) analyzed the volume of Irish agricultural output
from 1960 to 1982. Scanner data on coffee sales are studied in de Haan and Opperdoes (1997). Hill
(1999) shows how a comparison of price levels across a group of countries can be made by chaining
Fisher index numbers across a spanning tree. Inequality and poverty in several regions of Thailand are
studied through the construction of urban and rural cost of living and welfare indices in Kakwani and
Hill (2002). Dumagan (2002) showed that the Fisher index could be numerically approximated by other
superlative index numbers. In Reinsdorf et al. (2002), additive decompositions of the Fisher index are
derived in order to know how much each item contributes to its overall change. From data from United
States, Canada, France, Germany, Italy, Japan, and the United Kingdom, drug price and quantity
index numbers are considered in Danzon and Chao (2000). Ang et al. (2004) used a generalized
version of the Fisher index to analyze CO2 emission. In Boyd and Roop (2004), the structural change
in energy intensity is studied. Exploring the duality between a return to dollar definition of profit
and the generalized distance function, the relationship between the Laspeyres, Paasche and Fisher
productivity index numbers is established in Zofío and Prieto (2006). Hill (2006) showed an illustration
on index numbers also using scanner data. An application to major crops in Manitoba is presented
in Coyle (2007). According to Diewert and Nakamura (2007), Paasche, Laspeyres, or Fisher index
number formula is useful in order to manage the total factor productivity growth. The importance of
the hedonic imputation method in price index numbers is analyzed in Hill and Melser (2008) from a
data set containing house prices for three regions in Sydney over a three years period. The impact of
time aggregation on price change estimates for several supermarket item categories is considered in
Ivancic et al. (2011). Białek (2012) proposed a general price index formula with the Fisher, Laspeyres,
and Paasche indices as its particular cases. Białek (2014) presented an original price index, and its
performance is analyzed through a simulation study where it is compared to several classical price
index numbers. A generalized version of the Fisher index is considered in Su and Ang (2014) in order
to analyze changes in the carbon emissions embodied in China’s exports. O’Donnell (2018) analyzed
the productivity change defined as measures of output quantity change divided by measures of input
quantity change. Zhen et al. (2019) constructed panel price index numbers using retail scanner data in
order to compare consumption costs across space and time.

This paper is focused on the description of the R package IndexNumber (Saavedra-Nieves and
Saavedra-Nieves, 2021), available from the Comprehensive R Archive Network at https://CRAN.R-
project.org/package=IndexNumber, and its capabilities for calculating classical index numbers. It is
organized as follows. Index numbers are formally defined in Section 2.2. Section 2.2.1 introduces
simple index numbers. Concretely, simple index numbers in series and in chain are distinguished. In
Section 2.2.2, non-weighted and weighted complex index numbers are presented. Details on the usage
of IndexNumber package are considered from Section 2.3. The four real data sets contained in the
library are also described briefly. Note that two of them are used in this paper in order to illustrate the
calculation of index numbers. They are available on the website of the Spanish Statistical Office (INE),
http://www.ine.es.

2 Preliminaries on index numbers

Index numbers are statistical measures that are useful to compare single and multiple magnitudes for
the same interval of time. In both cases, this comparison is made with respect to an element of the
mentioned series that is called base period or reference. Some examples of simple magnitudes are
prices of a good, sold amounts of a product, or other general individual values. However, most of the
time, comparing these simple quantities has not practical interest. If the goal is to analyze some real
phenomena where many variables are involved, complex indices must be considered. Using these
ideas, index numbers are usually classified into the following two groups:

• An index number is said to be simple if it corresponds to the ratio of two values of the same
variable, measured in two different instants. Therefore, a simple index number provides the
variation that the single magnitude has suffered between two different time periods.
For instance, a simple index number of the price will give the relative variation of the price
between the current period and the period taken as reference.

• Most of the time, comparing prices, amounts, or values of a single product individually is not of
interest in practice. If the goal is to analyze some real situations where different variables have
influence, a complex number index has to be considered. It globally summarizes the information
of the different magnitudes involved in the problem.
For instance, the evolution cost of life in a country is a common case where it is necessary to
select a set of goods or variables that give information about it. The relative importance of each
of the goods considered must be measured and taken into account.
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A wider overview of both classes of index numbers is included in the next sections. In particular,
we distinguish the different subclasses belonging to each of them and their possible relationships.

Simple index numbers

A simple index number is a statistical indicator of the percentage of variation of a single magnitude in
two different instants. Simple index numbers are usually classified according to the element that we
take as reference. In particular, we distinguish two types of simple index numbers. First, we describe
simple index numbers in series, when the first value of the series is taken as the reference value, and
simple index numbers in chain (or chain indices), when the reference is the immediately previous
value in the serie.

In what follows, we assume that X = {x0, x1, . . . , xT} denotes the observations of the magnitude
X for the T + 1 time instants considered. Besides, x0 is usually taken as the base period. Most common
simple index numbers are individually referred to variables in real-world situations as the followings:

• the price of a good, denoted by p;
• the amount of produced or sold product, denoted by q; or
• the value of a good, denoted by v. This value is usually obtained as the product of the price and

the amount variables.

In this section, we illustrate the usage of simple index numbers on a real example. Table 1 shows
the number (thousands) of economically active women and men in Spain from the first trimester of
2002 (taken as a reference value). Remark that four trimesters of each year are denoted by T1, T2, T3
and T4, respectively.

Stages 2002 (T1) 2002 (T2) 2002 (T3) 2002 (T4) 2003 (T1) 2003 (T2) ...
Total of women 7442.70 7580.80 7670.20 7751.50 7868.70 7977.80 ...
Total of men 11192.30 11289.40 11445.10 11472.80 11552.50 11661.40 ...

Table 1: Number (thousands) of economically active women and men in Spain from first trimester of
2002.

This dataset, included in IndexNumber package, can be obtained from the Economically Active
Population Survey (EPA) elaborated by the Spanish Statistics National Institute (INE).

Simple index numbers in series

Let x0 and xt be the values of the variable X where x0 corresponds to the base period and t ∈
{0, 1, . . . , T}, respectively. Thus, the value of the simple index number in series for X in t is defined as
follows:

It
0(X) =

xt
x0

· 100. (1)

For each t ∈ {0, 1, . . . , T}, this measure has a natural interpretation. Fixed a certain variable of interest
X, the index number in series in t shows the percentage of variation of the magnitude in this instant of
time with respect to the reference value (in this case, the initial one).

Using this type of index number, some usual magnitudes can be formally defined as it is indicated
next:

• When prices are considered, the relative price of a product i, also called simple price index, can
be determined as

pt
0 =

pit
pi0

,

where pit denotes the price at instant t and pi0, the price in the base period.
• The relative amount of a product i can be written as

qt
0 =

qit
qi0

,

where qit denotes the produced or sold amount at instant t and qi0, the amount for the base
period.

• Finally, the relative value of a product i has the next expression:

vt
0 =

vt
v0

=
pitqit
pi0qi0

· 100 = pt
0 · qt

0 · 100,

where vt denotes the value of the good at instant t and v0, the value of the base period.
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Below, we illustrate the usage of simple index numbers on the two series included in Table 1. Thus,
the simple index numbers in series for the economically active women and men in Spain from the first
trimester of 2002 is given in Table 2.

Stages 2002 (T1) 2002 (T2) 2002 (T3) 2002 (T4) 2003 (T1) 2003 (T2) ...
Index number for women 100.00 101.86 103.06 104.15 105.73 107.19 ...
Index number for men 100.00 100.87 102.26 102.51 103.22 104.19 ...

Table 2: Simple index numbers in series for number (thousands) of economically active women and
men in Spain from the first trimester of 2002.

Comparing the evolution of the index numbers in series for the population of women and men
shown in Table 2 has an interest, for instance, to analyze the effect of variable sex in the Spanish labor
market. Note that the number of economically active women and men in the second trimester of 2003
is 7.2% and 4.2% larger than in the reference time, respectively. Therefore, women increasing is slightly
larger than men.

Simple index numbers in chain

Below, we introduce another approach of simple index numbers. Contrary to our previous assump-
tions, this new setting arises when the reference value is not the initial one; rather we take the value
immediately preceding. Let xt and xt−1 be two values of a variable X observed in two consecutive
instants t and t − 1, being t ∈ {1, 2, . . . , T}. Thus, the value of the index number in chain or chain index
(cf. Forsyth and Fowler, 1981) that corresponds to an instant t, with t ∈ {1, 2, . . . , T}, is defined as
follows:

ICt(X) =
xt

xt−1
· 100. (2)

Again, this index number can be naturally interpreted. It is worth mentioning that these measures the
variation of the characteristic under study with respect to the previous value in a fixed instant t. For
instance, these index numbers reflect the percentage variation that the variable experiments between
two consecutive values in time series settings.

To illustrate this definition, we take again the example considered in the previous section. For this
subset of values, we obtain again the evolution of the amount of economically active people (per sex)
in Spain under this new approach.

Stages 2002 (T1) 2002 (T2) 2002 (T3) 2002 (T4) 2003 (T1) 2003 (T2) ...
Index number for women 100.00 101.86 101.18 101.06 101.51 101.39 ...
Index number for men 100.00 100.87 101.38 100.24 100.70 100.94 ...

Table 3: Simple index numbers in chain for number (thousands) of economically active women and
men in Spain from the first trimester of 2002.

Table 3 shows the evolution in time of the number (thousands) of economically active women and
men in Spain from the trimester of 2002 (see Table 1). According to the obtained results, we emphasize
as relevant that the number of economically active women and men in the second trimester of 2003
increases 1.4% and 0.9%, respectively, with respect to the previous trimester.

Relationship between simple index numbers in series and in chain

This section briefly introduces some comments on the relations between simple index numbers in
series and in chain. In this way, one can be obtained from another (and vice versa) without having to
use the exact values of the magnitude under study.

Take xt the value of the variable X in instant t, with t ∈ {1, 2, . . . , T}. Thus, a simple index in chain
can be obtained from a simple index in series due to the relation

ICt(X) =
xt

xt−1
· 100 =

xt
x0

xt−1
x0

· 100 =
It
0(X)

It−1
0 (X)

· 100.

For example, from simple index numbers in series for women shown in Table 2, it is possible to
obtain the corresponding simple index number in chain for women also for the first trimester of 2003
(contained in Table 3). That is,

IC2003(T1)(X) =
7868.70
7751.50

· 100 =
105.72
104.15

· 100 = 101.51.

Besides, simple indices in series can be equivalently obtained for each t ∈ {1, . . . , T} from indices
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in chain:

It
0(X) =

xt
x0

· 100 =
xt

xt−1

xt−1
xt−2

· · · x2
x1

x1
x0

· 100 =
ICt(X)

100
· ICt−1(X)

100
· · · · · IC2(X)

100
· IC1(X)

100
· 100.

For instance, if we consider the simple index numbers in chain shown in Table 3, it is possible to obtain
the simple index number in series for the first trimester of 2003 contained in Table 2. That is, we check
that

I2003(T1)
0 (X) =

100.70
100

· 100.24
100

· 101.38
100

· 100.87
100

· 100.

Variation Rate

In this section, we formally introduce another measure of the evolution of a magnitude. Furthermore,
we relate it to the simple index numbers previously defined.

The variation rate of the observations in the instants t and t − 1, with t ∈ {1, . . . , T}, is denoted by
Ratet(X) for each t ∈ {1, . . . , T}. It can be calculated from the simple index in chain as follows:

Ratet(X) =
xt − xt−1

xt−1
· 100 = ICt(X) · 100.

This definition can be extended to any pair of instants in {0, 1, 2, . . . , T}. Take t1, t2 ∈ {0, 1, 2, . . . , T}
such that t1 < t2. Let xt1 be the value of a variable measure in instant t1 and let xt2 be the value of a
variable measure in a later instant t2. Formally, the variation rate of X in t2 with respect to t1 is

Ratet2
t1
(X) =

xt2 − xt1

xt1

· 100.

Note that
Ratet2

t1
(X) =

xt2 − xt1

xt1

· 100 =

(
xt2

xt1

− 1
)
· 100 = It2

t1
(X)− 100,

where It2
t1
(X) =

xt2
xt1

· 100, also satisfying

It2
t1
(X) = ICt2 (X) · ICt2−1(X) · . . . · ICt1+1(X).

In particular, if the consecutive observations correspond to two different years, months, or trimesters
the variation rate is called interanual variation rate, monthly variation rate, and quarterly variation
rate, respectively. From the data shown in Table 2, the quarterly variation rates have been calculated
in Table 4.

Stages 2002 (T2) 2002 (T3) 2002 (T4) 2003 (T1) 2003 (T2) ...
Rate for women 1.86 1.18 1.06 1.51 1.39 ...
Rate for men 0.87 1.38 0.24 0.70 0.94 ...

Table 4: Quarterly variation rate for number (thousands) of economically active women and men in
Spain.

Average Variation Rate

Finally, we introduce a third method to measure the evolution of a given magnitude X between the
instants t and t + k, with t ∈ {0, . . . , T − k} and k > 0. If xt+k denotes the observation at instant t + k
and xt the corresponding to instant t, the average variation rate of the variable X between instants t and
t + k is defined as the constant rate Tk that allows obtaining the observation xt+k at time t + k from
observation xt at time t.

Then, it is possible to write:

xt+1 = xt +
Tk

100
· xt =

(
100 + Tk

100

)
· xt

xt+2 = xt+1 +
Tk

100
· xt+1 =

(
100 + Tk

100

)2
· xt

xt+3 = xt+2 +
Tk

100
· xt+2 =

(
100 + Tk

100

)2
· xt

...

xt+k = xt+k−1 +
Tk

100
· xt+k−1 =

(
100 + Tk

100

)k
· xt
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Therefore, xt+k =
(

100+Tk
100

)k
· xt and, as consequence, xt+k

xt
=
(

100+Tk
100

)k
. Then,

Tk = 100 ·
(

xt+k
xt

)1/k
.

From data shown in Table 2, we have calculated the quarterly average variation rate in 2002 for women
and men as(

3

√
7751.50
7442.70

− 1

)
· 100 = 1.36 and

(
3

√
11472.80
11192.30

− 1

)
· 100 = 0.83, respectively.

According to the results obtained, the average variation rate for women is considerably bigger than
the corresponding for men in this period.

Complex index numbers

Most of the time, comparing variables marginally does not provide real information. There are many
phenomena in the real world that involve several variables. Of course, simple index numbers described
in the previous section could be naturally applied for each of these variables separately. However,
comparing these magnitudes can be not realistic and, for this reason, complex index numbers have to be
introduced. A complex index number summarizes the information of the different marginal index
numbers related to the set of variables of interest.

One of the most relevant examples that illustrates the use of complex index numbers is briefly
described next. The evolution of living cost in a country is a common case where it is necessary to select
a set of goods or variables that give information about it. The relative importance of each of the goods
considered may be taken into account. This is the case of the Consumer Price Index (CPI) in Spain. The
sets of good considered for calculating it follows the International Classification of Consumption according
to Purpose (COICOP) prepared by the Statistical Division of the United Nations. This classification is
also used by other countries. In this way, comparisons between different geographical areas make
sense.

When all variables are not of equal relevance, it is possible to add complementary information for
weighting each magnitude corresponding to its degree of importance. Depending on the use of this
additional information, two classes of complex index numbers are distinguished in literature:

• In several practical cases, the relative weight of each involved variable has no interest. Fixed a
magnitude, the class of required index numbers to be used in this setting are named non-weighted
complex index numbers.

• The use of weighted index numbers allow greater importance to be attached to some items. For
instance, real information other than simply the change in price over time can be used. Factors
as quantity sold or quantity consumed for each item can also be considered.

In what follows, we assume that X = (X1, . . . , Xn) denotes the collection of n magnitudes regis-
tered for n different products. For each j = 1, . . . , n, Xj = {xj0, xj1, . . . , xjT} denotes the observations
of the magnitude Xj for the T + 1 instants of time considered. Analogously to the simple case, we
refer xj0 as the base period.

In practice, the available information can be summarized in a table such as Table 5.

XXXXXXXXXXTime
Products 1 2 ... n

0 x10 x20 ... xn0
1 x11 x21 ... xn1
...

...
...

...
...

T x1T x2T ... xnT

Table 5: Evolution of a set of magnitudes X from time 0 to T.

The most common complex indices jointly involve (some of) the variables in real-world situations
that we enumerate below:

• the price of a collection of n goods, denoted by p = (p1, . . . , pn), where pj = {pj0, pj1, . . . , pjT}
denotes the prices for T + 1 instants and for each product j = 1, . . . , n;

• the amount of produced or sold products, denoted by q, where qj = {qj0, qj1, . . . , qjT} denotes the
amounts of product for T + 1 instants and for each product j = 1, . . . , n; or
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• the value of n goods is given by v = (v1, . . . , vn). In this case, vj = {vj0, vj1, . . . , vjT} denotes the
values of product j, with j ∈ {1, . . . , n} for T + 1 instants.

To illustrate the usage of complex index numbers, we take the example described in Table 6. It
shows the unitary value (euros) of prices of combustibles and other energy resources for the main
home in Spain from 2005 to 2015. In this case, the data source is again the Spanish Statistics National
Institute (INE).

Electricity Natural municipal Liquified Liquified Solid
(Kwh) gas (m3) gas (kilo) combustibles (litre) combustibles (kilo)

2006 0.14 0.70 1.00 0.69 0.12
2007 0.14 0.78 0.97 0.66 0.10
2008 0.15 0.83 1.03 0.81 0.11
2009 0.16 0.87 0.93 0.68 0.10
2010 0.17 0.79 1.04 0.72 0.12
2011 0.19 0.77 1.15 0.91 0.12
2012 0.22 0.82 1.19 0.96 0.12
2013 0.23 1.00 1.34 0.99 0.13
2014 0.24 1.07 1.35 0.89 0.15
2015 0.25 1.04 1.22 0.77 0.13

Table 6: Unitary value (euros) of combustibles and other energy resources for the main home in Spain
from 2005 to 2015.

Table 7 shows the (thousands of units) consumption of combustibles and other energy resources
for the main home in Spain from 2005 to 2015. This dataset is closely related to the prices presented
in Table 6. Of course, this data set can also be obtained from the Spanish Statistics National Institute
(INE).

Electricity Natural municipal Liquified Liquified Solid
(Kwh) gas (m3) gas (kilo) combustibles (litre) combustibles (kilo)

2006 50623635 3617285 1057488 2297923 1306920
2007 51990501 3266575 1066857 2454265 1602799
2008 54990338 3473851 1210607 2274326 1556673
2009 59749470 3730349 1113642 2505711 1724222
2010 69751162 3954065 987112 2345215 1584123
2011 67574654 4466072 926824 1974662 1414234
2012 62878557 4576052 943632 2029733 1733591
2013 56017871 4116079 867695 1952593 2071152
2014 49177739 3653055 868743 2180866 2077766
2015 48541712 3795339 818183 2176533 2161208

Table 7: Consumption (thousands of units) of combustibles and other energy resources for the main
home in Spain from 2005 to 2015.

Next, we formally describe non-weighted and weighted index numbers.

Non-weighted complex index numbers

Complex index numbers analyze several magnitudes that measure the evolution of a set of goods or
services. The goal here is to find a statistical measure in order to summarize the information shown,
for instance, in Table 5. In particular, knowing the variation of a magnitude in time t with respect
to the base period has an interest. In this sense, it is worth mentioning that non-weighted complex
index numbers can be easily obtained as the arithmetic, geometric and harmonic means of the simple
index numbers in series for the considered magnitudes. Anyway, their mathematical expressions are
described below:

• The Sauerbeck index (cf. Sauerbeck, 1895) at time t for X, St(X), is calculated as the arithmetic
mean of the simple index in series for the n involved magnitudes at t:

St(X) =
1
n

n

∑
i=1

xit
xi0

· 100, for each t ∈ {0, · · · , T}. (3)

• The Geometric mean index at time t, Gt(X), is calculated as follows:

Gt(X) = n

√
n

∏
i=1

xit
xi0

· 100, for each t ∈ {0, · · · , T}. (4)
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Given a collection of n magnitudes, the geometric mean index at t is obtained as nth-root of the
product of simple index numbers for X at time t. See more details in Jevons (1863).

• The Harmonic mean index at time t, Ht(X), is determined by

Ht(X) =
n

∑n
i=1

xi0
xit

· 100, for each t ∈ {0, · · · , T}. (5)

It is initially introduced in Jevons (1865) and Coggeshall (1886).

• The Bradstreet-Dûtot index at time t, BDt(X), is introduced in Walsh (1901). Its value is obtained
as the ratio between the means of the magnitude in time t and the magnitude in the base period
as follows:

BDt(X) =
∑n

i=1 xit

∑n
i=1 xi0

· 100, for each t ∈ {0, · · · , T}. (6)

If X denotes the matrix p of prices of a set of goods or services along a period of time, these index
numbers are specifically considered non-weighted complex index numbers for prices. Thus, it arises the
Sauerbeck index at time t for prices, St(p); the Geometric mean index at time t for prices, Gt(p); the
Harmonic mean index at time t for prices, Ht(p); and the Bradstreet-Dûtot index at time t for prices,
BDt(p). Their usage will be illustrated on the set prices of combustibles and other energy resources for
the main home in Spain from 2005 to 2015. From the information in Table 6, the four index numbers
previously described are numerically shown in Table 8, and their evolution is depicted in Figure 1.

t St(p) Gt(p) Ht(p) BDt(p)
2006 100.00 100.00 100.00 100.00
2007 97.48 97.06 96.64 100.00
2008 107.56 107.08 106.60 110.57
2009 102.69 101.64 100.61 103.40
2010 108.53 108.26 108.00 107.17
2011 118.52 117.76 116.99 118.49
2012 126.48 124.97 123.48 124.91
2013 138.59 137.35 136.05 139.25
2014 142.65 141.66 140.70 139.62
2015 133.81 131.37 129.14 128.68

Table 8: Non-weighted complex price indexes in seriea for the unitary value of combustibles and
energy resources for the main home in Spain from 2006 to 2015.

2006 2008 2010 2012 2014
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11
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0

13
0

14
0

Sauerbeck index 
Geometric mean index 
Harmonic mean index 
Bradstreet−Dûtot index

Figure 1: Joint evolution of the non-weighted complex price indexes in series for the unitary value of
combustibles and energy resources for the main home in Spain from 2006 to 2015.

However, the variation of a given magnitude in time t with respect to the previous period may
also be of interest. Below, we alternatively enumerate the mathematical expressions of the previous
indices based on index numbers in chain for the magnitudes.

• The Carli index (cf. Carli, 1804) at time t for X, Ct(X), is calculated as the arithmetic mean of the
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simple index in chain for the n involved magnitudes at t:

Ct(X) =
1
n

n

∑
i=1

xit
xi t−1

· 100, for each t ∈ {1, · · · , T}. (7)

• The Jevons index at time t, Jt(X), is calculated following Jevons (1863) as follows:

Jt(X) = n

√
n

∏
i=1

xit
xi t−1

· 100, for each t ∈ {1, · · · , T}. (8)

Given a collection of n magnitudes, the geometric mean index at t is obtained as nth-root of the
product of simple index numbers for X in chain at time t.

• The Dûtot index at time t, Dt(X), is introduced in Dûtot (1754). Its value is obtained as the ratio
between the means of the magnitude in time t and the magnitude in time t − 1 as follows:

Dt(X) =
∑n

i=1 xit

∑n
i=1 xi t−1

· 100, for each t ∈ {1, · · · , T}. (9)

Again, if X denotes the matrix of prices of a set of goods or services along a period of time (p),
these index numbers are named as the Carli index at time t for prices, Ct(p); the Jevons index at time t
for prices, Jt(p); and the Dûtot index at time t for prices, Dt(p). To conclude this section, we obtain
them for the set prices of combustibles and other energy resources for the main home in Spain from
2005 to 2015, detailed in Table 6. These index numbers are numerically detailed in Table 9.

t Ct(p) Jt(p) Dt(p)
2006 100.00 100.00 100.00
2007 101.11 101.09 101.79
2008 113.51 113.43 115.89
2009 100.94 100.18 126.56
2010 105.75 105.27 144.02
2011 103.58 103.29 155.49
2012 110.65 110.49 168.01
2013 107.00 106.32 163.98
2014 100.72 100.39 154.09
2015 93.08 92.79 153.29

Table 9: Non-weighted complex price indexes in chain for the unitary value of combustibles and
energy resources for the main home in Spain from 2006 to 2015.

All of the index numbers described are easy to be computed. However, they present an important
disadvantage: they do not take into account the relative importance of each product.

Weighted complex index numbers

For analyzing the evolution of a given magnitude X, it is very common to use an alternative magnitude
Y through the value of Y in the reference or the actual period to weight complex index numbers. The
information relative to this alternative variable can be summarized in a table such as Table 10. For
instance, the use of the amount of production of different products or the use of prices may result of
interest, depending on the setting under study.

XXXXXXXXXXTime
Products 1 2 ... n

0 y10 y20 ... yn0
1 y11 y21 ... yn1
...

...
...

...
...

T y1T y2T ... ynT

Table 10: Evolution of a set of magnitudes Y from time 0 to T.

Next, the main weighted complex price index numbers for a given magnitude X, taking Y as
weight, are formally described:

• The Laspeyres index (Laspeyres, 1871) analyzes the variations of X using Y as weight. In this
sense, the weights considered for product i are xi0 · yi0 (note that both values are referred to
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the base period). Then, this complex index is defined as the weighted arithmetic means of the
simple index numbers:

Lt(X, Y) =
∑n

i=1
xit
xi0

xi0yi0

∑n
i=1 xi0yi0

· 100 =
∑n

i=1 xityi0

∑n
i=1 xi0yi0

· 100, for each t ∈ {0, · · · , T}. (10)

The main disadvantage of the Laspeyres index is that it assumes that the weights do not vary in
time. This hypothesis is not always realistic in some practical settings.

• The Paasche index is an alternative index to the Laspeyres index introduced in Paasche (1874),
when the weighted criteria is xi0 · yit. Therefore, it can be formally written as:

Pt(X, Y) =
∑n

i=1
xit
xi0

xi0 · yit

∑n
i=1 xi0 · yit

· 100 =
∑n

i=1 xityit

∑n
i=1 xi0yit

· 100, for each t ∈ {0, · · · , T}. (11)

• The Marshall-Edgeworth index (cf. Marshall, 1887, Edgeworth, 1887) is an agregative weighted
measure where weights are yi0 + yit. Therefore, it can be calculated as:

Et(X, Y) =
∑n

i=1 xit(yi0 + yit)

∑n
i=1 xi0(yi0 + yit)

· 100, for each t ∈ {0, · · · , T}. (12)

• The Fisher index is equal to the geometric mean of the index numbers under the approaches of
Laspeyres and Paasche:

Ft(X, Y) =
√

Lt(X, Y) · Pt(X, Y), for each t ∈ {0, · · · , T}. (13)

For instance, see more details in Fisher (1922).

Note that other values can be defined (as we will see below). The choice of using a specific index
formula often relies on the availability of data. According to the previous comments, the Laspeyres
index does not require information on the products of the current period. Then, the Laspeyres formula
is usually preferred for the calculation of complex indices, which are typically released rapidly before
information for the current period could have been collected.

In what follows, p denotes the matrix of prices of a set of goods or services along a period of
time and q is the matrix of the total amounts of goods in the same period. Thus, the weighted complex
price index numbers analyze the time evolution of prices by introducing the variation of the physical
production or the consumption of a set of goods or services. The weights are obtained by multiplying
the price of a product in an instant of time t by the consumption in the base period or the actual period.
Hence, the Laspeyres price index, Lt(p, q), the Paasche price index, Pt(p, q), the Marshall-Edgeworth price
index, Et(p, q), and the Fisher price index, Ft(p, q), are naturally defined in prices settings.

Under this approach, a new complex index for v can be naturally introduced under the approach
of the Bradstreet-Dûtot index. It is based on the notion of the value of good indicated by v. It can be
calculated as follows:

IVt
0(p, q) =

Vt(p, q)
V0(p, q)

=
∑n

i=1 pitqit

∑n
i=1 pi0qi0

, for each t ∈ {0, · · · , T}. (14)

It satisfies that IVt
0(p, q) = Lt(p0, q) · Pt(p0, q) = Lt(p, q0) · Pt(p, q0) = Ft(p0, q) · Ft(p, q0).

From data contained in Tables 6 and 7, these five index numbers were determined. They are in
Table 11 (from tenth to twelfth column), and they are graphically depicted in Figure 2.

t Lt(p, q) Pt(p, q) Et(p, q) Ft(p, q) IVt
0(p, q)

2006 100.00 100.00 100.00 100.00 100.00
2007 101.31 100.99 101.15 101.15 101.79
2008 110.23 109.89 110.06 110.06 115.89
2009 112.11 112.06 112.09 112.09 126.56
2010 115.76 116.69 116.27 116.22 144.02
2011 127.77 128.35 128.08 128.06 155.49
2012 142.72 143.32 143.04 143.02 168.01
2013 153.98 154.43 154.21 154.20 163.98
2014 158.54 158.62 158.58 158.58 154.09
2015 158.20 158.23 158.21 158.21 153.29

Table 11: Weighted complex price indexes for the unitary value of combustibles and energy resources
for the main home in Spain from 2006 to 2015.
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Figure 2: Joint evolution of the weighted complex price indexes for the unitary value of combustibles
and energy resources for the main home in Spain from 2006 to 2015.

Otherwise, the weighted complex production index numbers analyze the time evolution of the amount
of product by introducing the variation of the price of the goods or services as weight. Their obtaining
is analogous to the previous one. The weights are obtained by multiplying the amount of a product
in an instant of time t by the prince in the base period or the actual period. Thus, we dealt with the
Laspeyres production index, Lt(q, p); the Paasche production index, Pt(q, p); or the Fisher production index
Ft(q, p).

3 IndexNumber in practice
This section presents an overview of the structure of the package. IndexNumber is a tool that R
users can use in order to determine several classical index numbers that describe the evolution of
a single magnitude or a set of magnitudes. This software helps the user to calculate faster these
statistical measures. Functions in this library automatize the required operations for the computation
of index numbers. First, we will describe the real data sets included in the package. Then, the
functions implemented are detailed. Of course, other libraries exist in R dealing with index numbers
theory. In particular, micEconIndex (Henningsen, 2017), IndexNumR (White, 2021), and PriceIndices
(Bialek, 2021) packages also allow to compute complex index numbers but only when the considered
magnitudes are prices and quantities. It is worth mentioning that IndexNumber library was designed
under a more general perspective by extending to any type of magnitude. Moreover, none of the
above-referenced packages implement simple index numbers, and they do not offer graphical tools
to facilitate the analysis of time evolution series either. Additionally, IndexNumber can be seen as
an additional basic library that can also be exploited by non-experts R users. For instance, inputs of
functions are numeric vectors or matrices containing the magnitude values, much more flexible than
data structures that other packages consider. As for computational complexity, it is also relatively
simple because, unlike IndexNumR that implements multilateral methods, the number of required
elementary operations is smaller. Finally, it is convenient to note that IndexNumber package also
provides four new recent real data sets.

Data sets in IndexNumber

Index numbers have been theoretically introduced in previous sections using two real data sets
included in the package IndexNumber. However, we decide to include them in the package because
they could be used directly by the users, avoiding search and download. Besides, two additional data
sets were also included. All of them are available in the website of the Spanish Statistical Office (INE),
http://www.ine.es. These four data sets are briefly described below:

• Firstly, the data set ActivePeople was considered as an example in order to illustrate the simple
index numbers. It contains information separately on the number (thousands) of economically
active women and men in Spain from the first trimester in 2002 to the fourth one in 2019.

• Secondly, ECResources is a data set containing as variables, the unitary value (euros) and
consumption (thousands of units) of several combustibles and other energy resources for the
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main home in Spain from 2006 to 2015. It was used in this paper for illustrating complex index
numbers.

• An additional data set called Mortgages was also included in the package. In this case, the
variables correspond to the number of mortgages constituted on urban properties in Spain from
2003 to 2018, distinguished between the kind of mortgages entities (banks, saving banks and
other types). The corresponding mortgages amounts (thousands of euros) were also included as
variables.

• Finally, the variables in the data set Food are the unitary value (euros) and consumed amount
(thousands of units) of the main types of food in Spain from 2006 to 2015.

Once the package is installed and loaded, a full description of these data sets is shown through
help(ActivePeople), help(ECResources), help(Mortgages), and help(Food), respectively.

Functions in IndexNumber

IndexNumber package includes several functions that enable users to determine the index numbers,
simple and complex (weighted and non-weighted), described in previous sections. The functions
incorporated in the package are summarized in Table 12.

Function Description

aggregated.index.number Function to obtain several non-weighted index numbers: the Sauerbeck
index number (3), the Geometric index number (4), the Harmonic index
number (5) the Bradstreet-Dûtot index number (6), the Carli index
number (7), the Jevons index number (8) and the Dûtot index number
in (9).

edgeworth.index.number Function to calculate the Marshall-Edgeworth index number (12).
fisher.index.number Function to calculate the Fisher index number (13).
index.number.chain Function to calculate the simple index number in chain (2).
index.number.serie Function to calculate the simple index number in series (1).
laspeyres.index.number Function to determine the Laspeyres index number (10).
paasche.index.number Function to obtain the Paasche index number (11).

Table 12: Summary of functions in the IndexNumber package.

Users can obtain different kinds of index numbers by introducing the associated parameters in the
corresponding function. Table 13 describes the different options to determine those index numbers
whose implementation was included in IndexNumber package. However, not all of the mentioned
options are required since only some of them are specific for each particular class of index number.
Thus, Table 14 summarizes the arguments associated with each function. Examples of usage for the
implemented functions are described in the next section.

Argument Description

x A matrix that contains the magnitude(s) under study. In each column, it contains
the magnitude of a different product considered. Thus, we have nrow(x) values
of a magnitude for ncol(x) products. Notice that if we intend to analyze a single
magnitude, x corresponds to a vector of length equal to the total instants of time
registered.

y A matrix that contains that magnitude used as weight. In each column, it contains
another magnitude associated to each different product along the time. Thus, we have
nrow(x) values of magnitudes for the set of ncol(x) products. It is only required for
obtaining those weighted index numbers mentioned in the paper.

base A chain of characters that indicates the nature of the index number. If we introduce
base="serie", we compare each value with respect to the initial one. In this case, it is
said to be an index number in series. Otherwise, if we introduce base="chain", we
obtain the index number in chain, by comparing each value with the immediately
previous value.
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type A chain of characters to indicate the type of non-weighted index number to evaluate
the evolution of a set of magnitudes (even for different products).
By considering base="serie", if we introduce type="arithmetic", we obtain the
Sauerbeck index number in (3). If we introduce type="geometric", we obtain the
Geometric index in (4). If we choose type="harmonic", we obtain the Harmonic mean
index in (5). If we write type="BDutot", we will obtain the Bradstreet-Dûtot index in
(6). This argument is only required in the function aggregated.index.number.
Otherwise, if we take base="chain" and type="Carli", we obtain the Carli index
number in (7). If we introduce type="Jevons", we obtain the Jevons index in (8) and
if we choose type="Dutot", we obtain the Dûtot index in (9).
This argument is only required in the function aggregated.index.number.

name A chain of characters to indicate the name of the variable under study.
opt.plot A Boolean variable that indicates if a graphical description of the index number along

the different stages is required. If it is desired, opt.plot=TRUE, else opt.plot=FALSE.
opt.summary A Boolean variable that indicates if a basic statistical summary of the index number is

required. If it is desired, opt.summary=TRUE, else opt.summary=FALSE.

Table 13: Summary of arguments for functions in the IndexNumber package.

Function x y base type name opt.plot opt.summary

aggregated.index.number ✓ - ✓ ✓ ✓ ✓ ✓
edgeworth.index.number ✓ ✓ - - ✓ ✓ ✓
fisher.index.number ✓ ✓ - - ✓ ✓ ✓
index.number.chain ✓ - - - ✓ ✓ ✓
index.number.serie ✓ - - - ✓ ✓ ✓
laspeyres.index.number ✓ ✓ - - ✓ ✓ ✓
paasche.index.number ✓ ✓ - - ✓ ✓ ✓

Table 14: Arguments for each function in the IndexNumber package.

Examples of using IndexNumber

In what follows, we describe several examples of the application of the IndexNumber package that is
used to illustrate its performance. Initially, a user has to incorporate the package from the CRAN in
the R Console. After its installation, the next code allows its usage:

> library("IndexNumber")

Below, it is shown how to use the different functions implemented for determining index numbers on
the real data sets presented in the preliminaries section.

Simple index numbers in series in R

The example that we consider describes the obtaining of the simple index numbers in series (1) in R
software on the real data partially given in Table 1. Remember that it depicts the number (thousands)
of economically active women and men in Spain. As we mentioned before, this information is
also included in the data set ActivePeople in IndexNumber package. The first trimester of 2002 is
considered as the reference value.

Using index.numer.serie() function, we obtain the simple index number in series for the first
instants of time in the example.

> index.number.serie(ActivePeople$TotalWomen[1:15],name="Woman",opt.plot=TRUE,
opt.summary = TRUE)

Index number in serie

Summary

Min.=101.855509425343

Stage=1
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Max.=117.978690528975

Stage=13

$Summary
Min. 1st Qu. Median Mean 3rd Qu. Max.
101.9 106.1 110.4 110.3 114.6 118.0

$`Index number`
Stages Woman Index number

1 0 7442.7 100.0000
2 1 7580.8 101.8555
3 2 7670.2 103.0567
4 3 7751.5 104.1490
5 4 7868.7 105.7237
6 5 7977.8 107.1896
7 6 8093.3 108.7415
8 7 8190.9 110.0528
9 8 8249.7 110.8428
10 9 8348.9 112.1757
11 10 8430.8 113.2761
12 11 8564.6 115.0738
13 12 8635.2 116.0224
14 13 8780.8 117.9787
15 14 8769.1 117.8215

We include a graphical summary of the evolution of this magnitude under the fixed criteria in
Figure 3, by using opt.plot=TRUE. We also summarize the most relevant information in terms of the
instant in which the maximum and minimum values are reached choosing opt.summary=TRUE.
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Figure 3: Evolution of the simple index number in series for the number (thousands) of economically
active women in Spain.

Analogously, the user can obtain the corresponding results for the data associated to TotalMen.
The required code in this case is the shown below:

index.number.serie(ActivePeople$TotalMen[1:15],name="Man",opt.plot=TRUE,opt.summary = TRUE)

Results contained in Table 2 have been obtained using both functions of IndexNumber package in
R.
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Simple index numbers in chain in R

Again, we take the data set ActivePeople to determine the corresponding simple index number in
chain (2) for the number (thousands) of economically active women in Spain. Note that the reference
value in each instant of time is the immediately previous one in the series.

Alternatively, we use index.numer.chain() function for obtaining the simple index number in
chain for the first instants of time for the variable considered in the example.

> index.number.chain(ActivePeople$TotalWomen[1:15],name="Woman",opt.plot=TRUE,
opt.summary = TRUE)

Index number in chain

Summary

Min.=99.8667547376093

Stage=14

Max.=101.855509425343

Stage=2

$Summary
Min. 1st Qu. Median Mean 3rd Qu. Max.
99.87 101.00 101.20 101.18 101.50 101.86

$`Index number`
Stages Woman Index number

1 0 7442.7 100.00000
2 1 7580.8 101.85551
3 2 7670.2 101.17930
4 3 7751.5 101.05995
5 4 7868.7 101.51197
6 5 7977.8 101.38651
7 6 8093.3 101.44777
8 7 8190.9 101.20594
9 8 8249.7 100.71787
10 9 8348.9 101.20247
11 10 8430.8 100.98097
12 11 8564.6 101.58704
13 12 8635.2 100.82432
14 13 8780.8 101.68612
15 14 8769.1 99.86675

Also in this case, the option opt.summary=TRUE summarizes the most relevant information about
the corresponding simple index number. The option opt.plot=TRUE provides a graphical representa-
tion of the evolution of the magnitude as Figure 4 depicts.

Table 3 also includes the numerical analysis of the evolution of economically active men in Spain.
To determine these values, we use the following code:

index.number.chain(ActivePeople$TotalMen[1:15],name="Man",opt.plot=TRUE,opt.summary = TRUE)

Non-weighted complex index numbers in R

In this section, we illustrate the usage of IndexNumber to determine non-weighted complex index
numbers.

As in its theoretical description, we take the example described in Table 6 to show its performance
in practice. That table describes the unitary value of prices of several energy resources for the period
2005-2015. As we have mentioned, this data set is available in library IndexNumber under the name
ECResources (in particular, from the second to the sixth column).

> ECResources[,2:6]
ElectricityPrice NaturalGasPrice LiquifiedGasPrice LiquifiedCombustiblesPrice SolidCombustiblesPrice
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Figure 4: Evolution of the simple index number in chain for the number (thousands) of economically
active women in Spain.

1 0.14 0.70 1.00 0.69 0.12
2 0.14 0.78 0.97 0.66 0.10
3 0.15 0.83 1.03 0.81 0.11
4 0.16 0.87 0.93 0.68 0.10
5 0.17 0.79 1.04 0.72 0.12
6 0.19 0.77 1.15 0.91 0.12
7 0.22 0.82 1.19 0.96 0.12
8 0.23 1.00 1.34 0.99 0.13
9 0.24 1.07 1.35 0.89 0.15
10 0.25 1.04 1.22 0.77 0.13

First, we describe the R procedures that provide the variations of a magnitude in time t with respect
to the base period by using non-weighted index numbers. For this purpose, we have to introduce the
option base="serie". Notice that all the values included in Table 8 were obtained by using the code
in R that we show in the current section.

Sauerbeck index in R

Next, we determine the Sauerbeck index (3) in R software. To this aim, we use the corresponding
function aggregated.index.number() by adding, as option, type="arithmetic". Recall that it cor-
responds to an average by stages. In this case, we also include a graphical description of the joint
evolution of prices in Figure 5 with opt.plot=TRUE, and a numerical summary of such magnitude
(with opt.summary=TRUE).

> aggregated.index.number(ECResources[,2:6],base="serie",type="arithmetic",
name="Prices",opt.plot=TRUE,opt.summary=TRUE)

Aggregate index number

Arithmetic

Summary

Min.=97.4828157349897

Stage=1

Max.=142.654244306418
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Figure 5: Sauerbeck index evolution for the prices of several energy resources for the period 2005-2015.

Stage=8

$Summary
Min. 1st Qu. Median Mean 3rd Qu. Max.
97.48 107.55 118.52 119.59 133.81 142.65

$`Agg. index number`
Stages Prices 1 Prices 2 Prices 3 Prices 4 Prices 5 Agg. index number

1 0 0.14 0.70 1.00 0.69 0.12 100.00000
2 1 0.14 0.78 0.97 0.66 0.10 97.48282
3 2 0.15 0.83 1.03 0.81 0.11 107.55445
4 3 0.16 0.87 0.93 0.68 0.10 102.69110
5 4 0.17 0.79 1.04 0.72 0.12 108.52671
6 5 0.19 0.77 1.15 0.91 0.12 118.51967
7 6 0.22 0.82 1.19 0.96 0.12 126.48323
8 7 0.23 1.00 1.34 0.99 0.13 138.59089
9 8 0.24 1.07 1.35 0.89 0.15 142.65424
10 9 0.25 1.04 1.22 0.77 0.13 133.81408

Geometric mean index in R

The second approach that we consider is the one given by the Geometric mean index (4). To obtain
for the case of prices of the energetic resources, we slightly change the parameters of the function
aggregated.index.number(). We have to introduce the parameter type="geometric" on it.

aggregated.index.number(ECResources[,2:6],base="serie",type="geometric",
name="Prices",opt.plot=FALSE,opt.summary=FALSE)

The results have the same structure as the previous case that we have explained. For this reason, they
have not already been included here.

Harmonic mean index in R

The third option of a non-weighted complex index is the Harmonic mean index (5). With regard to
the previous cases, the main difference is the parameter type that, in this case, has to take the value
"harmonic".

aggregated.index.number(ECResources[,2:6],base="serie",type="harmonic",
name="Prices",opt.plot=FALSE,opt.summary=FALSE)
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The scheme of showing the results maintains also in this scenario.

Bradstreet-Dûtot index in R

The Bradstreet-Dûtot index (6) is determined in R software by using aggregated.index.number()
with the parameter type="BDutot". We illustrate the case of obtaining the indicated index for the
prices of energetic resources. Again, the output has the same structure as the previous cases.

aggregated.index.number(ECResources[,2:6],base="serie",type="BDutot",
name="Prices",opt.plot=FALSE,opt.summary=FALSE)

Secondly, we describe examples of usage of IndexNumber package that involves non-weighted
and weighted index numbers in chain. Specifically, we show those ones required for obtaining the
results in Table 9. They involves the usage of base="chain".

Carli index in R

The Carli index (7) is obtained in R software through aggregated.index.number() with type="Carli".
The following R code determines the indicated index for the prices of energetic resources with an
analogous structure for the output.

aggregated.index.number(ECResources[,2:6],base="chain",type="Carli",
name="Prices",opt.plot=FALSE,opt.summary=FALSE)

Jevons index in R

The Jevons index (8) can be determined in R software by using aggregated.index.number() with the
parameter type="Jevons". Again, we illustrate the case of obtaining the indicated index for the prices
of energetic resources. The required code is the one displayed below:

aggregated.index.number(ECResources[,2:6],base="chain",type="Jevons",
name="Prices",opt.plot=FALSE,opt.summary=FALSE)

Dûtot index in R

The Dûtot index (9) is determined in R with aggregated.index.number() with additionally including
type="BDutot". Finally, we illustrate the case of obtaining this index for the prices of energetic
resources.

aggregated.index.number(ECResources[,2:6],base="chain",type="Dutot",
name="Prices",opt.plot=FALSE,opt.summary=FALSE)

Weighted complex index numbers in R

Next, we enumerate the capabilities of IndexNumber package in R software to determine weighted
complex index numbers. The results in Table 11 were also obtained by using the functions of R that
we show below.

Again, we pretend to obtain the evolution of the unitary value of prices of several energy resources
for the period 2005-2015. However, in this case, we weight their values by the total amount of
consumed energy resources given in Table 7. This information is also included in the data set
ECResources of the package IndexNumber.

> ECResources[,7:11]
ElectricityConsumed NaturalGasConsumed LiquifiedGasConsumed LiquifiedCombustiblesConsumed SolidCombustiblesConsumed

1 50623635 3617285 1057488 2297923 1306920
2 51990501 3266575 1066857 2454265 1602799
3 54990338 3473851 1210607 2274326 1556673
4 59749470 3730349 1113642 2505711 1724222
5 69751162 3954065 987112 2345215 1584123
6 67574654 4466072 926824 1974662 1414234
7 62878557 4576052 943632 2029733 1733591
8 56017871 4116079 867695 1952593 2071152
9 49177739 3653055 868743 2180866 2077766
10 48541712 3795339 818183 2176533 2161208

Laspeyres index in R

Using weights, the first alternative that we describe is devoted to obtain the Laspeyres index (10)
in R. IndexNumber package allows this through laspeyres.index.number() by adding these as
parameters: the matrix of the magnitudes to be evaluated, the matrix containing the weights, and
several options of graphical and numerical representation for the results.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 271

> laspeyres.index.number(ECResources[,2:6],ECResources[,7:11],
name="Price",opt.plot=TRUE,opt.summary=TRUE)

Laspeyres index number

Summary

Min.=101.309108829536

Stage=1

Max.=158.535309198466

Stage=8

$Summary
Min. 1st Qu. Median Mean 3rd Qu. Max.
101.3 112.1 127.8 131.2 154.0 158.5

$`Agg. index number`
Stages Price 1 Price 2 Price 3 Price 4 Price 5 Agg. index number
1 0 0.14 0.70 1.00 0.69 0.12 100.0000
2 1 0.14 0.78 0.97 0.66 0.10 101.3091
3 2 0.15 0.83 1.03 0.81 0.11 110.2332
4 3 0.16 0.87 0.93 0.68 0.10 112.1124
5 4 0.17 0.79 1.04 0.72 0.12 115.7457
6 5 0.19 0.77 1.15 0.91 0.12 127.7677
7 6 0.22 0.82 1.19 0.96 0.12 142.7184
8 7 0.23 1.00 1.34 0.99 0.13 153.9749
9 8 0.24 1.07 1.35 0.89 0.15 158.5353
10 9 0.25 1.04 1.22 0.77 0.13 158.2000

As before, if the option opt.plot=TRUE is considered, the output of the function also includes a
graphical representation in which the joint evolution can be analyzed as Figure 6 depicts.

10
0

12
0

14
0

16
0

Stages

P
ric

e:
 In

de
x 

N
um

be
r

0 1 2 3 4 5 6 7 8 9

Figure 6: Laspeyres index evolution for the prices of several energy resources for the period 2005-2015.

Paasche index in R

Analogously, the joint evolution of magnitudes under the Paasche index (11) can be also determined
by using IndexNumber package in R software. More specifically, paasche.index.number() provides
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the mentioned weighted index number. The results of the function follows a similar structure as the
function previously mentioned, and using the same graphical and numerical options.

paasche.index.number(ECResources[,2:6],ECResources[,7:11],
name="Price",opt.plot=TRUE,opt.summary=TRUE)

Marshall-Edgeworth index in R

The obtaining of the Marshall-Edgeworth index number (12) is also possible in R software through the
use of IndexNumber package. In particular, we have to use the function edgeworth.index.number()
with the above-mentioned options for obtaining graphics and summaries.

edgeworth.index.number(ECResources[,2:6],ECResources[,7:11],
name="Price",opt.plot=FALSE,opt.summary=FALSE)

Fisher index in R

Here, we consider the case of determining the Fisher index (13). In this case, fisher.index.number()
provides a measure of the considered magnitude. Again, the options opt.plot and opt.summary allow
the obtaining of additional information that may be of interest to the user.

fisher.index.number(ECResources[,2:6],ECResources[,7:11],
name="Price",opt.plot=FALSE,opt.summary=FALSE)

A complex index for v in R

The complex index for v given in (14) can be easily obtained as the Bradstreet-Dûtot index for the
value in each instant of time. Recall that the value is obtained as the product of the amount of good by
its price in each instant of time. Thus, the function aggregated.index.number() provides the value of
this new index number as follows.

aggregated.index.number(ECResources[,2:6]*ECResources[,7:11],
base="serie",type="BDutot",name="Prices",opt.plot=FALSE,
opt.summary=FALSE)

4 Concluding Remarks

This paper discusses the implementation in R of classical index numbers used for comparing magni-
tudes mainly in economic contexts. Therefore, the IndexNumber package provides R users a set of
functions to calculate index numbers. Concretely, this library allows the calculation of simple index
numbers in series and in chain. Furthermore, complex index numbers are also implemented. In
particular, the non-weigthed index numbers included are the Sauerbeck, Geometric mean, Harmonic
mean, Bradstreet-Dûtot, Carli, Jevons, and Dûtot indexes; as weighted index numbers, the Laspeyres,
Paasche, Marshall-Edgeworth, Fisher, and Bradstreet-Dûtot indexes were considered. Additionally,
this package contains graphical tools in order to facilitate the results visualization and four real data
sets that can be used as illustrative examples. Moreover, the use of this library could be easily com-
bined with other classical packages focused on time series analysis. Future research and development
plans for forthcoming versions of the package include the addition of new index numbers already
considered in the literature that can be dealt with in the framework presented above. Of course, the
corresponding graphical tools should also be implemented.
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ROBustness In Network (robin): an R
Package for Comparison and Validation of
Communities
by Valeria Policastro, Dario Righelli, Annamaria Carissimo, Luisa Cutillo and Italia De Feis

Abstract In network analysis, many community detection algorithms have been developed. However,
their implementation leaves unaddressed the question of the statistical validation of the results. Here,
we present robin (ROBustness In Network), an R package to assess the robustness of the community
structure of a network found by one or more methods to give indications about their reliability. The
procedure initially detects if the community structure found by a set of algorithms is statistically
significant and then compares two selected detection algorithms on the same graph to choose the
one that better fits the network of interest. We demonstrate the use of our package on the American
College Football benchmark dataset.

1 Introduction

Over the last twenty years, network science has become a strategic field of research thanks to the
strong development of high-performance computing technologies. The activity and interaction of
thousands of elements can now be measured simultaneously, allowing us to model cellular networks,
social networks, communication networks, power grids, and trade networks, to cite a few examples.
Different types of data will produce different types of networks in terms of structure, connectivity,
and complexity. In the study of complex networks, a network is said to have a community structure
if the nodes are densely connected within groups but sparsely connected between them (Girvan
and Newman, 2002). The inference of the community structure of a network is an important task.
Communities allow us to create a large-scale map of a network since individual communities act
like meta-nodes in the network, which makes its study easier. Moreover, community detection can
predict missing links and identify false links in the network. Despite its difficulty, a huge number of
methods for community detection have been developed to deal with different size complexity and
made available to the scientific community by open-source software packages. In this paper, we will
address a specific question: are the detected communities significant, or are they a result of chance
only due to the positions of edges in the network?

An important answer to this question is the Order Statistics Local Optimisation Method (OSLOM,
http://www.oslom.org/) presented in Lancichinetti et al. (2011). OSLOM introduces an iterative
technique based on the local optimization of a fitness function, the C-score (Lancichinetti et al., 2010),
expressing the statistical significance of a cluster with respect to random fluctuations. The significance
is evaluated by fixing a threshold parameter P a priori.

Another interesting approach is the Extraction of Statistically Significant Communities (ESSC,
https://github.com/jdwilson4/ESSC) technique proposed in Wilson et al. (2014). The algorithm is
iterative and identifies statistically stable communities measuring the significance of connections
between a single vertex and a set of vertices in undirected networks under the configuration model
(Bender and Canfield, 1978) used as the null hypothesis. The method employs multiple testing and
false discovery rate control to update the candidate community.

Kojaku and Masuda (2018) introduced the QStest (https://github.com/skojaku/qstest/), a
method to statistically test the significance of individual communities in a given network. Their
algorithm works with different detection algorithms using a quality function that is consistent with the
one used in community detection and takes into account the dependence of the quality function value
on the community size. QStest assesses the statistical significance under the configuration model too.

Very recently, He et al. (2020) suggested the Detecting statistically Significant Communities (DSC)
method, a significance-based community detection algorithm that uses a tight upper bound on the
p-value under the configuration model coupled with an iterative local search method.

OSLOM, ESSC, and DSC assess the statistical significance of every single community analytically
while QStest adopts the sampling method to calculate the p-value of a given community. Moreover,
all of them detect statistically significant communities under the configuration model, and only QStest
is independent of the detection algorithm.

We present robin (ROBustness In Network), an R/CRAN package whose purpose is to give clear
indications about the reliability of one or more community detection algorithms understudy, analyzing
their robustness with respect to random perturbations. The idea behind robin is that if a partition
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is significant, it will be recovered even if the structure of the graph is modified. Alternatively, if the
partition is not significant, minimal modifications of the graph will be sufficient to change it. robin is
inspired by the concept presented by Carissimo et al. (2018), who studied the stability of the recovered
partition against random perturbations of the original graph structure using tools from Functional
Data Analysis (FDA).

robin provides the best choice among the variety of the existing methods for the network of interest.
It is based on a procedure that gives the opportunity to use the community detection techniques
implemented in the igraph package Csardi and Nepusz (2019) while providing the user with the
possibility to include other community detection algorithms. robin initially detects if the community
structure found by some algorithms is statistically significant, then it compares the different selected
detection algorithms on the same network. robin assumes undirected graphs without loops and
multiple edges.

robin looks at the global stability of the detected partition and not of single communities but
accepts any detection algorithm and any random model, and these aspects differentiate it from
OSLOM, ESSC, DSC, and QStest. Unlike other studies that treat the comparison between algorithms in
a theoretical way, such as Yang et al. (2016), robin aims to give a practical answer to such a comparison
that can vary with the network of interest.

2 The model

robin implements a methodology that examines the stability of the recovered partition by one or more
algorithms. The methodology is useful for two purposes: to detect if the community structure found
is statistically significant or is a result of chance; to choose the detection algorithm that better fits the
network under study. These are implemented following two different workflows.

The first workflow tests the stability of the partitions found by a single community detection
algorithm against random perturbations of the original graph structure. To address this issue, we
specify a perturbation strategy (see subsection Perturbation strategy) and a null model to build some
procedures based on a prefixed stability measure (see subsection Stability measure). Given:

• a network of interest g1
• its corresponding null random model g2
• a Detection Algorithm (DA)
• a stability measure (M)

Our process builds two curves as functions of the perturbation level p, as shown in Figure 1, and tests
their similarity by two types of functional statistical tests (see subsection Statistical tests).

Figure 1: Example of Mcrandom and Mc curves generated by an M stability measure

The first curve Mc is obtained by computing M between the partition of the original network
g1 and the partition of a different perturbed version of g1. The second curve Mcrandom is obtained
by computing M between the partition of a null random network g2 and the partition of a different
perturbed version of g2.

The comparison between the two M curves enables us to reconsider the problem regarding
the significance of the retrieved community structure in the context of stability/robustness of the

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 278

recovered partition against perturbations. The basic idea is that if small changes in the network
cause a completely different grouping of the data, the detected communities are not reliable. For a
better understanding of this point, we refer the reader to the paper Carissimo et al. (2018) where the
methodology was developed.

The choice of the null model plays a key role because we would expect it to reproduce the same
structure of the real network but with completely random edges. For this reason, robin offers two
possibilities: a degree preserving randomization by using the rewire function of the igraph package
or a model chosen by the user.

The degree preserving randomization, i.e., Configuration Model (CM), is a model able to capture
and preserve strongly heterogeneous degree distributions often encountered in real network data
sets and is the standard null model for empirical patterns. Nevertheless, it can happen that it is not
sufficient to preserve only the degree of the graph understudy, so robin allows the user to include
their own null model.

In section Example test: the American College football network, we explore the dk null random
model provided in Orsini et al. (2015), whose code is available at https://github.com/polcolomer/
RandNetGen as a possible alternative to CM. The dk-series model generates a random graph preserving
the global organization of the original network at various increasing levels of details chosen by the
user via the setting of the parameter d. More precisely, the dk-series is a converging series of properties
that characterize the local network structure at an increasing level of detail and define a corresponding
series of null models or random graph ensembles. Increasing values of d capture progressively more
properties of the network: dk 1 is equivalent to randomizing the network fixing only the degree
sequence, dk 2 fixes additionally the degree correlations, dk 2.1 fixes also the clustering coefficient, and
dk 2.5 the full clustering spectrum.

The first workflow is summarised as follows (see Figure 2):

1. find a partition C1 for the real network and a partition C2 for the null network,

2. perturb both networks,

3. retrieve two new partitions C1(p) and C2(p),

4. calculate two clustering distances (for the real network and the null network) between the
original partitions and the ones obtained from the perturbed network as:

M
(

C1(p), C1

)
and M

(
C2(p), C2

)
(1)

Steps 2) - 4) are computed at different perturbation levels p ∈ [0 : 0.05 : 0.6] to create two curves,
one for the real network and one for the null model, then their similarity is tested by two functional
statistical tests described in subsection Statistical tests.

This procedure allows the filtering of the detection algorithms according to their performance.
Moreover, the selected ones can be compared using the second workflow.

The second workflow helps to choose among different community detection algorithms the one
that best fits the network of interest, comparing their robustness two at a time. More precisely, the
technique (see Figure 3):

1. find two partitions C1 and C2 inferred by two different algorithms on the network under study,

2. perturb the network creating a new one,

3. retrieve two new partitions C1(p) and C2(p),

4. evaluate M
(

C1(p), C1

)
and M

(
C2(p), C2

)
.

Steps 2) - 4) are repeated at different perturbation levels p ∈ [0 : 0.05 : 0.6] to create two curves and
then their similarity is tested.

Perturbation strategy

The perturbed network has been restricted to have the same number of vertices and edges as the
original unperturbed network. Therefore, only the positions of the edges are changed. It is expected
that if a community structure is robust, it should be stable under small perturbations of the edges.
This is because perturbing the network edges by a small amount will imply just a small percentage of
nodes to be moved in different communities; on the other hand, perturbing a high percentage of the
edges in the network will produce random clusters. Note that zero perturbation p = 0 corresponds to
the original graph while a maximal perturbation level p = 1 will correspond to the random graph.
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Figure 2: Workflow to test the goodness of a community detection algorithm.

Figure 3: Workflow to compare two different community detection algorithms.

Therefore, in robin, the perturbation of a network preserves the degree distribution of the original
network.

Two different procedures for the perturbation strategy are implemented, namely independent
and dependent types. The independent strategy introduces a percentage p of perturbation in the
original graph at each iteration, for p = 0, . . . , pmax. Whereas the dependent procedure introduces 5%
of perturbation at each iteration on the previous perturbed graph, starting from the original network,
until pmax of the graph’s edges are perturbed. In the implementation of the perturbation strategy, we
set up pmax = 0.6, because the structure of the network becomes random if we perturb more than 50%
of the edges.

In particular, we noticed that the greatest modification of the network structure happens for
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a perturbation level between 30% and 40% if a network is robust, while it happens at very low
perturbation levels if the network is not robust.

We stress again that the M curve for a network with a strong structure grows rapidly (perturbation
level between 0% and 40%) then levels off when 50% < p < 100%.

Moreover, the choice pmax = 0.6 reduces computational time and shows more clearly the differ-
ences between the curves.

Varying the percentage of perturbation, many graphs are generated and compared by means of
the stability measure chosen. For each perturbation level, we generated 10 perturbed graphs and
calculated the stability measure. From each of these graphs, we generated 9 more by rewiring an
additional 1% of the edges. Therefore, the procedure generates 100 graphs with the respective stability
measures for each level of p and gives as output the mean of the stability measure for every 10 graphs
generated.

Stability measure

The procedure we implemented is based on four different stability measures:

• the Variation of Information (VI) proposed by Meilǎ (2007),
• the Normalized Mutual Information (NMI) measure proposed by Danon et al. (2005),
• the split-join distance of van Dongen (2000),
• the Adjusted Rand Index (ARI) by Hubert and Arabie (1985).

VI measures the amount of information lost and gained in changing from one cluster to another, while
split-join distance calculates the number of nodes that have to be exchanged to transform any of the
two clusterings into the other; but for both of them, low values represent more similar clusters, and
high values represent more different clusters. On the contrary, NMI and ARI are similarity measures,
and therefore, lower values identify more different clusters and higher values more similar ones. To
make all the measures comparable, we considered the 1-1 transformation for the NMI and the ARI
since they vary between [0, 1] as:

f (X) = 1 − X (2)

Only two of the four proposed stability measures, i.e., split-join and VI, are distances. They differ in
their dependency on the number of clusters K: while the VI distance grows logarithmically with K,
the split-join metric grows with K toward the upper bound of 1. To make the four different stability
measures comparable, we normalized VI and split-join between 0 and 1 (i.e., we divided the VI and
the split-join by their maximum, respectively log (n) and 2n, where n indicates the number of vertices
in the graph).

Statistical tests

robin allows different multiple statistical tests to check the differences between the real and the
random curve or between the curves built from two different detection algorithms. The variation of p
from 0 to 0.6 induces an intrinsic order to the data structure as in temporal data. This lets p assume,
the same role as a time point in a temporal process, and as a consequence, we can use any suitable time
series approach to compare our curves. In the following, we describe the use of two such approaches.

The first is a test based on the Gaussian Process regression (GP) described in Kalaitzis and Lawrence
(2011b). In this paper, the authors use GP to compare treatment and control profiles in biological
time-course experiments. The main idea is to test if two time series represent the same or two different
temporal processes. A Gaussian process is a collection of random variables, any finite number of
which have a joint Gaussian distribution and is completely specified by its mean function and its
covariance function, see e.g., Rasmussen and Williams (2006). Given the mean function m (x) and the
covariance function k (x, x′) of a real process f (x), we can write the GP as:

f (x) ∼ GP
(
m (x) , k

(
x, x′

))
. (3)

The random variables f = ( f (X1) , . . . , f (Xn))
T represent the value of the function f (x) at time

locations (Xi)i=1,...,n, being f (x) the true trajectory/profile of the gene. Assuming f (x) = Φ(x)Tw,
where Φ(x) are projection basis functions, with prior w ∼ N(0, σ2

wI), we have

m (x) = Φ (x)T E [w] = 0, k
(

x, x′
)
= σ2

wΦ (x)T Φ (x) (4)

f (x) ∼ GP
(

0, σ2
wΦ (x)T Φ (x)

)
. (5)
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Since observations are noisy, i.e., y = Φw + εεε, with Φ = (Φ(X1)
T , . . . , Φ(Xn)T), assuming that the

noise εεε ∼ N(0, σ2
nI) and using Eq. (4), the marginal likelihood becomes:

p(y|x) = 1

(2π)n/2 ∣∣Ky
∣∣1/2 exp

(
−1

2
ytKy

−1y
)

, (6)

with Ky = σ2
wΦΦT + σ2

nI.

In this framework, the hypothesis testing problem over the perturbation interval [0, pmax] can be
reformulated as:

H0 : log2
M1 (x)
M2 (x)

∼ GP
(
0, k

(
x, x′

))
against H1 : log2

M1 (x)
M2 (x)

∼ GP
(
m (x) , k

(
x, x′

))
, (7)

where x represents the perturbation level. To compare the two curves, robin uses the Bayes Factor
(BF), which is approximated with a log-ratio of marginal likelihoods of two GPs, each one representing
the hypothesis of differential (the profile has a significant underlying signal) and non-differential
expression (there is no underlying signal in the profile, just random noise).

The second test implemented is based on the Interval Testing Procedure (ITP) described in Pini
and Vantini (2016). The ITP provides an interval-wise nonparametric functional testing and is not only
able to assess the equality in distribution between functions, but also to underline specific differences.
Indeed, users can see where are localized the differences between the two curves. The Interval Testing
Procedure is based on:

1. Basis Expansion: functional data are projected on a functional basis (i.e. Fourier or B-splines
expansion);

2. Interval-Wise Testing: statistical tests are performed on each interval of basis coefficients;

3. Multiple Correction: for each component of the basis expansion, an adjusted p-value is computed
from the p-values of the tests performed in the previous step.

In summary, GP provides a global answer on the dissimilarity of the two M curves, while ITP points
out local changes between such curves. As a rule of thumb, we suggest initially using GP to flag
a difference and then ITP to understand at which level of perturbation such a difference is locally
significant.

We also provide a global method to quantify the differences between the curves when they are
very close. This is based on the calculation of the area under the curves with a spline approach.

3 Package structure

Installation

Once in the R environment, it is possible to install and load the robin package with its dependencies,
as follows:

install.packages("robin")

The robin package includes as dependencies igraph (Csardi and Nepusz, 2019), networkD3
(Gandrud et al., 2017), ggplot2 (Wickham, 2019), gridExtra (Auguie, 2017), fdatest (Pini and Vantini,
2015) , gprege (Kalaitzis and Lawrence, 2011a), and DescTools (Signorell and mult. al., 2019) packages.
All, except gprege which is a Bioconductor package, are automatically loaded with the command:

library(robin).

To install the gprege package, start R and enter:

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install("gprege")

Data import and visualization

robin is a user-friendly software providing some additional functions for data import and visualization,
such as prepGraph, plotGraph, and plotComm. The function prepGraph, required by the procedure,
reads, and simplifies undirected graphs removing loops and multiple edges. The available input
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graphs formats are: “edgelist”, “pajek”, “ncol”, “lgl”, “graphml”, “dimacs”, “graphdb”, “gml”, “dl”,
and an igraph object. The function plotGraph, with the aid of the network3D package, starting from
an igraph object loaded with prepGraph, shows an interactive 3D graphical representation of the
network, useful to visualize the network of interest before the analysis. Furthermore, the function
plotComm helps to plot a graph with colorful nodes that simplifies the visualization of the detected
communities, given the membership of the communities.

Procedures

robin embeds all the community detection algorithms present in igraph. They can be classified as in
(Fortunato, 2009)

modularity based methods:

• cluster_fast_greedy (Clauset et al., 2005)

• cluster_leading_eigen (Newman, 2006)

• cluster_louvain (Blondel et al., 2008)

divisive algorithms:

• cluster_edge_betweenness (Newman and Girvan, 2004)

methods based on statistical inference:

• cluster_infomap (Rosvall and Bergstrom, 2008)

dynamic algorithms:

• cluster_spinglass (Reichardt and Bornholdt, 2006)

• cluster_walktrap (Pons and Latapy, 2005)

alternative methods:

• cluster_label_prop (Raghavan et al., 2007).

robin gives the possibility to input a custom external function to detect the communities. The
user can provide his own function as a value of the parameter FUN in both analyses, implemented
into the functions robinRobust and robinCompare. These two functions create the internal process for
perturbation and measurement of communities stability. In particular robinRobust tests the robustness
of a chosen detection algorithm and robinCompare compares two different detection algorithms. The
option measure in the robinRobust and robinCompare functions provides the flexibility to choose
between the four different measures listed in the subsection Stability measure.

robin offers two choices for the null model to set up for robinRobust:

• external building according to users’ preferences, then the null graph is passed as a variable,

• generation by using the function random.

The function random creates a random graph with the same degree distribution as the original graph,
but with completely random edges, by using the rewire function of the igraph package with the
keeping_degseq option that preserves the degree distribution of the original network. The function
rewire randomly assigns a number of edges between vertices with the given degree distribution. Note
that robin assumes undirected graphs without loops and multiple edges which are directly created,
from any input graph, by the function prepGraph.

Construction of curves

The plotRobin function allows the user to generate two curves based on the computation of the chosen
stability measures.

When plotRobin is used on the output of robinRobust, i.e., the first step of the overall procedure,
the first curve represents the measure between the partition of the original unperturbed graph and
the partition of each perturbed graph (blue curve in Figure 4-Left panel), and the second curve is
obtained in the same way but considering as the original graph the random graph (red curve in Figure
4-Left panel). The comparison between the two curves turns the question about the significance of
the retrieved community structure into the study of the robustness of the recovered partition against
perturbation.
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When plotRobin is used on the output of robinCompare, i.e. the second step of the overall
procedure, it generates a plot that depicts two curves, one for each clustering algorithm. In the right
panel of Figure 4, each curve is obtained by computing the measure between the partition of the
original unperturbed graph with the partition of each perturbed graph, where the partition method is
either Louvain (blue curve) or Fast Greedy (red curve).

Figure 4: Curves of the null model and the real data generated by the VI stability measure and the
Louvain detection algorithm on the American College Football network (Left panel). Curves of the
Louvain and Fast greedy algorithm generated by the VI stability measure on the American College
Football network (Right panel) (Girvan and Newman, 2002).

Testing

The GP test is implemented in robinGPTest and uses the R package gprege (Kalaitzis and Lawrence,
2011a). The ITP test is implemented in robinFDATest and uses the R package fdatest (Pini and
Vantini, 2015). The area under the curves is calculated by the function robinAUC and relies on the
DescTools package. Figure 5 shows the curves for the comparison of Louvain and Fast greedy
algorithms’ performance generated by the VI stability measure using the Interval Testing Procedure
on the American College Football network (left panel) (Girvan and Newman, 2002) and corresponding
adjusted p-values (right panel).

Figure 5: Curves of the Louvain and Fast greedy algorithm generated by the VI stability measure using
the Interval Testing Procedure on the American College Football network (Left panel). Corresponding
p-values and adjusted p-values for all the intervals with the horizontal red line on to the critical value
0.05 (Right panel).

All the functions implemented in robin are summarized in Table 1.

Computational time

The time complexity of the proposed strategy, more precisely of the robinRobust function, is evaluated
as follows. Generating a rewired network with N nodes and M edges consumes O(N + M) time, for
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Table 1: Summary of the functions implemented in robin.

FUNCTION DESCRIPTION

Import/Manipulation

prepGraph Management and preprocessing
of input graph

random Building of null model

Analysis

robinRobust Comparison of a community detection method
versus random perturbations of the original graph

robinCompare Comparison of two different
community detection methods

Visualization

methodCommunity Detection of the community structure

membershipCommunities Detection of the membership vector
of the community structure

plotGraph Graphical interactive representation
of the network

plotComm Graphical interactive representation
of the network and its communities

plotRobin Plots of the two curves

Test

robinGPTest GP test and evaluation of the Bayes factor

robinFDATest ITP test and evaluation of the adjusted p-values

robinAUC Evaluation of the area under the curve

both the real and the null model. For each network, we detect the communities, using any community
detection algorithm present in igraph or any custom external algorithm inserted by the user, and
calculate a stability measure. Let D be the time complexity associated with the community detection
algorithm chosen. The overall procedure is iterated k = 100 times for each percentage p of the
np = 12 perturbation levels (p ∈ [0, pmax], pmax = 0.6). In total, the proposed procedure requires
O(D + (((N + M + D) ∗ k) ∗ np)) time both for the real and the null model.

In Table 2, we show the computational time evaluated on a computer with an Intel 4 GHz i7-4790K
processor and 24GB of memory. In this example, we used Louvain as a detection algorithm on the LFR
benchmark graphs (Lancichinetti et al., 2008). The time complexity could be mitigated using parallel
computing, but this is not yet implemented.

4 Example test: the American College football network

robin includes the American College football benchmark dataset as an analysis example that is freely
available at http://www-personal.umich.edu/~mejn/netdata/. The dataset contains the network of
United States football games between Division I colleges during the 2000 season (Girvan and Newman,
2002). It is a network of 115 vertices that represent teams (identified by their college names) and 613
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Table 2: Computational time

NODES EDGES TIME(SECS)
100 500 2.1
1000 9267 36.1
10000 100024 361.8
100000 994053 9411.6
1000000 8105913 110981.5

edges that represent regular-season games between the two teams they connect. The graph has the
ground truth, where each node has a value that indicates to which of the 12 conferences it belongs,
and this offers a good opportunity to test the ability of robin to validate the community robustness. It
is known that each conference contains around 8-12 teams. The games are more frequent between
members of the same conference than between members of different conferences. They are on average
seven between teams of the same conference and four between different ones. We applied all the
methods listed in subsection Procedures to this network, choosing as measure the VI metric.

library(robin)

my_network <- system.file("example/football.gml", package="robin")
graph <- prepGraph(file=my_network, file.format="gml")

attributes <- vertex_attr(graph, index = V(graph))
real <- attributes$value
real <- as_membership(real)

set.seed(10)
members_In <- membershipCommunities(graph=graph, method=DA)
VI_In <- compare(real, members_In, method="vi")

Note that the variable DA refers to the detection algorithms present in igraph and can assume
the following values: fastGreedy, infomap, walktrap, edgeBetweenness, spinglass, leadingEigen, labelProp,
louvain. The function compare is contained in the package igraph and permits the assessment of the
distance between two community structures according to the chosen method.

Table 3 summarizes the VI results calculated between the real communities and the ones that the
detection algorithms created.

Table 3: VI measure between different methods and ground-truth.

METHODS NORMALIZED VI
cluster_infomap 0.054
cluster_spinglass 0.063
cluster_louvain 0.076
cluster_label_prop 0.076
cluster_walktrap 0.078
cluster_edge_betweenness 0.083
cluster_fast_greedy 0.185
cluster_leading_eigen 0.196

It is possible to observe that the best performance is offered by Infomap, having the lowest VI
value, followed by Spinglass. Louvain, Propagating Labels, Walktrap, and Edge betweenness have
a similar intermediate VI value, while the worst performance is given by Fast greedy and Leading
eigenvector. Then, we used robin to check if the results are confirmed by looking at the VI curves and
the results of the testing procedure for the second workflow, i.e., the one comparing two detection
algorithms, considering Infomap versus all the others.

comp <- robinCompare(graph=graph, method1=DA1,
method2=DA2, measure="vi", type="independent")

plotRobin(graph=graph, model1=comp$Mean1, model2=comp$Mean2,
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measure="vi")

Figure 6 shows the results we obtained. If we focus on the perturbation interval [0, 0.3], it is possible
to note the similar behavior between the curves representing Infomap/Spinglass, Infomap/Louvain,
Infomap/Propagating Labels, Infomap/Walktrap, and Infomap/Edge betweenness, with a closer
distance between Infomap/Spinglass. On the contrary, the curves Infomap/Fast greedy and In-
fomap/Leading eigenvector have an opposite behavior, building almost an ellipse. This confirms
what is displayed in Table 3.

Figure 6: Plot of the VI curves of Infomap against all other methods.

In our overall procedure, we explored two different ways of generating a null model, namely the
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Configuration Model (CM) and the dk-series model.

graphRandomCM <- random(graph=graph)
graphRandomDK <- prepGraph(file="dk2.1_footballEdgelist.txt",

file.format = "edgelist")

plotGraph(graph)
plotGraph(graphRandomCM)
plotGraph(graphRandomDK)

The different structures provided by the real data network, CM, and dk-series with d = 2.1 are
shown in Figure 7.

Figure 7: Graph of the real data (Upper panel); graph of the CM null model (Left - lower panel); graph
of the dk-series null model with d = 2.1 (Right - lower panel).

The CM generates a random graph with the same degree sequence as the original one but with
a randomized group structure. Our experiments show that CM is not a good null model when
using Propagating Labels and Infomap as community extraction methods (Figure 8). In fact, when
the modularity is low, these two algorithms tend to assign all the nodes to the same community,
hence resulting in a flat stability measure curve. We launched the function robinRobust to assess the
robustness of each detection algorithm.

proc_CM <- robinRobust(graph=graph, graphRandom=graphRandomCM,
measure="vi", method=DA, type="independent")

plotRobin(graph=graph, model1=proc_CM$Mean,model2=proc_CM$MeanRandom,
measure="vi")

The dk-series model generates a random graph preserving the global organization of the original
network at various increasing levels of details chosen by the user via the setting of the parameter d. In
particular, we chose the dk random graph with d=2.1.

proc_DK <- robinRobust(graph=graph, graphRandom=graphRandomDK,
measure="vi", method="fastGreedy", type="independent")

plotRobin(graph=graph, model1=proc_DK$Mean, model2=proc_DK$MeanRandom,
measure="vi")

Figure 9 shows the stability measure curves of each detection algorithm compared to dk 2.1 null
model. For all the methods, the two curves are very close due to the capability of the null model to
preserve a structure similar to the real network and visually confirm the results in Table 3.
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Moreover, for the dk-series model, we tested the differences between the two curves using the GP
methodology implemented in the function in robinGPTest.

BFdk <- robinGPTest(model1=proc_DK$Mean, model2=proc_DK$MeanRandom)

The results are shown in Table 4 and agree with those shown in Table 3.

Table 4: Bayes Factor and AUC ratio for dk -series with d = 2.1

METHODS BAYES FACTOR AUC
cluster_infomap 53.67 1.133
cluster_spinglass 40.55 1.249
cluster_louvain 31.52 1.208
cluster_label_prop 102.2 0.852
cluster_walktrap 30.74 1.204
cluster_edge_betweenness 31.10 1.194
cluster_fast_greedy 0.001 1.017
cluster_leading_eigen 8.474 1.042

Fastgreedy clearly fails in recovering the communities. LeadingEigen has stronger evidence but
too weak when compared to the other methods. Louvain, Walktrap, and EdgeBetweenness have the
same strong evidence followed by Spinglass and Infomap. LabelProp shows the strongest evidence,
but the result is obviously influenced by the swap between the two curves when the perturbation is
greater than 20%, underlying a worse performance of the algorithm. The same swap can be noted for
Infomap at 35% perturbation level, but with less difference between the two curves. This is confirmed
by the fact that the ratios between the AUC of the real null model curve and the AUC of the real
network are close to 1.

AUC <- robinAUC(graph=graph, model1=proc_DK$Mean,
model2=proc_DK$MeanRandom, measure="vi")

AUCdkratio <- AUC$area2/AUC$area1

Also, note that LabelProp originates the paradox that the AUC of the real model curve exceeds the
AUC of the null network, despite the hypothesis testing result is positive. Hence, it is always the case
to look at the plots and AUC ratios.

5 Conclusion

In this paper, we presented robin, an R/CRAN package, to assess the robustness of the community
structure of a network found by one or more detection methods, providing an indication of their relia-
bility. The procedure implemented is useful for comparing different community detection algorithms
and choosing the one that best fits the network of interest. More precisely, robin initially detects
if the community structure found by some algorithms is statistically significant, then it compares
the different selected detection algorithms on the same network. robin uses analysis tools set up
for functional data analysis, such as GP regression and ITP. The core functions of the package are
robinRobust and robinCompare, which build the stability measure curves for the null model and
the network understudy for a fixed detection algorithm and the stability measure for the network
understudy for two detection algorithms, respectively. Moreover, robinGPTest and robinFDATest
implement the GP test and the ITP test. We illustrated the usage of the package on a benchmark
dataset. The package is available on CRAN at https://CRAN.R-project.org/package=robin.

6 Computational details

The results in this paper were obtained using R 3.6.1 with the packages igraph version 1.2.4.2, net-
workD3 version 0.4, ggplot2 version 3.2.1, gridExtra version 2.3, fdatest version 2.1, gprege version
1.30.0, and DescTools version 0.99.31. R itself and all packages used are available from the Compre-
hensive R Archive Network (CRAN) at https://CRAN.R-project.org/.
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Figure 8: Plot of the VI curves of the CM null model and all the algorithms implemented.
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Figure 9: Plot of the VI curves of the dk-series null model with d = 2.1 and all the algorithms
implemented.
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Finding Optimal Normalizing
Transformations via bestNormalize
by Ryan A. Peterson

Abstract The bestNormalize R package was designed to help users find a transformation that can
effectively normalize a vector regardless of its actual distribution. Each of the many normalization
techniques that have been developed has its own strengths and weaknesses, and deciding which to
use until data are fully observed is difficult or impossible. This package facilitates choosing between
a range of possible transformations and will automatically return the best one, i.e., the one that
makes data look the most normal. To evaluate and compare the normalization efficacy across a suite
of possible transformations, we developed a statistic based on a goodness of fit test divided by its
degrees of freedom. Transformations can be seamlessly trained and applied to newly observed data
and can be implemented in conjunction with caret and recipes for data preprocessing in machine
learning workflows. Custom transformations and normalization statistics are supported.

1 Introduction

The bestNormalize package contains a suite of transformation-estimating functions that can be used
to normalize data. The function of the same name attempts to find and execute the best of all of
these potential normalizing transformations. In this package, we define “normalize” as in “to render
data Gaussian”, rather than transform them to a specific scale.

There are many instances where researchers may want to normalize a variable. First, there is
the (often problematic) assumption of normality of the outcome (conditional on the covariates) in
the classical linear regression problem. Over the years, many methods have been used to relax this
assumption: generalized linear models, quantile regression, survival models, etc. One technique
that is still somewhat popular in this context is to “beat the data” to look normal via some kind of
normalizing transformation. This could be something as simple as a log transformation or something
as complex as a Yeo-Johnson transformation (Yeo and Johnson, 2000). In fact, many complex
normalization methods were designed expressly to find a transformation that could render regression
residuals Gaussian. While perhaps not the most elegant solution to the problem, often, this technique
works well as a quick solution. Another increasingly popular application of normalization occurs in
applied regression settings with highly skewed distributions of the covariates (Kuhn and Johnson,
2013). In these settings, there exists the tendency to have high leverage points (and highly influential
points), even when one centers and scales the covariates. When examining interactions, these
influential points can become especially problematic since the leverage of that point gets amplified
for every interaction in which it is involved. Normalization of such covariates can mitigate their
leverage and influence, thereby allowing for easier model selection and more robust downstream
predictor manipulations (such as principal components analysis), which can otherwise be sensitive
to skew or outliers. As a result, popular model selection packages such as caret (Kuhn, 2017) and
recipes (Kuhn and Wickham, 2018) have built-in mechanisms to normalize the predictor variables
(they call this “preprocessing”). This concept is unique in that it forgoes the assumption of linearity
between the outcome (Y) and the covariate, opting instead for a linear relationship between Y and
the transformed value of the covariate (which in many cases may be more plausible).

This package is designed to make normalization effortless and consistent. We have also introduced
Ordered Quantile (ORQ) normalization via the orderNorm function, which uses a rank mapping of
the observed data to the normal distribution in order to guarantee normally distributed transformed
data (if ties are not present). We have shown how ORQ normalization performs very consistently
across different distributions, successfully normalizing left- or right-skewed data, multi-modal data,
and even data generated from a Cauchy distribution (Peterson and Cavanaugh, 2019).

In this paper, we describe our R package bestNormalize, which is available via the Comprehensive
R Archive Network (CRAN). First, we describe normalization methods that have been developed and
that we implement in the package. Second, we describe the novel cross-validation-based estimation
procedure, which we utilize to judge the normalization efficacy of our suite of normalization
transformations. Third, we go through some basic examples of bestNormalize functionality and a
simple implementation of our methods within the recipes package. We illustrate a more in-depth use-
case in a car pricing application, performing a transform-both-sides regression as well as comparing
the performance of several predictive models fit via caret. Finally, we conclude by discussing the
pros and cons of normalization in general and future directions for the package.
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2 Normalization methods

Many normalization transformation functions exist, and though some can be implemented well in
existing R packages, bestNormalize puts them all under the same umbrella syntax. This section
describes each transformation contained in the bestNormalize suite.

The Box-Cox transformation

The Box-Cox transformation was famously proposed in Box and Cox (1964) and can be implemented
with differing syntax and methods in many existing packages in R (e.g., caret, MASS (Venables and
Ripley, 2002), and more). It is a straightforward transformation that typically only involves one
parameter, λ:

g(x; λ) = 1(λ̸=0)
xλ − 1

λ
+ 1(λ=0) log x ,

where x refers to the datum in its original unit (pre-transformation). Given multiple observations,
the λ parameter can be estimated via maximum likelihood, and x must be greater than zero.

The Yeo-Johnson transformation

The Yeo-Johnson transformation (Yeo and Johnson, 2000) attempts to find the value of λ in the
following equation that minimizes the Kullback-Leibler distance between the normal distribution
and the transformed distribution.

g(x; λ) = 1(λ̸=0,x≥0)
(x + 1)λ − 1

λ

+ 1(λ=0,x≥0) log(x + 1)

+ 1(λ̸=2,x<0)
(1 − x)2−λ − 1

λ − 2
+ 1(λ=2,x<0) − log(1 − x)

This method has the advantage of working without having to worry about the domain of x. As
with the Box-Cox λ, this λ parameter can be estimated via maximum likelihood.

The Lambert W x F transformation

The Lambert W x F transformation, proposed in Goerg (2011) and implemented in the LambertW
package, is essentially a mechanism that de-skews a random variable X using moments. The method
is motivated by a system theory and is alleged to be able to transform any random variable into
any other kind of random variable, thus being applicable to a large number of contexts. One of the
package’s main functions is Gaussianize, which is similar in spirit to the purpose of this package.
However, this method may not perform as well on certain shapes of distributions as other candidate
transformations; see Peterson and Cavanaugh (2019) for some examples.

The Gaussianize transformation can handle three types of transformations: skewed, heavy-
tailed, and skewed heavy-tailed. For more details on this transformation, consult the LambertW
documentation.1 While the transformations contained and implemented by bestNormalize are
reversible (i.e., 1-1), in rare circumstances, we have observed that the lambert function can yield
non-reversible transformations.

The Ordered Quantile technique

The ORQ normalization technique (orderNorm) is based on the following transformation (originally
discussed, as far as we can find, in Bartlett (1947) and further developed in Van der Waerden
(1952)):

Let x refer to the original data. Then the transformation is:
1As of version 1.2.0 of bestNormalize, lambert methods are not performed by default in bestNormalize,

but they are still available via the allow_lambert arguments.
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g(x) = Φ−1
(

rank(x) − 1/2
length(x)

)
This nonparametric transformation as defined works well on the observed data, but it is not

trivial to implement in modern settings where the transformation needs to be applied on new data;
we discussed this issue and our solution to it in Peterson and Cavanaugh (2019). Basically, on new
data within the range of the original data, ORQ normalization will linearly interpolate between two
of the original data points. On new data outside the range of the original data, the transformation
extrapolates using a shifted logit approximation of the ranks to the original data. This is visualized
below via the iris data set on the Petal.Width variable.
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Figure 1: ORQ normalization visualization on Fisher’s iris data.

The shifted logit extrapolation ensures that the function is 1-1 and can handle data outside the
original (observed) domain. The effects of the approximation will usually be relatively minimal since
we should not expect to see many observations outside the observed range if the training set sample
size is large relative to the test set. The ORQ technique will not guarantee a normal distribution in
the presence of ties, but it still could yield the best normalizing transformation when compared to
the other possible approaches. More information on ORQ normalization can be found in Peterson
and Cavanaugh (2019) or in the bestNormalize documentation.

Other included transformations

In addition to the techniques above, the bestNormalize package performs and evaluates:

• logb(x + a) where a = max(0, − min(x) + ϵ) and b = 10 by default
•

√
x + a where a = max(0, − min(x)) by default

• exp(x)
• arcsinh(x) = log(x +

√
x2 + 1)

Other not-included transformations

A range of other normalization techniques has been proposed that are not included in this package
(at the time of writing). These include (but are not limited to): Modified Box-Cox (Box and Cox,
1964), Manly’s Exponential (Manly, 1976), John/Draper’s Modulus (John and Draper, 1980), and
Bickel/Doksum’s Modified Box-Cox (Bickel and Doksum, 1981). However, it is straightforward to
add new transformations into the same framework as other included transformations; each one is
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treated as its own S3 class, so in order to add other transformations, all one must do is define a new
S3 class and provide the requisite S3 methods. To this end, we encourage readers to submit a pull
request to the package’s GitHub page with new transformation techniques that could be then added
as a default in bestNormalize. Otherwise, in a later section, we show how users can implement
custom transformations alongside the default ones described above.

3 Which transformation “best normalizes” the data?

The bestNormalize function selects the best transformation according to an extra-sample estimate
of the Pearson P statistic divided by its degrees of freedom (DF ). This P statistic is defined as

P =

k∑
i=1

(Oi − Ei)
2

Ei
,

where Oi is the number observed, and Ei is the number of expected (under the hypothesis of
normality) to fall into “bin” i. The bins (or “classes”) are built such that observations will fall
into each one with equal probability under the hypothesis of normality. A variety of alternative
normality tests exist, but this particular one is relatively interpretable as a goodness of fit test, and
the ratio P /DF can be compared between transformations as an absolute measure of departure from
normality. Specifically, if the data in question follow a normal distribution, this ratio will be close
to 1 or lower. The transformation which produces data with the lowest normality statistic is thus
the most effective at normalizing the data, and gets selected by bestNormalize. The bestNormalize
package utilizes nortest (Gross and Ligges, 2015) to compute this statistic; more information on its
computation and degrees of freedom can be found in D’Agostino (1986) and Thode (2002).

Normality statistics for all candidate transformations can be estimated and compared with one
simple call to bestNormalize, whose output makes it easy to see which transformations are viable
and which are not. We have found that while complicated transformations are often most effective
and therefore selected automatically, sometimes a simple transformation (e.g., the log or identity
transforms) may be almost as effective, and ultimately the latter type will yield more interpretable
results.

It is worth noting that when the normality statistic is estimated on in-sample data, the ORQ
technique is predestined to be most effective since it is forcing its transformed data to follow a normal
distribution exactly (Peterson and Cavanaugh, 2019). For this reason, by default, the bestNormalize
function calculates an out-of-sample estimate for the P /DF statistic. Since this method necessitates
cross-validation, it can be computationally frustrating for three reasons: (1) the results and the
chosen transformation can depend on the seed, (2) it takes considerably longer to estimate than the
in-sample statistic, and (3) it is unclear how to choose the number of folds and repeats.

In order to mediate these issues, we have built several features into bestNormalize. Issue (1) is
only important for small sample sizes, and when it is a concern, the best transformations should
look similar to one another. We address two solutions to (2) in the next section. In short, we have
methods to parallelize or simplify the estimation of the statistic. For (3), we recommend 10-fold
cross-validation with 5 repeats as the default, but if the sample is small, we suggest using 5 (or
fewer) folds instead with more repeats; accurate estimation of P /DF requires a relatively large
fold size (as a rule of thumb, 20 observations per fold seems to be enough for most cases, but this
unfortunately depends on the distribution of the observed data).

4 Simple examples

In this section, we illustrate a simple use-case of the functions provided in bestNormalize.

Basic implementation

First, we will generate and plot some skewed data:

x <- rgamma(250, 1, 1)
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Figure 2: Simulated skewed data for simple example.

To perform a suite of potential transformations and see how effectively they normalized this
vector, simply call bestNormalize:

(BNobject <- bestNormalize(x))

#> Best Normalizing transformation with 250 Observations
#> Estimated Normality Statistics (Pearson P / df, lower => more normal):
#> - arcsinh(x): 1.7917
#> - Box-Cox: 1.0442
#> - Center+scale: 3.0102
#> - Exp(x): 9.5306
#> - Log_b(x+a): 1.7072
#> - orderNorm (ORQ): 1.1773
#> - sqrt(x + a): 1.144
#> - Yeo-Johnson: 1.1875
#> Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
#>
#> Based off these, bestNormalize chose:
#> Standardized Box Cox Transformation with 250 nonmissing obs.:
#> Estimated statistics:
#> - lambda = 0.3254863
#> - mean (before standardization) = -0.3659267
#> - sd (before standardization) = 0.9807881

Evidently, the Box-Cox transformation performed the best, though many other transformations
performed similarly. We can visualize the suite of transformations using the built-in plot method:

plot(BNobject, leg_loc = "topleft")
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Figure 3: The suite of transformations estimated by default in bestNormalize (trained on simulated
right-skewed data).
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Finally, we can execute the best performing normalization on new data with predict(BNobject,
new_x) or reverse the transformation with predict(BNobject, new_x_t,inverse = TRUE). Note
that normalized values can either be obtained using predict or by extracting x.t from the object.
The best transformation, in this case, is plotted in Figure 4.
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Figure 4: Summary of transformations performed on simulated right-skewed data.

Performing transformations individually

Each method can be performed (and stored) individually:

(arcsinh_obj <- arcsinh_x(x))

#> Standardized asinh(x) Transformation with 250 nonmissing obs.:
#> Relevant statistics:
#> - mean (before standardization) = 0.7383146
#> - sd (before standardization) = 0.5458515

(boxcox_obj <- boxcox(x))

#> Standardized Box Cox Transformation with 250 nonmissing obs.:
#> Estimated statistics:
#> - lambda = 0.3254863
#> - mean (before standardization) = -0.3659267
#> - sd (before standardization) = 0.9807881

(yeojohnson_obj <- yeojohnson(x))

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



Contributed research article 300

#> Standardized Yeo-Johnson Transformation with 250 nonmissing obs.:
#> Estimated statistics:
#> - lambda = -0.7080476
#> - mean (before standardization) = 0.4405464
#> - sd (before standardization) = 0.2592004

(lambert_obj <- lambert(x, type = "s"))

#> Standardized Lambert WxF Transformation of type s with 250 nonmissing obs.:
#> Estimated statistics:
#> - gamma = 0.3729
#> - mean (before standardization) = 0.6781864
#> - sd (before standardization) = 0.7123011

(orderNorm_obj <- orderNorm(x))

#> orderNorm Transformation with 250 nonmissing obs and no ties
#> - Original quantiles:
#> 0% 25% 50% 75% 100%
#> 0.001 0.268 0.721 1.299 4.161

All normalization techniques in bestNormalize have their own class with convenient S3 methods
and documentation. For instance, we can use the predict method to perform the transformation
on new values using the objects we have just created, visualizing them in a plot:

xx <- seq(min(x), max(x), length = 100)
plot(xx, predict(arcsinh_obj, newdata = xx), type = "l", col = 1)
lines(xx, predict(boxcox_obj, newdata = xx), col = 2)
lines(xx, predict(yeojohnson_obj, newdata = xx), col = 3)
lines(xx, predict(orderNorm_obj, newdata = xx), col = 4)
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Figure 5: Manually plotting transformations trained on simulated right-skewed data.

In-sample normalization efficacy

To examine how each of the normalization methods performed (in-sample), we can visualize the
transformed values in histograms (Figure 6), which plot the transformed data, x.t, stored in the
transformation objects we created previously.
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Figure 6: Normalized values for trained transformations on simulated right-skewed data.

Evidently, ORQ normalization appears to have worked perfectly to normalize the data (as
expected), and the Box-Cox method seemed to do quite well too.

Out-of-sample normalization efficacy

The bestNormalize function performs repeated (r=5) 10-fold cross-validation (CV) by default and
stores the estimated normality statistic for each left-out fold/repeat into oos_preds. Users can
access and visualize these results via a boxplot (see below), which may give some insight into whether
the transformation is truly preferred by the normality statistic or if another (possibly simpler)
transformation can be applied that would achieve the approximately the same results. In this
example, Box-Cox, square-root, Yeo-Johnson, and ORQ seem to do similarly well, whereas the
identity transform2, hyperbolic arc-sine, logging, and exponentiation are performing worse.

boxplot(BNobject$oos_preds, log = 'y')
abline(h = 1, col = "green3")

arcsinh_x boxcox center_scale exp_x log_x orderNorm sqrt_x yeojohnson
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Figure 7: Cross-validation results for each normalization method, where our estimated normality
statistic is plotted on the y-axis.

2Since standardize=TRUE, the identity transformation is represented in Figure 7 by center_scale, which
yields the exact same normality statistic.
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Leave-one-out CV can be optionally performed in bestNormalize via the loo argument, which,
if set to TRUE, will compute the leave-one-out CV transformations for each observation and method.
Specifically, bestNormalize will be run n separate times where each observation is individually left
out of the fitting process and subsequently plugged back in to get a “leave-one-out transformed value”.
Instead of taking the mean across repeats and folds, in this case, we estimate normalization efficacy
using the full distribution of leave-one-out transformed values. This option is computationally
intensive. Note that as with the “in-sample” normality statistics, the leave-one-out CV approach
tends to select the ORQ transformation since ORQ’s performance improves as the number of points
in the training set relative to the testing set increases.

bestNormalize(x, loo = TRUE)

#> Best Normalizing transformation with 250 Observations
#> Estimated Normality Statistics (Pearson P / df, lower => more normal):
#> - arcsinh(x): 4.42
#> - Box-Cox: 0.7055
#> - Center+scale: 8.258
#> - Exp(x): 62.085
#> - Log_b(x+a): 3.546
#> - orderNorm (ORQ): 0.012
#> - sqrt(x + a): 0.9145
#> - Yeo-Johnson: 1.608
#> Estimation method: Out-of-sample via leave-one-out CV
#>
#> Based off these, bestNormalize chose:
#> orderNorm Transformation with 250 nonmissing obs and no ties
#> - Original quantiles:
#> 0% 25% 50% 75% 100%
#> 0.001 0.268 0.721 1.299 4.161

5 Important features

Improving speed of estimation

Because bestNormalize uses repeated CV by default to estimate the out-of-sample normalization
efficacy, it can be quite slow for larger objects. There are several means of speeding up the process.
Each comes with some pros and cons. The first option is to specify out_of_sample = FALSE. This
will highly speed up the process. However, for reasons previously discussed, ORQ normalization
will always be chosen unless allow_orderNorm = FALSE. Therefore, a user might as well use the
orderNorm function directly as opposed to only setting out_of_sample = FALSE since the end result
will be the same (and orderNorm will run much faster). Note below that the in-sample normality
results may differ slightly from the leave-one-out even when this may be unexpected (i.e., for the log
transformation); this is due to slight differences in the standardization statistics.

bestNormalize(x, allow_orderNorm = FALSE, out_of_sample = FALSE)

#> Best Normalizing transformation with 250 Observations
#> Estimated Normality Statistics (Pearson P / df, lower => more normal):
#> - arcsinh(x): 4.401
#> - Box-Cox: 0.7435
#> - Center+scale: 8.087
#> - Exp(x): 64.6975
#> - Log_b(x+a): 3.47
#> - sqrt(x + a): 0.9145
#> - Yeo-Johnson: 1.7125
#> Estimation method: In-sample
#>
#> Based off these, bestNormalize chose:
#> Standardized Box Cox Transformation with 250 nonmissing obs.:
#> Estimated statistics:
#> - lambda = 0.3254863
#> - mean (before standardization) = -0.3659267
#> - sd (before standardization) = 0.9807881
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Another option to improve estimation efficiency is to use the built-in parallelization functionality.
The repeated CV process can be parallelized via the cluster argument and the parallel and doRNG
(Gaujoux, 2020) packages. A cluster can be set up with makeCluster and passed to bestNormalize
via the cluster = argument.

cl <- parallel::makeCluster(5)
b <- bestNormalize(x, cluster = cl, r = 10, quiet = TRUE)
parallel::stopCluster(cl)

The amount by which this parallelization will speed up the estimation of out-of-sample estimates
depends (for the most part) on the number of repeats, the number of cores, and the sample size of
the vector to be normalized. The plot below shows the estimation time for a run of bestNormalize
with 15 repeats of 10-fold CV on a gamma-distributed random variable with various sample sizes
and numbers of cores.

Figure 8: Potential speedup using parallelization functionality.

Implementation with caret, recipes

The step_best_normalize and the step_orderNorm functions can be utilized in conjunction with
the recipes package to preprocess data in machine learning workflows with tidymodels (Kuhn and
Wickham, 2020) or in combination with caret. The basic usage within recipes is shown below; for
implementation with caret, refer to this paper’s application.

rec <- recipe( ~ ., data = iris) %>% # Initialize recipe
step_best_normalize(all_predictors(), -all_nominal()) %>% # Transform predictors
prep(iris) %>% # Prep (train) recipe
bake(iris) # Bake (apply) recipe

Options can be supplied to step_best_normalize to speed up or alter performance via the
transform_options argument, which passes a list of options to bestNormalize.
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Additional customization

Two important means of customization are available: 1) users may add custom transformation
functions to be assessed alongside the default suite of normalization methods, and 2) users may
change the statistic used “under the hood” by bestNormalize to estimate the departure from
normality of the transformed data. This section contains examples and guidance for both extensions.

1) Adding user-defined functions

Via the new_transforms argument, users can use bestNormalize’s machinery to compare custom,
user-defined transformation functions to those included in the package. Below, I consider an
example where a user may wish to compare the cube-root function with those provided in the
package. bestNormalize requires two functions to implement this: the transformation function and
an associated predict method. The custom cube-root transformation shown below is simple, but
its skeleton can readily be made arbitrarily more complex.

## Define custom function
cuberoot_x <- function(x, ...) {

x.t <- (x)^(1/3)

# Get in-sample normality statistic results
ptest <- nortest::pearson.test(x.t)

val <- list(
x.t = x.t,
x = x,
n = length(x.t) - sum(is.na(x)),
norm_stat = unname(ptest$statistic / ptest$df)

)

# Assign class, return
class(val) <- c('cuberoot_x')
val

}

# S3 method that is used to apply the transformation to newly observed data
predict.cuberoot_x <- function(object, newdata = NULL, inverse = FALSE, ...) {

# If no data supplied and not inverse
if (is.null(newdata) & !inverse)

newdata <- object$x

# If no data supplied and inverse transformation is requested
if (is.null(newdata) & inverse)

newdata <- object$x.t

# Perform inverse transformation
if (inverse) {

# Reverse-cube-root (cube)
val <- newdata^3

# Otherwise, perform transformation as estimated
} else if (!inverse) {

val <- (newdata)^(1/3)
}

# Return transformed data
unname(val)

}

## Optional: print S3 method
print.cuberoot_x <- function(x, ...) {

cat('cuberoot(x) Transformation with', x$n, 'nonmissing obs.\n')
}
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These functions can then be passed as a named list to bestNormalize:

custom_transform <- list(
cuberoot_x = cuberoot_x,
predict.cuberoot_x = predict.cuberoot_x,
print.cuberoot_x = print.cuberoot_x

)

set.seed(123129)
x <- rgamma(100, 1, 1)
(b <- bestNormalize(x = x, new_transforms = custom_transform))

#> Best Normalizing transformation with 100 Observations
#> Estimated Normality Statistics (Pearson P / df, lower => more normal):
#> - arcsinh(x): 1.2347
#> - Box-Cox: 1.0267
#> - Center+scale: 2.0027
#> - cuberoot_x: 0.9787
#> - Exp(x): 4.7947
#> - Log_b(x+a): 1.3547
#> - orderNorm (ORQ): 1.1627
#> - sqrt(x + a): 1.0907
#> - Yeo-Johnson: 1.0987
#> Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
#>
#> Based off these, bestNormalize chose:
#> cuberoot(x) Transformation with 100 nonmissing obs.

Evidently, the cube-root was the best normalizing transformation for this gamma-distributed
random variable, performing comparably to the Box-Cox transformation.

2) Re-defining normality

The question “what is normal?” outside of a statistical discussion is quite loaded and subjective.
Even in statistical discussions, many authors have contributed to the question of how to best detect
departures from normality; these solutions are diverse, and several have been implemented well
in nortest already. In order to accommodate those with varying opinions on the best definition of
normality, we have included a feature that allows users to specify a custom definition of a normality
statistic. This customization can be accomplished via the norm_stat_fn argument, which takes
a function that will then be applied in lieu of the Pearson test statistic divided by its degree of
freedom to assess normality.

The user-defined function must take an argument x, which indicates the data on which a user
wants to evaluate the statistic.

Here is an example using the Lilliefors (Kolmogorov-Smirnov) normality test statistic:

bestNormalize(x, norm_stat_fn = function(x) nortest::lillie.test(x)$stat)

#> Best Normalizing transformation with 100 Observations
#> Estimated Normality Statistics (using custom normalization statistic)
#> - arcsinh(x): 0.1958
#> - Box-Cox: 0.1785
#> - Center+scale: 0.2219
#> - Exp(x): 0.3299
#> - Log_b(x+a): 0.1959
#> - orderNorm (ORQ): 0.186
#> - sqrt(x + a): 0.1829
#> - Yeo-Johnson: 0.1872
#> Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
#>
#> Based off these, bestNormalize chose:
#> Standardized Box Cox Transformation with 100 nonmissing obs.:
#> Estimated statistics:
#> - lambda = 0.3281193
#> - mean (before standardization) = -0.1263882
#> - sd (before standardization) = 0.9913552
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Here is an example using the Lillifors (Kolmogorov-Smirnov) normality test’s p-value:

(dont_do_this <- bestNormalize(x, norm_stat_fn = function(x) nortest::lillie.test(x)$p))

#> Best Normalizing transformation with 100 Observations
#> Estimated Normality Statistics (using custom normalization statistic)
#> - arcsinh(x): 0.4327
#> - Box-Cox: 0.4831
#> - Center+scale: 0.2958
#> - Exp(x): 0.0675
#> - Log_b(x+a): 0.3589
#> - orderNorm (ORQ): 0.4492
#> - sqrt(x + a): 0.4899
#> - Yeo-Johnson: 0.4531
#> Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
#>
#> Based off these, bestNormalize chose:
#> Standardized exp(x) Transformation with 100 nonmissing obs.:
#> Relevant statistics:
#> - mean (before standardization) = 6.885396
#> - sd (before standardization) = 13.66084

Note: bestNormalize will attempt to minimize this statistic by default, which is definitely not
what you want to do when calculating the p-value. This is seen in the example above, where the
worst normalization transformation, exponentiation, is chosen. In this case, a user is advised to
either manually select the best one or reverse their defined normalization statistic (in this case by
subtracting it from 1):

best_transform <- names(which.max(dont_do_this$norm_stats))
do_this <- dont_do_this$other_transforms[[best_transform]]
or_this <- bestNormalize(x, norm_stat_fn = function(x) 1-nortest::lillie.test(x)$p)

A p-value for normality should not be routinely used as the sole selector of a normalizing
transformation. A normality test’s p-value, as a measure of the departure from normality, is
confounded by the sample size (a high sample size may yield strong evidence of a practically
insignificant departure from normality). Therefore, we suggest the statistic used should estimate the
departure from normality rather the strength of evidence against normality (e.g., Royston, 1991).

6 Application to Autotrader data

Background

The autotrader data set was scraped from the autotrader website as part of this package (and
because at the time of data collection in 2017, the package author needed to purchase a car). We
apply the bestNormalize functionality to de-skew mileage, age, and price in a pricing model. See
?autotrader for more information on this data set.

data("autotrader")
autotrader$yearsold <- 2017 - autotrader$Year
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Table 1: Sample characteristics of ‘autotrader‘ data.

Overall (N=6,283)

Make
- Acura 185 (2.9%)
- Buick 252 (4.0%)
- Chevrolet 1,257 (20.0%)
- GMC 492 (7.8%)
- Honda 1,029 (16.4%)
- Hyundai 381 (6.1%)
- Mazda 272 (4.3%)
- Nissan 735 (11.7%)
- Pontiac 63 (1.0%)
- Toyota 1,202 (19.1%)
- Volkswagen 415 (6.6%)
Price ($)
- Mean (SD) 17,145 (8,346)
- Range 722 - 64,998
Mileage
- Mean (SD) 63,638 (49,125)
- Range 2 - 325,556
Year
- Mean (SD) 2011.9 (3.5)
- Range 2000.0 - 2016.0
Age (years old)
- Mean (SD) 5.1 (3.5)
- Range 1.0 - 17.0

Transform-both-sides regression

Transform-both-sides (TBS) regression has several benefits that have been explored thoroughly
elsewhere (see Harrell (2015) for an overview). Importantly, TBS regression can often (though not
always) yield models that better satisfy assumptions of linear regression and mitigate the influence
of outliers/skew. This approach has been shown to be useful in shrinking the size of prediction
intervals while maintaining closer to nominal coverage in this data set (Peterson and Cavanaugh,
2019).

First, we will normalize the outcome (price).

(priceBN <- bestNormalize(autotrader$price))

#> Best Normalizing transformation with 6283 Observations
#> Estimated Normality Statistics (Pearson P / df, lower => more normal):
#> - arcsinh(x): 3.8573
#> - Box-Cox: 2.2291
#> - Center+scale: 3.5532
#> - Log_b(x+a): 3.8573
#> - orderNorm (ORQ): 1.1384
#> - sqrt(x + a): 2.1977
#> - Yeo-Johnson: 2.2291
#> Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
#>
#> Based off these, bestNormalize chose:
#> orderNorm Transformation with 6283 nonmissing obs and ties
#> - 2465 unique values
#> - Original quantiles:
#> 0% 25% 50% 75% 100%
#> 722 11499 15998 21497 64998

We can see that the estimated normality statistic for the ORQ transformation is close to 1, so
we know it is performing quite well despite the ties in the data. It is also performing considerably
better than all of the other transformations.
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(mileageBN <- bestNormalize(autotrader$mileage))

#> Best Normalizing transformation with 6283 Observations
#> Estimated Normality Statistics (Pearson P / df, lower => more normal):
#> - arcsinh(x): 3.4332
#> - Box-Cox: 3.0903
#> - Center+scale: 14.7488
#> - Log_b(x+a): 3.4354
#> - orderNorm (ORQ): 1.1514
#> - sqrt(x + a): 5.1041
#> - Yeo-Johnson: 3.0891
#> Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
#>
#> Based off these, bestNormalize chose:
#> orderNorm Transformation with 6283 nonmissing obs and ties
#> - 6077 unique values
#> - Original quantiles:
#> 0% 25% 50% 75% 100%
#> 2 29099 44800 88950 325556

Similarly, the ORQ normalization performed best for mileage.

(yearsoldBN <- bestNormalize(autotrader$yearsold))

#> Best Normalizing transformation with 6283 Observations
#> Estimated Normality Statistics (Pearson P / df, lower => more normal):
#> - arcsinh(x): 83.2706
#> - Box-Cox: 83.2909
#> - Center+scale: 83.4324
#> - Exp(x): 574.3318
#> - Log_b(x+a): 83.0756
#> - orderNorm (ORQ): 81.3615
#> - sqrt(x + a): 83.4373
#> - Yeo-Johnson: 84.0028
#> Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
#>
#> Based off these, bestNormalize chose:
#> orderNorm Transformation with 6283 nonmissing obs and ties
#> - 17 unique values
#> - Original quantiles:
#> 0% 25% 50% 75% 100%
#> 1 3 4 7 17

For age, we see something peculiar; none of the normalizing transformations performed well
according to the normality statistics. By plotting the data, it becomes evident that the frequency of
ties in age makes it very difficult to find a normalizing transformation (see figure below). Even so,
orderNorm is chosen as it has the lowest estimated P /DF statistic.

0 20000 40000 60000

0e
+0

0
4e

−0
5

Price

−4 −2 0 2 4

0.
0

0.
2

0.
4

Price (transformed)

0 100000 250000

0.
0e

+0
0

1.
5e

−0
5

Mileage

−4 −2 0 2 4

0.
0

0.
2

0.
4

Mileage (transformed)

5 10 15

0.
0

0.
2

0.
4

0.
6

Age

−2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

Age (transformed)

Figure 9: Distributions of car variables before and after normalization.
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Next, we will fit a linear model on the transformed values of each variable for our TBS regression.
The reverse-transformation functions will allow us to visualize how these variables affect model
predictions in terms of their original units.

p.t <- priceBN$x.t; m.t <- mileageBN$x.t; yo.t <- yearsoldBN$x.t
fit <- lm(p.t ~ m.t + yo.t)

Table 2: TBS regression results for autotrader data.

Variable Estimate Std. Error t value Pr(>|t|)

Intercept 0.005 0.010 0.553 0.58
g(Mileage) -0.234 0.016 -14.966 < 0.001
g(Age) -0.441 0.016 -27.134 < 0.001

Unsurprisingly, we find that there are very significant relationships between transformed car price,
mileage, and age. However, to interpret these values, we must resort to visualizations since there is no
inherent meaning of a “one-unit increase” in the ORQ normalized measurements. We utilize the visreg
package (Breheny and Burchett, 2017) to perform our visualizations, using predict.bestNormalize
in conjunction with visreg’s trans and xtrans options to view the relationship in terms of the
original unit for the response and covariate respectively (formatting omitted).3 For the sake of
illustration, we have also plotted the estimated effect of a generalized additive (spline) model fit
with mgcv (Wood, 2011).

visreg(fit, "m.t")
visreg(fit, "m.t",

partial = TRUE,
trans = function(price.t)

predict(priceBN, newdata = price.t, inverse = TRUE)/1000,
xtrans = function(mileage.t)

predict(mileageBN, newdata = mileage.t, inverse = TRUE)
)
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Figure 10: TBS regression visualized on transformed units (left) and original units (right).

Below, we visualize the age effect, demonstrating how one might visualize the effect outside of
visreg (plot formatting is omitted).

3Alternatively, one can use scales (Wickham and Seidel, 2020) and ggplot2 (Wickham, 2016) to visualize
any transformation fit using bestNormalize; instructions are included in the package vignette.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=visreg
https://CRAN.R-project.org/package=mgcv
https://CRAN.R-project.org/package=scales
https://CRAN.R-project.org/package=ggplot2


Contributed research article 310

# Set up data for plotting line
new_yo <- seq(min(autotrader$yearsold), max(autotrader$yearsold), len = 100)
newX <- data.frame(yearsold = new_yo, mileage = median(autotrader$mileage))
newXt <- data.frame(yo.t = predict(yearsoldBN, newX$yearsold),

m.t = predict(mileageBN, newX$mileage))

line_vals_t <- predict(fit, newdata = newXt) # Calculate line (transformed)
line_vals <- predict(priceBN, newdata = line_vals_t, inverse = TRUE)
plot(autotrader$yearsold, autotrader$price)
lines(new_yo, line_vals)
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Figure 11: Age effect on car price (re-transformed to original unit).

Implementation with recipes

To build a predictive model for the price variable that uses each vehicle’s model and make in addition
to its mileage and age, we can utilize the caret and recipes functionality to do so. This section
outlines how to use bestNormalize in conjunction with these other popular ML packages. Price is
logged instead of ORQ transformed in order to facilitate the interpretation of measures for prediction
accuracy.

library(tidymodels)
library(caret)
library(recipes)

set.seed(321)
df_split <- initial_split(autotrader, prop = .9)
df_train <- training(df_split)
df_test <- testing(df_split)

rec <- recipe(price ~ Make + model + mileage + status + Year, df_train) %>%
step_mutate(years_old = 2017 - Year) %>%
step_rm(Year) %>%
step_log(price) %>%
step_best_normalize(all_predictors(), -all_nominal()) %>%
step_other(all_nominal(), threshold = 10) %>%
step_dummy(all_nominal()) %>%
prep()

fit1 <- train(price ~ ., bake(rec, NULL), method = 'glmnet')
fit2 <- train(price ~ ., bake(rec, NULL), method = 'earth')
fit3 <- train(price ~ ., bake(rec, NULL), method = 'rf')

r <- resamples(fits <- list(glmnet = fit1, earth = fit2, rf = fit3))
summary(r) # Extra-sample CV results
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Table 3: CV prediction accuracy of various ML methods.

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

MAE
glmnet 0.181 0.184 0.186 0.189 0.194 0.198 0
earth 0.147 0.151 0.154 0.155 0.158 0.163 0
rf 0.136 0.141 0.143 0.144 0.147 0.157 0

RMSE
glmnet 0.242 0.247 0.252 0.256 0.264 0.276 0
earth 0.203 0.209 0.214 0.217 0.226 0.235 0
rf 0.193 0.208 0.213 0.210 0.215 0.217 0

RSQ
glmnet 0.767 0.772 0.785 0.782 0.789 0.801 0
earth 0.807 0.833 0.845 0.842 0.855 0.864 0
rf 0.835 0.845 0.855 0.854 0.860 0.873 0

Evidently, the random forest generally performed better in cross-validated prediction metrics,
achieving a higher R-squared (RSQ), lower root-mean-squared error (RMSE), and lower mean
absolute error (MAE). Since price was logged, RMSE and MAE are on the log scale. For the test set,
we calculate these quantities in price’s original unit (2017 US dollars) using the yardstick package
(Kuhn and Vaughan, 2020).

# Out of sample prediction accuracy
results <- lapply(fits, function(x) {

p <- c(predict(x, newdata = bake(rec, df_test)))
yardstick::metrics(data.frame(est = exp(p), truth = df_test$price),

truth = truth, estimate = est)
})
results

Table 4: Test data prediction accuracy of various ML methods. RMSE and MAE can be interpreted
in terms of 2017 US dollars.

Method RMSE RSQ MAE

glmnet 4076 0.772 2847
earth 3619 0.814 2500
rf 3257 0.853 2294

After normalization of mileage and age, a random forest had the optimal predictive performance
on car price given a car’s make, model, age, and mileage compared to other ML models, achieving
out-of-sample R-squared 0.853 on a left-out test data set. We conjecture that the random forest
performs best because it can better capture differential depreciation by make and model than the
other methods.

7 Discussion

We have shown how the bestNormalize package can effectively and efficiently find the best normalizing
transformation for a vector or set of vectors. However, normalization is by no means something
that should be applied universally and without motivation. In situations where units have meaning,
normalizing prior to analysis can contaminate the relationships suspected in the data and/or reduce
predictive accuracy. Further, depending on the type of transformations used, interpreting regression
coefficients post-transformation can be difficult or impossible without using a figure since the
transformation function itself will look completely different for different distributions. So, while
normalization transformations may well be able to increase the robustness of results and mitigate
violations to the classical linear regression assumption of Gaussian residuals, it is by no means a
universal solution.

On the other hand, when hypotheses are exploratory or when data is of poor quality with
high amounts of skew/outliers, normalization can be an effective means of mitigating downstream
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issues this can cause in the analyses. For example, in machine learning contexts, some predictor
manipulations rely on second-order statistics (e.g., principal components analysis or partial least
squares), for which the variance calculation can be sensitive to skew and outliers. Normalizing
transformations can improve the quality and stability of these calculations. Similarly, predictor
normalization reduces the tendency for high-leverage points to have their leverage propagated into
engineered features such as interactions or polynomials. Ultimately, these benefits can often produce
predictive models that are more robust and stable.

We focused on making this package useful in a variety of machine learning workflows. We are
enthusiastic in our support of bestNormalize, and will continue to maintain the package while it
is found to be useful by R users. We hope to continue to build up the repertoire of candidate
transformations using the same infrastructure so that additional ones can be considered by default
in the future.
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Package wsbackfit for Smooth
Backfitting Estimation of Generalized
Structured Models
by Javier Roca-Pardiñas, María Xosé Rodríguez-Álvarez and Stefan Sperlich

Abstract A package is introduced that provides the weighted smooth backfitting estimator for
a large family of popular semiparametric regression models. This family is known as generalized
structured models, comprising, for example, generalized varying coefficient model, generalized
additive models, mixtures, potentially including parametric parts. The kernel-based weighted
smooth backfitting belongs to the statistically most efficient procedures for this model class. Its
asymptotic properties are well-understood thanks to the large body of literature about this estimator.
The introduced weights allow for the inclusion of sampling weights, trimming, and efficient estimation
under heteroscedasticity. Further options facilitate easy handling of aggregated data, prediction,
and the presentation of estimation results. Cross-validation methods are provided which can be used
for model and bandwidth selection.1

1 Introduction and brief review

The classes of generalized structured models (GSM) of Mammen and Nielsen (2003), structured
additive regression models (Brezger et al., 2005), and semiparametric separable models (Rodríguez-
Poó et al., 2003) are all devoted to harmonizing the fundamental aspects of flexibility, dimensionality
and interpretability (c.f. also Stone, 1986) for multidimensional regression. In some cases, the
particular structure is derived from pure theory, sometimes from empirical knowledge, or it is chosen
data-adaptively. The epithet ‘structured’ underlines the explicit modeling of the structure of a
regression in order to distinguish it from fully automatic black-box regression or prediction. Mammen
and Nielsen (2003) define for response Y with covariate vectors (Z, X, T, U) the GSM class by

Λ(Y ) = G {Z, β, g(X)} + S {T, δ, s(U)} ϵ = G {Z, β, g(X)} + ε , (1)

with Λ, G, S parametric known functions, β, δ unknown finite-dimensional parameter, g(·), s(·)
unknown nonparametric functions, and ϵ, ε fulfilling E[ϵ|Z, X] = E[ε|Z, X] = 0. While Λ is a
transformation with potentially unknown parts which can be estimated along Linton et al. (2008),
G and S are link functions that also determine further structures. For instance, for a partial linear
varying coefficient model (Park et al., 2015) with Z = (Z1, · · · , Zd, Zκ), X = (X1, ·, Xd), where Z1
to Zd and X1 to Xd are scalars, and Zκ a vector of the length of β, function G defines

G {Z, β, g(X)} = G {η(Z, β, g(X))} = G

g0 +

d∑
j=1

gj(Xj)Zj + Zt
κβ

 , (2)

with index η and a known link function G. You may also allow that some, or all of the Xj ,
j = 1, . . . , d are identical; the same holds for the Zj , etc. Moreover, by setting Zj ≡ 1 ∀j with all
Xj being different, you obtain the generalized additive model (GAM). A detailed discussion on
identifiability is provided in Lee et al. (2012).

Since Hastie and Tibshirani (1990) introduced their backfitting algorithm, additive models have
become quite popular in statistics, particularly in biometrics, technometrics, and environmetrics.
Opsomer and Ruppert (1997) and Opsomer (2000) derived asymptotic theory for that classical
backfitting estimator with kernel smoothing. Mammen et al. (1999) developed asymptotic theory for
a modified version, the smooth backfitting (SB) estimator, under weaker assumptions on the data
like the allowance for strong correlation of the covariates. Mammen and Nielsen (2003) extended this
method to the general GSM class (1), and Roca-Pardiñas and Sperlich (2010) proposed a common
algorithm for it. Many extensions have been developed, procedures for bandwidth selection (e.g.,
Mammen and Park, 2005), quantile regression (Lee et al., 2010), and further asymptotic theory for
particular cases (see e.g., Yu et al., 2008, for GAM). Most recent contributions extend SB to additive

1The second author acknowledges the support received by the Basque Government through the BERC
2018-2021 program and Elkartek project 3KIA (KK-2020/00049), by the Spanish Ministry of Science,
Innovation and Universities through BCAM Severo Ochoa accreditation SEV-2017-0718 and through project
MTM2017-82379-R funded by (AEI/FEDER, UE). The third author acknowledges financial support from
the Swiss National Science Foundation, project 200021-192345.
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inverse regression (Bissantz et al., 2016), proportional hazards (Hiabu et al., 2020), or regression
with error-in-variables (Han and Park, 2018). All SB procedures and their theory are kernel-based.

The main advantage of SB is, apart from its excellent numerical performance proven by Nielsen
and Sperlich (2005) and Roca-Pardiñas and Sperlich (2010), compared to the classical backfitting,
that there exists a comprehensive literature that studies its statistical behavior and underlying
assumptions. It provides the exact and complete asymptotic theory of SB, such that today this
estimator is well understood. The only drawback has been that so far, there hardly existed an
easily available software for this estimator, except the R-package sBF of Arcagni and Bagnato
(2014) for the basic additive model. But due to its complexity, practitioners typically abstain
from implementing it themselves. Therefore, the wsbackfit R-package has been developed which
provides the weighted SB for all models listed in the next section, including a data-driven bandwidth
selector. The package is freely available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=wsbackfit (R Core Team, 2016). Thus, this package closes
the gap between the huge body of existing and still increasing literature about SB on the one side,
and its potential use on the other, providing the necessary software. We hope it is soon extended by
procedures for the various, partly above cited, extensions.

It is to be mentioned that there certainly exist R packages for alternative methods to estimate
related models. Before briefly discussing some of the most advanced packages, let us mention the
reviews of Binder and Tutz (2008), which reviewed spline-based methods, and Fahrmeier et al. (2004)
which reviewed (spline-based) Bayesian methods.

Maybe the broadest set of models can be handled by the package BayesX (Umlauf et al., 2019).
It embraces several well-known regression models such as GAM, generalized additive mixed models
(GAMM), generalized geo-additive mixed models (GGAMM), dynamic models, varying coefficient
models (VCM), and geographically weighted regression. Besides exponential family regression,
BayesX also supports non-standard regression situations such as regression for categorical responses,
hazard regression for continuous survival times, and continuous-time multi-state models; see also
its support platform http://www.uni-goettingen.de/de/bayesx. It has been created by Brezger
et al. (2005) and Kneib et al. (2008).

The R package gam (Hastie, 2019) presents considerable enhancements of the S-PLUS version
going back to Hastie and Tibshirani (1990). It uses classical backfitting to combine different
smoothing or fitting methods, particularly local regression and smoothing splines. Another powerful
package is mgcv (Wood, 2017), which allows the fitting of generalized additive (mixed) models,
with smoothing parameter estimation done by (restricted) marginal likelihood or generalized cross-
validation, and uses iterated nested Laplace approximation for fully Bayesian inference. Another
powerful and well-functioning package is GAMLSS of Stasinopoulos and Rigby (2007). It is based on
penalized likelihood estimation combined with classical backfitting. While mgcv models the index
function, GAMLSS models the location, scale, and shape functions by additive linear mixed models.
It has been created to tackle many interesting distributions of Y . When speaking of likelihood
based approaches, one should also mention a method introduced by Tutz and Binder (2006). Their
R-package GAMBoost can be used to fit a GAM by likelihood based boosting, suited for a large
number of predictors.

Regarding kernel-based methods that consider related or specific cases of (1), there are, for
example, marginal integration (Linton and Nielsen, 1995) for additive interaction models (Sperlich
et al., 2002), and local polynomials for smooth varying coefficients (Li and Racine, 2010). The
latter is implemented in the np package (Hayfield and Racine, 2008), and turned out to be very
competitive when compared to the before-mentioned spline-based packages (Sperlich and Theler,
2015).

2 The models that can be estimated by wsbackfit

The aim is to estimate a GSM as introduced in (1). In the moment of estimation, one has to
be specific about Λ, G, and S. We concentrate on the popular cases, in particular on those that
maintain additivity or a similar separability structure. This way, the estimates provide an easy
interpretation, and overcome the curse of dimensionality, which else is inherited by more complex
models. To the best of our knowledge, all existing smooth backfitting methods follow the suggestion
of Mammen and Nielsen (2003) to estimate the mean and variance part subsequently, say, first
G{· · · }, then S{· · · }. Our implementation follows the suggestion of Roca-Pardiñas and Sperlich
(2010) to allow for a (re-)estimation of the mean part (G{· · · }) including weights obtained from
the estimation of the variance part (S{· · · }) to potentially increase the efficiency. Note, however,
that in nonparametrics, it is often not clear to what extent an efficiency gain can be achieved this
way; see for example the discussion in Xiao et al. (2003). All proposed methods we are aware of,
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are two- or three-step procedures similar to what we propose here. The estimation of the variance
part is performed in the second step by regressing the squared residuals on (T, U), using the same
procedure as for G{· · · }. Therefore it is sufficient to concentrate in the following on the mean
regression, which can equally well be applied to squared residuals for estimating S{· · · }.

As said, the SB idea for GSM, together with some general results about its asymptotic behavior,
was introduced by Mammen and Nielsen (2003); specific algorithms and their implementation were
introduced and studied in Roca-Pardiñas and Sperlich (2010). Detailed information about the
implementation is given in a technical report (Roca-Pardiñas and Sperlich, 2008). The implemented
algorithms in wsbackfit are modified versions to speed up the procedure by binning techniques and
a combination of parametric linear with local constant kernel regression; see below. The models
considered in this package are semiparametric in the sense that they contain parametric as well
as nonparametric components. Most of them could be seen as extensions of a generalized linear
model (GLM) of type G(Z, β, g(X)) = G

(
η(Z, β, g(X))

)
= G(g0 + αtX + βtZ), see for example

McCullagh and Nelder (1989). So far, this package does not tackle random effects.
Regarding the choice of G, you have first to decide about the link G. For each conditional

distribution, there exists a canonical one: for the conditional Gaussian distribution, this is the
identity. For a binary response, it is the Logit (1 + 1/exp(•))−1, and for a conditional Poisson it is
exp(•). Note that the latter can also be used for Pseudo-Poisson estimation. The choice of G is
certainly linked to the specification of Λ which is supposed to be known. Then, such transformation
of Y can be performed a priori by the practitioner. Therefore, we henceforth suppress Λ, to simplify
our notation. For Λ entailing unknown parameters, consult Linton et al. (2008).

Roca-Pardiñas and Sperlich (2010) showed that the estimation procedure for all these models
can be summarized in one common feasible minimization problem, namely

minimize

∫ n∑
i=1

[
Ỹi − η{Zi, β, g(x)}

]2
Wi · Kh(x − Xi) dx , (3)

where Ỹi is the transformed (e.g. by Λ) or linearized (in local scoring if the link is not the identity)
response Yi, and Wi is a weight. For example, in the generalized additive model with β = 0 we
have covariates Zj ≡ 1 for j = 1, . . . , d, Wi contains the local scoring weights with Ỹi being the
accordingly adjusted dependent variable. Further, Kh(v) = h−1K(v/h) with K(·) is the kernel
function. It is well known that asymptotically, the choice of smoothing kernel does not have an
important impact, as to a large part the kernel effect is compensated by an adequate bandwidth
choice. We allow the user to choose between the Epanechnikov kernel which is asymptotically
the most efficient one, and the Gaussian kernel which is popular as it helps to avoid some of the
numerical problems that may arise in areas where data are sparse.

We call our procedure ‘weighted smooth backfitting’ to emphasize that the user has the option
to include a vector of additional weights. As said, by putting the usual kernel weights apart, part
of the weighting comes from local scoring in order to account for the link function G.2 However,
independently from the link function, the practitioner might also want to include sampling weights,
e.g., when using administrative data, or trimming weights, e.g., for excluding boundary points. A
particular case is when additional weights are included to improve the efficiency of your estimators,
e.g., to account for the (co-)variance structure. Roca-Pardiñas and Sperlich (2010) estimated in a
first step the mean function, afterward the variance from the squared residuals, and used these in
the third step as additional weights when re-estimating the conditional mean. The resulting average
mean squared error was substantially smaller than the one of the original estimator, which ignored
the (co-)variance structure; recall our discussion at the beginning of this section.

The models that package wsbackfit can presently estimate are: a partial linear GAM, a generalized
partial linear varying coefficient model (GVCM), and combinations of them. The first one is a
generalization of a GLM by replacing some linear components with additive nonparametric functions,

E [Y |X, Z] = G

(
g0 +

∑d

j=1
gj (Xj) + βtZ

)
,

where X1 to Xd are scalars, and Z is the vector of all covariates that are supposed to enter the index
function η linearly. The gj are nonparametric functions.3 It is actually true that this is a special
case of the partial linear GVCM of the form (2), obtained by setting Z1 = Z2 = · · · = Zd = 1. We
list them nonetheless separately because, besides the slightly different implementation, we want the
reader to recognize the difference in the modeling approach. First, the GVCM is a generalization of

2Yu et al. (2008) propose a somewhat different algorithm for GAMs replacing local scoring by an alternative
that makes asymptotic theory simpler.

3For identification we follow Lee et al. (2012), and Roca-Pardiñas and Sperlich (2010) for implementation
with modifications like the inclusion of a parametric linear slope for each gj , see below.
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a GLM in Z, as could be seen in (2). And second, here we allow for all the flexibility suggested by
Lee et al. (2012) regarding the alterations of covariates Xj and Zj . For example, all X1, . . . , Xd1
with d1 ≤ d could be the same scalar variable X1 such that∑d1

j=1
gj (Xj)Zj =

∑d1

j=1

{
gj0 + gj1 (X1)

}
Zj , (4)

with gj0 unknown constants and gj1 unknown nonparametric functions; or, alternatively, all
Z1, . . . , Zd1 with d1 ≤ d could be the same scalar variable Z1 such that (with g10 still a constant)∑d1

j=1
gj (Xj)Zj =

{
g10 +

∑d1

j=1
gj1 (Xj)

}
Z1 . (5)

Certainly, you can have a mixture of both, as long as the identification conditions of Lee et al.
(2012) are fulfilled to guarantee that the model does not suffer from concurvity. This includes the
possibility that some variables appear in both sets, X and Z. This could be of particular interest
when defining different types of interactions.

Finally, one can include all together, i.e., nonparametric additive terms, nonparametric varying
coefficients, and a parametric (linear) part like

E [Y |X, Z] = G

{
g0 +

∑d1

j=1
gj (Xj)Zj +

∑d

j=d1+1
gj (Xj) + βtZκ

}
, (6)

with X as before, Z = (Z1, . . . , Zd1 , Zκ) a set of scalar variables Z1, . . . , Zd1 , and a vector Zκ.
Again, some of the Xj may represent the same variable; the same holds for the Zj , j = 1, ..., d.

3 Cross-validation, bandwidths, and computational issues

Cross-validation (CV) can be used for model selection in general. However, for the sake of presentation
we describe here our implementation in the context of bandwidth selection.

Cross-validation for bandwidth

All nonparametric estimates of the gj(Xj) in (6) depend on some bandwidths h1, . . . , hd, which can
be preset by the user. Alternatively, the package provides the option to choose the bandwidths
data-adaptively via CV. Our implementation even allows for a mixture of both, i.e., users can fix
some bandwidths and choose the others by CV. Albeit we use binning techniques, performing CV
can render the program pretty slow, especially for high dimensions and huge data sets. Generally,
our implementation follows the ideas of Nielsen and Sperlich (2005) and Roca-Pardiñas and Sperlich
(2010). It is to be mentioned that several alternatives exist, in particular for the additive model. For
instance, Mammen and Park (2005) proposed bandwidths selectors based on penalized least squares
and plug-in approaches.

Given sample {Xi, Zi, Yi}n
i=1, bandwidths h1, . . . , hd can be selected by minimizing some CV

criterion in various ways. Allowing for limited dependent variables Y , the deviance is an appropriate
measure of discrepancy between observed and fitted values. It is derived as a likelihood ratio
test comparing the specified model with a so-called saturated one, when predicted values match
the observed responses exactly. More specifically, denoting the fitted mean response given by
µ̂i = Ê [Yi|Xi, Zi], the deviance is given by Dev =

∑n
i=1 Devi(Yi, µ̂i). The definition of the

individual deviance Devi depends on the link; namely

Devi(Yi, µ̂i)

Gaussian (Yi − µ̂i)
2

Binary −2 (Yi log µ̂i + (1 − Yi) log(1 − µ̂i))

Poisson Yi log Yi
µ̂i

− (Yi − µ̂i)

Generally spoken, unless bandwidths are fixed by the user, they can be selected as

(h1, . . . , hd) = arg min
(h•

1 ,...,h•
d
)

n∑
i=1

Devi

[
Yi, G

(
η̂
(−i)
Xi,Zi

)]
, (7)

with
η̂
(−i)
Xi,Zi

= ĝ
(−i)
0 +

∑d1

j=1
ĝ
(−i)
j (Xij)Zij +

∑d

j=d1+1
ĝ
(−i)
j (Xij) + β̂t(−i)Ziκ , (8)
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where ĝ
(−i)
j (Xij) indicates the fit at Xij leaving out the ith data point based on the smoothing

parameter h•
j . One option to solve the minimization in (7) is to use a complete bandwidth selection

that allows for all possible bandwidths combinations for the different covariates Xj . When the
number of covariates Xj is large, the computational cost becomes very high or even prohibitive.

In order to simplify the problem, we provide the following three options to the user:

1. the user just prefixes all bandwidths that shall be used as final bandwidths;
2. the user prefixes starting values for the bandwidths, say h̃j , and searches via CV for the

optimal bandwidth vector (h1, . . . , hd) with a common bandwidth factor ch ∈ R such that
(h1, . . . , hd) = ch(h̃1, . . . , h̃d);

3. the user only prefixes a bandwidth grid for a scalar hc such that (h1, . . . , hd) = hc(σ1, . . . , σd)
with σj being the standard deviation of Xj , and hc is chosen from the grid via CV.

The choice of prior h̃j typically follows some considerations of marginal distributions or marginal
smoothing. For example, you could first perform a CV bandwidth choice for each nonparametric gj

by setting all other gk ̸=j to zero, or by restricting them to be linear functions. The second method
follows the ideas of Han and Park (2018), and the third follows a standard recommendation in the
literature, see the review of Köhler et al. (2014). Combining options 1 and 3 is possible.

For the sake of presentation, we explain more details about the CV implementation only along
option 3; as for option 2, it works analogously. Moreover, suppose the user chooses all bandwidths
by option 3. As said, in option 3, hj = hcσj . While hc might be different for each j if hj is set
by the user or chosen by option 2, in option 3, it is the same for all j. That is, we reduce the
multidimensional search problem to a one-dimensional one. Specifically, if the user decides that all
bandwidths are to be chosen by CV, hc := hj/σj for all j, with

hc = arg min
h•

n∑
i=1

Devi

[
Yi, G

(
η̂
(−i)
Xi,Zi

)]
, (9)

where η
(−i)
Xi,Zi

indicates the fitted additive predictor at {Xi, Zi} (see (8)) leaving out the ith data
point, and based on the smoothing parameters h•σj , (j = 1, . . . , d).

Unfortunately, a naive implementation of the leave-one-out CV technique would still imply a
high computational cost as for each potential value of h•, it is necessary to repeat the estimation as
many times as we have data points. To speed up the process, the wsbackfit package uses k-fold CV
instead. In brief, k-fold CV consists of randomly splitting the available sample into k complementary
subsamples of (approximately) the same size such that each data point only belongs to one of the k
subsamples, say κ(i). Then, the k-fold CV version of (9) is

hc = arg min
h•

n∑
i=1

Devi

[
Yi, G

(
η̂
(−κ(i))
Xi,Zi

)]
, (10)

where η
(−κ(i))
Xi,Zi

indicates the fitted additive predictor at {Xi, Zi} computed with the κ(i) subsample
removed. In contrast to leave-one-out CV, in k-fold CV, you repeat the estimations only k times,
leaving-out one different subsample each time.

We conclude with two remarks. First, as said, the wsbackfit package also allows the user to
specify the bandwidths hj for some nonparametric functions, which are therefore treated as given in
(10)), while letting the CV procedure select the others along option 3. A combination of option 2
with the others is not implemented. Examples can be found in Sections Package description and
Examples and applications. Second, the minimum in (10) is determined by a grid search. The grid
for the h• (option 3) is by default seq(0.01,0.99,length = 30) but can optionally be set by the
user via option bw.grid, see below. For option 2, the algorithm looks for the optimal ch on an
equispaced grid from 0.5 to 1.5.

Convergence Criteria

As explained above, smooth backfitting is solved by an iterative procedure to solve (3). When
the link function is the identity, then there is only the loop running over the different additive
components. If the link is not the identity, then there is also an outer loop carrying out the local
scoring iteration. Then, within each of such outer iteration steps, the formerly mentioned loop of
the smooth backfitting is conducted. Both loops are triggered by two factors, the tolerance tol in
deviations between subsequent iterations and the maximum number maxit of iterations conducted.
The defaults for the maximum number of iterations and the tolerance of deviation are maxit = 10
and tol = 0.01, respectively.
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The inner loop stops when for iteration l, the updated ĝl
j(·) comply with criterion

∑n
i=1

(
ĝl

j(Xij) − ĝl−1
j (Xij)

)2

∑n
i=1 ĝl−1

j (Xij)2
≤ tol for j = 1, . . . , d ,

where the gl−1
j refer to the estimates of the previous iteration. Similarly, the outer loop stops when

for iteration k, the convergence criterion

Dev =

∑n
i=1 Devi(Yi, µ̂k−1

i ) − Devi(Yi, µ̂k
i )∑n

i=1 Devi(Yi, µ̂k−1
i )

≤ tol ,

is met, where µ̂k
i and µ̂k−1

i are the estimates of µi obtained in the present iteration and in the
previous one (k − 1), respectively.

Binning and integration

Although we implemented some modifications and simplifications like the above described k-fold CV,
or the combination of parametric linear with local constant estimation, for details see the Section
Identification, SB in high dimensions might still imply a high computational cost. Therefore, as
already indicated above, we implemented the kernel smoothing inside the wsbackfit package using
binning-type procedures. These are used throughout, also for CV when selecting bandwidths. The
key idea of this binning is to reduce the number of kernel evaluations (exploiting the fact that many
of these are nearly identical) by replacing the original data set (composed of n data points) with a
‘grouped’ data set (with N groups as new data points with sampling weights, where N << n). The
estimation is carried out on these N groups, including the sampling weights in Wi. For a detailed
description of binning for kernel regression, see Fan and Gijbels (1996).

Note that for minimizing (3), we need to solve some univariate integrals over nonparametric
estimates which is therefore done numerically. This is calculated by the Simpson rule with 51
equidistant grid points over the entire range of the respective covariate, i.e., from its smallest to the
largest observation. Simulations showed that finer grids led to no improvement of the final estimates.

Identification

When we introduced the class of GSM in Section The models that can be estimated by wsbackfit,
we restricted our presentation to models that can be estimated by the here introduced package. At
this stage – note that the package design invites further contributions of SB-based methods – the
package is able to estimate model (6) only for some link functions, and all gj being one-dimensional
nonparametric functions. Lee et al. (2012) discuss identification of model (6) in a very general
way, also allowing all gj to be multidimensional, and covariates Xj being overlapping vectors (i.e.,
containing, at least partly, the same elements), and possibly also containing some elements of the Z
covariate vector. Essentially, they clarify which overlaps would render a model unidentifiable. As
such discussion is quite technical and would go beyond the slope of this paper, we only refer to them.

Now recall models (4) and (5), which probably represent the most common cases in practice.
For these models, consider the identification of the gj with respect to location and scale. Each gj in
model (6) has been decomposed into a linear effect αj · Xj together with a purely nonparametric
(beyond the linear) one, say g̃j . In addition, for gj being varying coefficients, we have included
constants gj0, j = 1, . . . , d1. Then, we can re-write model (6) as

G

{
g0 +

∑d1

j=1
(gj0 + αj · Xj + g̃j (Xj))Zj +

∑d

j=d1+1
(αj · Xj + g̃j (Xj)) + βtZκ

}
. (11)

For this model, we set E[g̃j(Xj)] = 0 (j = 1, . . . , d) and E[Xj · g̃j(Xj)] = 0 (j = 1, . . . , d1). Apart
from identification issues, this prevents us from biases in the linear direction, i.e., in the slope of the
gj , such that we can estimate the g̃j by local constant SB speeding up the algorithm significantly.
Finally, this reparametrization helps us to see how to choose the starting values for the iterative
backfitting procedure. For the first step, you can simply start with a parametric GLM estimator,
setting g̃j ≡ 0 for all j. Then, for ĝ0, β̂, ĝj,0, and α̂j , j = 1, . . . , d obtained from that GLM
estimation, you proceed estimating the g̃j as outlined in Roca-Pardiñas and Sperlich (2010), to
afterward update all estimates via iteration.
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4 Package description

The package is composed of several functions that enable users to fit the models with the methods
described above. Table 1 provides a summary of the presently available functions.

wsbackfit functions
sback Main function for fitting generalized structures models using smooth backfit-

ting.
sb Function used to indicate the nonparametric terms and varying coefficient

terms in the sback() formula.
plot Function that provides plots of sback objects produced by sback().
print The default print method for an sback() object.
summary Function that takes a fitted object produced by sback() and produces various

useful summaries from it.
predict Function that provides predictions (e.g., fitted values and nonparametric

terms) based on an sback object for a new data set (newdata).
residuals Returns residuals of sback objects produced by sback(). Deviance, Pearson,

working and response residuals are available.
summary Summary for objects of class sback.

Table 1: Summary of functions of wsbackfit.

The package has been designed similarly to other regression packages. The main function
is sback. It fits GSM with SB, and creates an object of class sback. Numerical and graphical
summaries of the fitted model can be obtained by using print, summary, and plot, implemented
for sback objects. Moreover, function predict allows obtaining predictions (e.g., fitted values and
nonparametric terms) for data different from those used for estimation, called, therefore, newdata.
The main arguments of the sback function are listed in Table 2, and the list of outputs is given in
Table 3.

sback arguments – input values
formula A formula object specifying the model to be fitted.
data Data frame representing the data and containing all needed variables.
offset An optional numerical vector containing a priori known components to be

included in the linear predictor during fitting. Default is zero.
weights An optional numeric vector of ‘prior weights’ to be used in the fitting process.

By default, the weights are set to one.
kernel A character specifying the kernel function. Implemented are: Gaussian and

Epanechnikov. By default "Gaussian".
bw.grid Numeric vector; a grid for searching the bandwidth factor hc. The bandwidth

for dimension j is hcσj . Default is seq(0.01,0.99,length = 30)
c.bw.factor logical; indicates whether the common factor scheme for bandwidth selection

proposed by Han and Park (2018) is performed. If TRUE, and provided the
user has specified the (marginal) bandwidths for all nonparametric functions,
say h̃j , the functions searches for the common factor ch that minimizes
the deviance via (k-fold) cross-validation when the bandwidth used for
dimension (covariate) j is chh̃j . The search is done in an equispaced grid of
length 15 between 0.5 and 1.5. The default is FALSE.

KfoldCV Number of cross-validation folds to be used for either (1) automatically
selecting the optimal bandwidth (in the sequence given in argument bw.grid)
for each nonparametric function; or (2) automatically selecting the optimal
common bandwidth factor (see argument c.bw.factor). Default is 5.

kbin An integer value specifying the number of binning knots. Default is 30.
family A character specifying the distribution family. Implemented are: Gaussian,

Binomial and Poisson. In all cases, the link function is the canonical one.
By default "gaussian".

Table 2: Summary of the arguments of the main function sback.

We call function sback by
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sback output values
call The matched call.
formula The original supplied formula argument.
data The original supplied data argument.
weights The original supplied weights argument.
offset The original supplied offset argument.
kernel The original supplied kernel argument.
kbin The original supplied kbin argument.
family The original supplied family argument.
effects Matrix with the estimated nonparametric functions (only the nonlinear

component) for each covariate value in the original supplied data.
fitted.values A numeric vector with the fitted values for the supplied data.
residuals A numeric vector with the deviance residuals for the supplied data.
h A numeric vector of the same length as the number of nonparametric

functions, with the bandwidths used to fit the model.
coeff A numeric vector with the estimated regression coefficients. This vector

contains the estimates of the regression coefficients associated with the
parametric part of the model (if present) as well as the linear components
of the nonparametric functions.

err.CV Matrix with the cross-validated error (deviance) associated with the se-
quence of tested bandwidths (those provided in argument bw.grid in
function sback).

Table 3: Summary of output values of the sback function.

sback(formula, data, offset = NULL, weights = NULL,
kernel = c("Gaussian", "Epanechnikov"),
bw.grid = seq(0.01, 0.99, length = 30), c.bw.factor = FALSE,
KfoldCV = 5, kbin = 30,
family = c("gaussian", "binomial", "poisson"))

The argument formula corresponds to the model for the conditional mean function (6). This
formula is similar to that used for glm, except that nonparametric functions can be added to the
additive predictor by means of function sb (for details, see Table 4). For instance, specification y ~
x1 + sb(x2,h = -1) assumes a parametric effect of x1 (with x1 either numerical or categorical),
and a nonparametric effect of x2. Varying coefficient terms get incorporated similarly. For example,
y ~ sb(x1,by = x2) indicates that the coefficient(s) of x2 depend nonparametrically on x1. In this
case, both, x1 and x2 should be numerical predictors. More examples are provided further below.

sb arguments
x1 The univariate predictor.
by Numeric predictor of the same dimension as x1. If present, the coefficients

of this predictor depend nonparametrically on x1, i.e., a varying coefficient
term.

h Bandwidth for this term. If h = -1, the bandwidth is automatically selected
using k-fold cross-validation. A value of 0 would indicate a linear fit. By
default -1.

Table 4: Summary of the arguments of the function sb.

The bandwidths associated with the nonparametric functions are specified inside sb through
argument h (see Table 4), either as final bandwidth (by setting h = hj ; option 1), as starting value
to be multiplied by an optimal constant ch found via CV from an equispaced grid of length 15
between 0.5 and 1.5 (by setting h = h̃j and c.bw.factor = TRUE; option 2), or by demanding a
CV-bandwidth which is the product of a common factor hc (chosen from bw.grid) times the scale
σj of covariate Xj (by setting h = -1; option 3); recall Section Cross-validation, bandwidths, and
computational issues. Actually, the user has even four options. These are specified through argument
h of function sb, where option 4 is a mixture of options 1 and 3 by setting h = hj inside sb for some
nonparametric functions, and h = -1 for the others. The number k of CV folds is specified through
KfoldCV, with 5 being the default.

In Section The models that can be estimated by wsbackfit, recall expression (3) with subsequent
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discussion, we saw that the SB algorithm is implemented with potentially adjusted dependent
variable Ỹ and weights W . The arguments offset and weights allow the user to modify them on
top of what is done automatically (e.g., due to the local scoring). More specifically, the vector offset
is subtracted from Ỹ when estimating. A standard application is the log of exposure in Poisson
regression; see also the example in Section Poisson regression with offset. Regarding the weight W ,
recall that parts of it are automatically calculated (and updated in each backfitting iteration) by the
local scoring procedure to account for the given link function, which is 1 if the link is the identity.
This is multiplied by the optional vector weights provided by the user. For an example in which
this option is used to improve the efficiency of the estimators, see Section Gaussian simulated data.

The desired smoothing kernel, either Epanechnikov or Gaussian, is specified through the argument
kernel (by default Gaussian). With kbin, the user indicates the number of binning knots (denoted
as N in Section Cross-validation, bandwidths, and computational issues). The argument family
specifies the conditional distribution of the response variable. So far, the user can select among
Gaussian, Poisson, and binary. In all cases, the canonical link function is considered. Finally, recall
that predictions for data different from those being used for estimation can be obtained by means of
function predict, specifying the new dataset in argument newdata.

5 Simulation study

This section reports the results of a small simulation. Two different scenarios are considered, namely

Scenario I. Additive model. Covariates X1 and X2 are simulated independently from the uniform
distributions on the intervals [0, 1] and [−10, 1.5], respectively, and

η = g1 (X1) + g2 (X2) = 2 + 3X2
1 + 0.01X3

2 .

Here, Y is generated under two different distributions

• Y = η + ε, where ε ∼ N
(
0, 0.52)

.
• Y ∼ Bernoulli (p), with p = exp (η̃) / exp (1 + η̃), where η̃ = η/4,

where the scaling factor in the Bernoulli case is used to control the signal-to-noise ratio.
Scenario II. Varying coefficient model. Here, covariates X1, X2, Z1 and Z2 are simulated inde-

pendently from a uniform distribution on the interval [0, 1], and

η = g1 (X1)Z1 + g2 (X2)Z2 = 5 sin(2πX1)Z1 + X2Z2.

As for Scenario I, Y is generated according to

• Y = η + ε, where ε ∼ N
(
0, 0.52)

.
• Y ∼ Bernoulli (p), with p = exp (η) / exp (1 + η).

Results for Scenarios I and II are shown in Figure 1 and Figure 2, respectively. In both cases, the
true and estimated functions are centered before plotting to make results comparable. All results
are based on a sample size of n = 500 with R = 500 replicates. Also, we use the Gaussian kernel,
30 binning knots, and all bandwidths being selected using 5-fold cross-validation (option 3). We
obtained essentially the same figures when we repeated these simulations with the Epanechnikov
kernel. Not surprisingly, simulation results with options 1 and 2 for the bandwidth choice depended
quite a bit on the setting of our (prior) bandwidths and are therefore not shown.

6 Examples and applications

The last section is dedicated to examples with generalized additive and/or varying coefficient, partial
linear models with and without heteroscedasticity, given different link functions. In fact, we have
examples for each of the three link functions presently available. Among other things, it is shown
how the optional weighting can be used to improve efficiency. While some examples are simulated,
others illustrate applications from biometrics and health. Finally, we also show how to create useful
graphics for interpreting the estimates.

Gaussian simulated data

We start with the presentation of a simulation example for estimating an additive model under
heteroscedasticity. Consider the situation where the variance is a function of a dummy variable,
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Figure 1: The simulation study and Scenario I. From left to right: true curve g1 (solid line) and
average estimate ĝ1 (dashed line); true curve g2 (solid line) and average estimate ĝ2 (dashed line). In
both cases, 2.5 and 97.5 simulation quantiles are plotted. Top row: Gaussian distribution. Bottom
row: Bernoulli distribution.

i.e., one faces two noise levels. This is estimated and afterward used to improve the efficiency of
the mean regression. As explained in the above sections, this requires a three-step procedure: first
estimate the mean model, then the variance function, and finally re-estimate the mean model but
including the inverse of the variance as an additional weight. Consider model

Y =

4∑
j=1

gj(Xj) + β1{X5=1} + ε(X5), (12)

with g1(x) = 2 sin(2x), g2(x) = x2, g3(x) = 0, g4(x) = x, β = 1.5, and 1A denoting the indicator
function of event A. The covariates X1 to X4 are independent random variables, uniformly
distributed on [−2, 2], and X5 ∈ Bernoulli(0.4). The error term is given by ϵ(X5) ∈ N(0, σ2(X5))
with σ(0) = 4 and σ(1) = 2. Data are generated and fitted by

R> library(wsbackfit)
R> set.seed(123)
R> # Define the data generating process
R> n <- 1000
R> x1 <- runif(n)*4-2
R> x2 <- runif(n)*4-2
R> x3 <- runif(n)*4-2
R> x4 <- runif(n)*4-2
R> x5 <- as.numeric(runif(n)>0.6)

R> g1 <- 2*sin(2*x1)
R> g2 <- x2^2
R> g3 <- 0
R> g4 <- x4

R> mu <- g1 + g2 + g3 + g4 + 1.5*x5
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Figure 2: The simulation study and Scenario II. From left to right: true curve g1 (solid line) and
average estimate ĝ1 (dashed line); true curve g2 (solid line) and average estimate ĝ2 (dashed line). In
both cases, 2.5 and 97.5 simulation quantiles are plotted. Top row: Gaussian distribution. Bottom
row: Bernoulli distribution.

R> err <- (0.5 + 0.5*x5)*rnorm(n)
R> y <- mu + err

R> df_gauss <- data.frame(x1 = x1, x2 = x2, x3 = x3, x4 = x4, x5 = as.factor(x5), y = y)

R> # Fit the model with a fixed bandwidth for each covariate
R> m0 <- sback(formula = y ~ x5 + sb(x1, h = 0.1) + sb(x2, h = 0.1) +
+ sb(x3, h = 0.1) + sb(x4, h = 0.1), kbin = 30, data = df_gauss)

A numerical summary of the fitted model can be obtained by calling print.sback() or
summary.sback() with shortcuts print() and summary().

R> summary(m0)

Generalized Smooth Backfitting/wsbackfit:

Call: sback(formula = y ~ x5 + sb(x1, h = 0.1) + sb(x2, h = 0.1) +
sb(x3, h = 0.1) + sb(x4, h = 0.1), data = df_gauss, kbin = 30)

Sample size: 1000

Bandwidths used in model:
Effect h
sb(x1, h = 0.1) 0.1
sb(x2, h = 0.1) 0.1
sb(x3, h = 0.1) 0.1
sb(x4, h = 0.1) 0.1

Linear/Parametric components:
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Intercept x1 x2 x3 x4 x51
1.342678178 0.346506090 -0.040989607 -0.005250654 1.010634908 1.327833794

The output obtained from summary (corresponding to the prior sback call) includes the bandwidth
of each nonparametric function, the parameters of the parametric part (here the intercept and β),
and the linear slopes (i.e., the αj in (11) in Section Identification) of the nonparametric functions
gj . Recall (Section Identification) that the algorithm decomposes each nonparametric function in a
linear and a nonparametric local constant one. For a varying coefficient gj , you also get constant
g0j .

To complement the numerical results, the wsbackfit package also provides graphical outputs by
the use of plot. In particular, it provides the plots of the estimated nonparametric functions. Figure
3 shows the figures that appear as a result of the following code. We note that through argument
select, the user can specify the model term to be plotted and use ylim to indicate the range for
the y-axis. This, however, is optional. Alternatively, the program provides plots that automatically
explore the variation of the estimates.

R> op <- par(mfrow = c(2,2))
R> plot(m0, select = 1, ylim = c(-2.5,2.5))
R> plot(m0, select = 2, ylim = c(-2.5,2.5))
R> plot(m0, select = 3, ylim = c(-2.5,2.5))
R> plot(m0, select = 4, ylim = c(-2.5,2.5))
R> par(op)
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Figure 3: Model (12): Estimated nonparametric functions. These estimates correspond to the sum
of the linear and the nonparametric local constant component, recall (11).

If the user is interested in plotting separately each component (αj and g̃j), then the argument
composed is to be set to FALSE. The result is shown in Figure 4.
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R> op <- par(mfrow = c(2,2))
R> plot(m0, select = 1, composed = FALSE, ylim = c(-2.5,2.5))
R> plot(m0, select = 2, composed = FALSE, ylim = c(-2.5,2.5))
R> plot(m0, select = 3, composed = FALSE, ylim = c(-2.5,2.5))
R> plot(m0, select = 4, composed = FALSE, ylim = c(-2.5,2.5))
R> par(op)
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Figure 4: Model (12): Estimated linear and nonlinear components in which each nonparametric
function is decomposed, recall (11).

Note that both summary and plot make use of the information contained in the m0 object.

R> names(m0)

[1] "call" "formula" "data" "weights"
[5] "offset" "kernel" "kbin" "family"
[9] "effects" "fitted.values" "residuals" "h"

[13] "coeff" "err.CV"

This is the list of outputs created by sback. A detailed description of what each component of this
list contains was given in Table 3. The user can access this information explicitly and individually,
may it be to create its own plots or for further reporting.

As a next step in the analyses of our example, we use the fitted model to estimate the variance.
In our example, this is considered to be a function of the binary covariate X5. Call

R> resid <- y - m0$fitted.values
R> sig0 <- var(resid[x5 == 0])
R> sig1 <- var(resid[x5 == 1])

The third and final step is to re-estimate the mean model for efficiency reasons with weights
that are the inverse of the estimated variance. The code, including the summary, is
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R> w <- x5/sig1 + (1-x5)/sig0
R> m1 <- sback(formula = y ~ x5 + sb(x1, h = 0.1) + sb(x2, h = 0.1) +
+ sb(x3, h = 0.1) + sb(x4, h = 0.1),
+ weights = w, kbin = 30, data = df_gauss)
R> summary(m1)

Generalized Smooth Backfitting/wsbackfit:

Call: sback(formula = y ~ x5 + sb(x1, h = 0.1) + sb(x2, h = 0.1) +
sb(x3, h = 0.1) + sb(x4, h = 0.1), data = df_gauss, weights = w,
kbin = 30)

Sample size: 1000

Bandwidths used in model:
Effect h
sb(x1, h = 0.1) 0.1
sb(x2, h = 0.1) 0.1
sb(x3, h = 0.1) 0.1
sb(x4, h = 0.1) 0.1

Linear/Parametric components:
Intercept x1 x2 x3 x4 x51

1.31707760 0.32888538 -0.01262394 0.01222234 1.00289877 1.33368035

In the previous fits of this example, we specified all bandwidths used. For the rest of this example,
let us consider the case when we ask the program to choose the bandwidths via k-fold CV. We do
this for all nonparametric functions, using the following code in which, for the sake of clarity and
presentation, we specify h = -1 although this is actually the default. For convenience, we also call
the summary command directly:

R> m1cv <- sback(formula = y ~ x5 + sb(x1, h = -1) + sb(x2, h = -1) +
+ sb(x3, h = -1) + sb(x4, h = -1), weights = w, kbin = 30,
+ bw.grid = seq(0.01, 0.99, length = 30), KfoldCV = 5, data = df_gauss)
R> summary(m1cv)

Generalized Smooth Backfitting/wsbackfit:

Call: sback(formula = y ~ x5 + sb(x1, h = -1) + sb(x2, h = -1) + sb(x3,
h = -1) + sb(x4, h = -1), data = df_gauss, weights = w, bw.grid = seq(0.01,
0.99, length = 30), KfoldCV = 5, kbin = 30)

Sample size: 1000

Bandwidths used in model:
Effect h
sb(x1, h = 0.0892) 0.0892
sb(x2, h = 0.0887) 0.0887
sb(x3, h = 0.0907) 0.0907
sb(x4, h = 0.0912) 0.0912

Linear/Parametric components:
Intercept x1 x2 x3 x4 x51

1.31708207 0.32881191 -0.01219359 0.01247328 1.00258427 1.33366258

We do not further discuss the results because their interpretation is the same as before, also
because the automatically found data-driven optimal bandwidths are close to what we used as
prefixed bandwidths in the former codes. We conclude this section with a brief example in which we
specify the bandwidths for some of the nonparametric functions, while for the remaining ones, we
let our CV procedure select the bandwidths. For brevity, we skip output and discussion.

R> m2cv <- sback(formula = y ~ x5 + sb(x1, h = 0.1) + sb(x2, h = -1) +
+ sb(x3, h = 0.1) + sb(x4, h = 0.1),
+ weights = w, kbin = 30, KfoldCV = 5, data = df_gauss)
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Post-operative infection data

The next example is an application with data studied, among others, in Roca-Pardiñas and Sperlich
(2010). They were taken from a prospective analysis conducted at the University Hospital of Santiago
de Compostela in the North of Spain. A total of n = 2318 patients who underwent surgery at this
center between January 1996 and March 1997 were considered. The main interest is learning about
indicators that could predict whether patients may suffer (inf=1) or not post-operative infection
(inf=0), and to see how they relate to the risk of infection. Such predictive indicators could be
various, but given the previous studies we concentrate on the pre-operative values of plasma glucose
(gluc) concentration (measured in mg/dl), and lymphocytes (linf, expressed as relative counts (in
% of the white blood cell count). The data can be found in wsbackfit under the name infect.

R> data(infect)
R> head(infect)

age sex linf gluc diab inf
1 85 2 28 55 2 0
2 38 1 18 56 2 1
3 49 2 29 56 2 1
4 63 2 20 60 2 0
5 91 2 17 62 2 0
6 26 2 22 66 2 0

In the original studies, it was controlled for other covariates like age (in years) and sex (coded
as 1 = male; 0 = female). For illustrative purposes, we limit our analysis to the investigation of the
association of the risk of post-operative infections inf with the predictors linf and gluc, putting
all other covariates aside. It is well known that the effect of linf on inf varies strongly with the
concentration of gluc. Therefore, one may think of a generalized varying coefficient model of type

log P (inf = 1|linf, gluc)
1 − P (inf = 1|linf, gluc) = g0 + g1(gluc) + g2(gluc)linf

= g0 + (α1 · gluc + g̃1(gluc)) + (g20 + α2 · gluc + g̃2(gluc)) linf, (13)

in which we are working with the Logit link. This can be fitted using of the following code

R> data(infect)
R> # Generalized varying coefficient model with binary response
R> m2 <- sback(formula = inf ~ sb(gluc, h = 10) + sb(gluc, by = linf, h = 10),
+ data = infect, kbin = 15, family = "binomial")

R> summary(m2)

Generalized Smooth Backfitting/wsbackfit:

Call: sback(formula = inf ~ sb(gluc, h = 10) + sb(gluc, by = linf,
h = 10), data = infect, kbin = 15, family = "binomial")

Sample size: 2312

Bandwidths used in model:
Effect h
sb(gluc, h = 10) 10
sb(gluc, by = linf, h = 10) 10

Linear/Parametric components:
Intercept gluc linf gluc:linf

-1.4155401353 0.0068313875 -0.0346648080 -0.0000456441

Note that this model, recall (13), contains, in addition to the constant term (intercept), the
main linear effects of gluc α1 and linf g20, and the linear interaction between gluc and linf α2,
all provided in the very last line. Our bandwidths have been chosen for graphical convenience. The
graphical output, i.e., the plots of the estimated nonparametric functions, is obtained by the code

R> op <- par(mfrow = c(1,3))
R> plot(m2, composed = FALSE, ask = FALSE, cex.main = 2, cex = 2, cex.lab = 1.5,
+ cex.axis = 2)
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R> par(op)

R> op <- par(mfrow = c(1,3))
R> plot(m2, composed = FALSE, ask = FALSE, cex.main = 2, cex = 2, cex.lab = 1.5,
+ cex.axis = 2)
R> par(op)
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Figure 5: Post-operative infection data. Upper row: estimates of α1 · gluc + g̃1(gluc) (left),
α2 · gluc + g̃2(gluc) (middle), and (α2 · gluc + g̃2(gluc)) linf (right) obtained from model (13). The
plots on the left and the center in the bottom line show the estimates of the linear and nonlinear
components separately. In this example, the right plot is simply repeated.

In Figure 5, you see the functionals of the nonparametric additive effect of gluc on the index η
(left column), the varying coefficient (center), and the interaction surface (right column), because the
interest is in revealing how the effect of lymphocytes changes with the plasma glucose concentration.
If the interest is also in knowing the resulting probabilities of post-operational infection, then there
are the options of plotting the two-dimensional function as a (dynamic) 3-D plot (less appropriate
for printed figures) or by contour plots as done in Figure 6. This was created with the code

R> # Dataframe for prediction (and plotting)
R> ngrid <- 30
R> gluc0 <- seq(50,190, length.out=ngrid)
R> linf0 <- seq(0,45, length.out=ngrid)
R> infect_pred <- expand.grid(gluc = gluc0, linf = linf0)

R> m2p <- predict(m2, newdata = infect_pred)
R> n <- sqrt(nrow(infect_pred))
R> Z <- matrix(m2p$pfitted.values, n, n)
R > filled.contour(z = Z, x = gluc0, y = linf0,
+ xlab = "Glucose (mg/dl)", ylab = "Lymphocytes (%)",
+ col = cm.colors(21))

As can be seen from Figure 6, high levels of gluc increase the post-operative infection risk, but
higher linf values can mitigate this effect significantly.

Poisson regression with offset

Let us now consider a simulated example that illustrates the use of Poisson regression with a
nontrivial use of option offset. We simulate data where each subject may have different levels of
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Figure 6: The post-operative infection data: Estimated probability of post-operational infection.

exposure to the event of interest. As explained in the above sections, this can be handled with the
offset option. More specifically, for the level of exposure P we consider

Y ∈ P oisson
(
P · exp

(
2 + 3X2

1 + 5X3
2
))

.

In our simulations, X1 and X2 were generated as independent continuous random variables uniformly
distributed on [−1, 1], and P as an approximately uniformly distributed discrete variable with support
{50, 51, . . . , 100}. The complete code for simulation, estimation, and summary of results is

R> set.seed(123)
R> # Generate the data
R> n <- 1000
R> x1 <- runif(n,-1,1)
R> x2 <- runif(n,-1,1)
R> eta <- 2 + 3*x1^2 + 5*x2^3
R> exposure <- round(runif(n, 50, 500))
R> y <- rpois(n, exposure*exp(eta))
R> df_poiss <- data.frame(y = y, x1 = x1, x2 = x2)
R> # Fit the model
R> m4 <- sback(formula = y ~ sb(x1, h = 0.1) + sb(x2, h = 0.1),
+ data = df_poiss, offset = log(exposure),
+ kbin = 30, family = "poisson")

R> summary(m4)

Generalized Smooth Backfitting/wsbackfit:

Call: sback(formula = y ~ sb(x1, h = 0.1) + sb(x2, h = 0.1), data = df_poiss,
offset = log(exposure), kbin = 30, family = "poisson")

Sample size: 1000

Bandwidths used in model:
Effect h
sb(x1, h = 0.1) 0.1
sb(x2, h = 0.1) 0.1

Linear/Parametric components:
Intercept x1 x2

3.00099626 0.09698672 3.06092318

As for the previous examples, a graphical output can be obtained using the plot function like in
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the following code. The results are shown in Figure 7, namely the additive components.

R> op <- par(mfrow = c(1,2))
R> plot(m4, ask = FALSE)
R> par(op)
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Figure 7: The Poisson Simulated Data: Estimated nonparametric functions.

7 Summary

We have first given a general introduction into the class of Generalized Structures Models, together
with the powerful kernel-based smooth backfitting estimator to fit the members of this model class.
This was accompanied by a (certainly incomplete) literature review and closed with a small review
and discussion of existing methods and software for similar and related models. Except for the
varying coefficient model estimator in the np package, they are all based on splines. We concluded
that, while there is a huge body of literature on SB and its advantages, it is hardly used in practice
due to the lack of software. The wsbackfit package intends to close this gap.

Next, we provided some insight into the weighted SB and the objective function that is minimized
by our algorithm. This allowed us to better explain the users’ options like weights and offset.
We outlined which models can be estimated by the presently available package. The description of
the procedure was complemented by a section on the implemented CV, bandwidth choice, binning,
convergence, and identification issues to clarify the location and scaling of the resulting estimates.

The package description has been kept condense but its use has been illustrated along several
examples that cover some of the estimable models. They comprise the use of all options provided.
Moreover, the numerical examples give an idea of the estimators’ performance. For more details, we
recommend consulting the cited articles dealing with the particular models.

We believe that this package is an important enrichment of the existing methods with many
useful applications of flexible data analysis and prediction. It can almost straightforwardly be used
for testing (Cadarso-Suárez et al., 2006; Mammen and Sperlich, 2021) or studying the heterogeneity
of causal effects (Benini and Sperlich, 2021) and many other interesting applications. The next
challenge will be the extension of this package to cover the analysis of more complex data (Jeon and
Park, 2020). The package is not just open for extensions. We explicitly invite people to contribute.
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garchx: Flexible and Robust GARCH-X
Modeling
by Genaro Sucarrat

Abstract The garchx package provides a user-friendly, fast, flexible, and robust framework for the
estimation and inference of GARCH(p, q, r)-X models, where p is the ARCH order, q is the GARCH
order, r is the asymmetry or leverage order, and ’X’ indicates that covariates can be included. Quasi
Maximum Likelihood (QML) methods ensure estimates are consistent and standard errors valid,
even when the standardized innovations are non-normal or dependent, or both. Zero-coefficient
restrictions by omission enable parsimonious specifications, and functions to facilitate the non-standard
inference associated with zero-restrictions in the null-hypothesis are provided. Finally, in the formal
comparisons of precision and speed, the garchx package performs well relative to other prominent
GARCH-packages on CRAN.

1 Introduction

In the Autoregressive Conditional Heteroscedasticity (ARCH) class of models proposed by Engle
(1982), the variable of interest ϵt is decomposed multiplicatively as

ϵt = σtηt, (1)

where σt > 0 is the standard deviation of ϵt, and ηt is a real-valued standardized innovation with
mean zero and unit variance (e.g., the standard normal). Originally, Engle (1982) interpreted ϵt as the
error term of a dynamic regression of inflation so that σt is the uncertainty of the inflation forecast.
However, ARCH models have also proved to be useful in many other areas. The field in which they
have become most popular is finance. There, ϵt is commonly interpreted as a financial return, either
raw or mean-corrected (i.e., ϵt has mean zero) so that σt is a measure of the variability or volatility of
return. In Engle and Russell (1998), it was noted that the ARCH framework coul also be used to model
non-negative variables, say, the trading volume of financial assets, the duration between financial
trades, and so on. Specifically, suppose yt denotes a non-negative variable, say, volume, and µt is the
conditional expectation of yt. Engle and Russell (1998) noted that in the expression ϵ2

t = σ2
t η2

t implied
by the ARCH model, if you replace ϵ2

t with yt and σ2
t with µt, then it follows straightforwardly that µt

is the conditional expectation of yt. This is justified theoretically since the underlying estimation theory
does not require that ϵt has mean zero. The observation made by Engle and Russell (1998) spurred a
new class of models, which is known as the Multiplicative Error Model (MEM); see Brownlees et al.
(2012) for a survey. The practical implication of all this is that ARCH-software can, in fact, be used to
estimate MEMs by simply feeding the package in question with

√
yt rather than ϵt. The fitted values

of σ2
t become the fitted values of µt, the error term is defined by yt/µt, and the inference theory and

other statistical results usually carry over straightforwardly. In conclusion, the ARCH-class of models
provides a flexible framework that can be used in a very wide range of empirical applications.

Prominent GARCH-packages on CRAN

Although a large number of specifications of σt have been proposed, the most common in empirical
applications are variants of the Generalised ARCH (GARCH) proposed by Bollerslev (1986). In
particular, the plain GARCH(1,1) is ubiquitous:

σ2
t = ω + α1ϵ2

t−1 + β1σ2
t−1, ω > 0, α1 ≥ 0, β1 ≥ 0. (2)

By analogy with an ARMA(1,1), the conditional variance σ2
t is modeled as a function of the recent

past, where the ϵ2
t−1 is referred to as the ARCH(1) term, and σ2

t−1 is referred to as the GARCH(1) term.
The non-negativity of ϵ2

t , together with the constraints on the parameters ω, α1 and β1, ensure σ2
t is

strictly positive. Another way of ensuring that σ2
t is strictly positive is by modeling its logarithm,

ln σ2
t , as for example in the log-ARCH class of models proposed by Geweke (1986), Pantula (1986), and

Milhøj (1987). Here, however, the focus is exclusively on non-logarithmic specifications of σt. Also,
multivariate GARCH specifications are not covered.

The most prominent packages on CRAN that are commonly used to estimate variants of (2) are
tseries (Trapletti and Hornik, 2019), fGarch (Wuertz et al., 2020), and rugarch (Ghalanos, 2020). In
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tseries, the function garch() enables estimation of the GARCH(p, q) specification

σ2
t = ω +

p

∑
i=1

αiϵ
2
t−i +

q

∑
j=1

β jσ
2
t−j, ω > 0, αi ≥ 0, β j ≥ 0. (3)

Notable features of garch() include simplicity and speed. With respect to simplicity, it is appealing
that a plain GARCH(1,1) can be estimated by the straightforward and simple command garch(eps),
where eps is the vector or series in question, i.e., ϵt in (1). As for speed, it is the fastest among the
packages compared here, and outside the R universe, it is also likely to be one of the fastest. Indeed,
a formal speed comparison (see Section 4) reveals the relative speed provided by garch() can be
important, particularly if the number of observations is large or if many models have to be estimated
(as in simulations). A notable limitation of (3) is that it does not allow for asymmetry terms, e.g.,
I{ϵt−1<0}ϵ2

t−1, also known as ’leverage’, or covariates. Asymmetry effects are particularly common in
daily stock returns, where its presence implies that volatility in day t is higher if the return on the
previous day, ϵt−1, is negative. Often, such asymmetry effects are attributed to leverage.

In fGarch, asymmetry effects are possible. Specifically, the function garchFit() enables estimation
of the Asymmetric Power GARCH (APARCH) specification

σδ
t = ω +

p

∑
i=1

αi|ϵt−i|δ +
q

∑
j=1

β jσ
δ
t−j +

r

∑
k=1

γk I{ϵt−k<0}|ϵt−k|δ, γk ≥ 0, (4)

where δ > 0 is the power parameter, and the γk’s are the asymmetry parameters. The power parameter
δ is rarely different from 2 in empirical applications, but it does provide the added flexibility of
modeling, say, the conditional standard deviation (δ = 1) directly if the user wishes to do so. Another
feature of garchFit() is that other densities than the normal can be used in the ML estimation,
for example, the skewed normal or the skewed Student’s t. In theory, this provides more efficient
estimates asymptotically if ηt is skewed or more heavy-tailed than the normal. In finite samples,
however, the actual efficiency may be more dependent on how estimation is carried out numerically.
Also, additional density parameters may increase the possibility of numerical problems. To alleviate
this potential problem, the package offers a non-normality robust coefficient-covariance along the
lines of Bollerslev and Wooldridge (1992) in combination with normal ML. The coefficient-covariance
of Bollerslev and Wooldridge (1992) does not, however, provide robustness to the dependence of the
ηt’s. Finally, fGarch also offers the possibility of specifying the mean equation as an ARMA model.
That is, ϵt = yt − µt, where µt is the ARMA specification. Theoretically, joint estimation of µt and σt
may improve the asymptotic efficiency compared with, say, a two-step estimation approach, where µt
is estimated in the first step, and σt is estimated in the second using the residuals from the first step. In
practice, however, the joint estimation may, in fact, reduce the actual efficiency. The reasons for this are
the increase in the number of parameters to be estimated and the increased possibility of numerical
problems due to the increase in the number of parameters to be estimated.

A limitation of fGarch is that it does not allow for additional covariates (’X’) in (4). This can be a
serious limitation since additional conditioning variables like high − low, realized volatility, interest
rates, and so on may help to predict or explain volatility in substantial ways. The rugarch package
remedies this. Most of the non-exponential specifications offered by rugarch are contained in

σδ
t = ω +

p

∑
i=1

αi|ϵt−i|δ +
q

∑
j=1

β jσ
δ
t−j +

r

∑
k=1

γk I{ϵt−k<0}|ϵt−k|δ +
s

∑
l=1

λl xl,t−1, λl ≥ 0, xl,t−1 ≥ 0, (5)

where the xl,t−1’s are the covariates. However, it should be mentioned that the package also enables the
estimation of additional models, e.g., the Component GARCH model and the Fractionally Integrated
GARCH model, amongst others. These additional models are not the focus here. Note that the
covariates in (5) need not enter as lagged of order 1. That is, xl,t−1 may denote a variable that is lagged
of order 2, say, wt−2, and so on. A variable may also enter as unlagged, wt. However, it is not clear
what the theoretical requirements are for consistent estimation, in this case, due to simultaneity issues.
Just as in fGarch, the rugarch package also enables a non-normality robust coefficient-covariance,
ML estimation with non-normal densities, and the joint estimation of an ARMA specification in the
mean together with σt. To the best of my knowledge, no other CRAN package offers more univariate
GARCH specifications than rugarch.
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What does garchx offer that is not already available?

The garchx package1 aims to provide a simple, fast, flexible, and robust – both theoretically and
numerically – framework for GARCH-X modeling. The specifications that can be estimated are all
contained within

σ2
t = ω +

p

∑
i=1

αiϵ
2
t−i +

q

∑
j=1

β jσ
2
t−j +

r

∑
k=1

γk I{ϵt−k<0}ϵ2
t−k +

s

∑
l=1

λl xl,t−1. (6)

While this implies a restriction of δ = 2 compared with the rugarch package, garchx enables several
additional features that are not available in the above-mentioned packages:

i) Robustness to dependence. Normal ML estimation is usually consistent when the ηt’s are depen-
dent over time, see e.g., Escanciano (2009) and Francq and Thieu (2018). This is useful, for
example, when the conditional skewness, conditional kurtosis, or conditional zero-probability
of ηt is time-varying and dependent on the past in unknown ways. In these cases, however, the
non-normality robust coefficient-covariance of Bollerslev and Wooldridge (1992) is not valid.
Optionally, garchx offers the possibility of using the dependence (and non-normality) robust
coefficient-covariance derived by Francq and Thieu (2018).

ii) Inference under nullity. In applied work, it is frequently of interest to test whether a coefficient
differs from zero. The permissible parameter-space of GARCH models, however, is bounded
from below by zero. Accordingly, non-standard inference is required when the value of a
null-hypothesis lies on the zero-boundary; see Francq and Thieu (2018). The garchx package
offers functions to facilitate such tests, named ttest0() and waldtest0(), respectively, based
on the results by Francq and Thieu (2018).

iii) Zero-constrained coefficients by omission. If one or more coefficients are indeed zero, then it may
be desirable to obtain estimates under zero-constraints on these coefficients. For example, if
ϵt is the error term in a regression of quarterly inflation, then it may be desirable to estimate a
GARCH(4,4) model in which the parameters associated with orders 1, 2, and 3 are restricted to
zero. That is, it is desirable to estimate

σ2
t = ω + α4ϵ2

t−4 + β4σ2
t−4.

Another example is the non-exponential Realized GARCH of Hansen et al. (2012), which is
simply a GARCH(0,1)-X. That is, the ARCH(1) coefficient is set to zero. Zero-constrained
coefficients do not only provide a more parsimonious characterization of the process in question.
They may also make estimation more efficient and stable numerically since fewer parameters
need to be estimated. rugarch offers a feature in which coefficients can be fixed to zero. However,
its approach is not by omission. In other words, using coef in rugarch to extract the coefficients
in the GARCH(4,4) example above will return a vector of length 9 rather than of length 3, while
the coefficient-covariance returned by rugarch will be 3 × 3. This makes multiple hypothesis
testing with Wald tests tedious in constrained models. In garchx, by contrasts, Wald tests in
constrained models are straightforward since the zeros are due to omission. The vector returned
by coef is of length 3 and the coefficient-covariance is 3 × 3.

iv) Computation of the asymptotic coefficient-covariance. Knowing the value of the theoretical, asymp-
totic coefficient-covariance matrix is needed for a formal evaluation of an estimator. For GARCH
models, these expressions are not available in explicit form. The garchx offers a function,
garchxAvar(), that computes them by combining simulation and numerical differentiation.
To illustrate the usage of garchxAvar(), a small Monte Carlo study is undertaken. While the
results of the study suggest all four packages return approximately unbiased estimates in large
samples, they also suggest tseries and rugarch are less robust numerically than fGarch and
garchx under default options. In addition, the simulations reveal the standard errors of tseries
can be substantially biased downwards when ηt is non-normal. A bias is expected since tseries
does not offer a non-normality robust coefficient-covariance. However, the bias is larger than
suggested by the underlying estimation theory.

Table 1 provides a summary of the features offered by the four packages.

The rest of the article is organised as follows.2 The next section provides an overview of the garchx
package and its usage. Thereafter, the garchxAvar() function is illustrated by means of a Monte Carlo
study of the large sample properties of the packages. Next, a speed comparison of the packages is
undertaken. While tseries is the fastest for the specifications it can estimate, garchx is notably faster
than fGarch and rugarch in all the experiments that are conducted. Finally, the last section concludes.

1On CRAN since 9 April 2020.
2All commands and code-executions were carried out in R version 3.6.3 on a Windows 10 64bit machine.
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tseries fGarch rugarch garchx
GARCH(p, q) Yes Yes Yes Yes
Asymmetry Yes Yes Yes
Power GARCH Yes Yes
Covariates (X) Yes Yes
Additional GARCH models Yes
Non-normality robust vcov Yes Yes Yes
Dependence robust vcov Yes
Computation of asymptotic vcov Yes
Constrained estimation Yes
Zero-constraints by omission Yes
Inference under null-restrictions Yes
Normal (Q)ML Yes Yes Yes Yes
Non-normal ML Yes Yes
ARMA in the mean Yes Yes

Table 1: A feature-based comparison of selected R packages that offer GARCH-estimation: tseries
version 0.10-47 (Trapletti and Hornik, 2019), fGarch version 3042.83.2 (Wuertz et al., 2020), rugarch
version 1.4-2 (Ghalanos, 2020), and garchx version 1.1 (Sucarrat, 2020).

2 The garchx package

Estimation theory

Let Ft−1 denote the sigma-field generated by past observables. Formally, in the garchx package, ϵt is
expected to satisfy ϵ2

t = σ2
t η2

t , (6) and

E(η2
t |Ft−1) = 1 for all t. (7)

The conditional unit variance assumption in (7) is very mild since it does not require that the distribu-
tion of ηt is identical over time, nor that ηt is independent of the past. In particular, the assumption
is compatible with a time-varying conditional skewness E(η3

t |Ft−1) that depends on the past in un-
known ways, a time-varying conditional kurtosis E(η4

t |Ft−1) that depends on the past in unknown
ways, and even a time-varying conditional zero-probability Pr(ηt = 0|Ft−1) that depends on the past
in unknown ways. Empirically, such forms of dependence are common; see e.g., Hansen (1994) and
Sucarrat and Grønneberg (2020). GARCH models in which the ηt’s are dependent are often referred to
as semi-strong after Drost and Nijman (1993).

Subject to suitable regularity conditions, the normal ML estimator provides consistent and asymp-
totically normal estimates of semi-strong GARCH models; see Francq and Thieu (2018). Specifically,
they show that

√
T(ϑ̂ − ϑ0)

d→ N(0, Σ), Σ = J−1 I J−1, J = E
(

∂2lt(ϑ0)

∂ϑ∂ϑ′

)
, I = E

(
∂lt(ϑ0)

∂ϑ

∂lt(ϑ0)

∂ϑ′

)
, (8)

where

ϑ̂ = arg min
ϑ

1
T

T

∑
t=1

lt(ϑ), lt(ϑ) =
ϵ2

t
σ2

t (ϑ)
+ ln σ2

t (ϑ), (9)

is the (normal) Quasi ML (QML) estimate of the true parameter ϑ0. If the ηt’s are independent of the
past, then

Σ =
(

E(η4
t )− 1)

)
J−1, (10)

This is essentially the univariate version of the non-normality robust coefficient-covariance of Bollerslev
and Wooldridge (1992). It is easily estimated since the standardized residuals can be used to obtain
an estimate of E(η4

t ), and a numerical estimate of the Hessian J is returned by the optimizer. In the
garchx package, the estimate of (10) is referred to as the "ordinary" coefficient-covariance. Of course,
the expression returned by the software is the estimate of the finite sample counterpart Σ/T, where T
is the sample size. In other words, the standard errors are equal to the square root of the diagonal of
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the estimate Σ̂/T. If, instead, the ηt’s are not independent of the past, then

Σ = J−1 I J−1, I = E

[{
E

(
ϵ4

t
σ4

t (ϑ0)

∣∣∣Ft−1

)
− 1

}
1

σ4
t (ϑ0)

∂σ2
t (ϑ0)

∂ϑ

∂σ2
t (ϑ0)

∂ϑ′

]
. (11)

In the garchx package, the estimate of this expression is referred to as the "robust" coefficient-
covariance. Again, the expression returned by the software is the estimate of the finite sample
counterpart Σ/T. It should be noted that the estimation of (11) is computationally much more
demanding than (10) since an estimate of ∂σ2

t (ϑ0)/∂ϑ in I is computed at each t. More details about
how this is implemented is contained in the Appendix.

Basic usage of garchx

For illustration, the spyreal dataset in the rugarch package is used, which contains two daily financial
time series: The SPDR SP500 index open-to-close return and the realized kernel volatility. The data are
from Hansen et al. (2012) and goes from 2002-01-02 to 2008-08-29. The following code loads the data
and stores the daily return – in percent – in an object named eps:

library(xts)
data(spyreal, package = "rugarch")
eps <- spyreal[,"SPY_OC"]*100

Note that the data spyreal is an object of class xts (Ryan and Ulrich, 2014). Accordingly, the object eps
is also of class xts.

The basic interface of garchx is similar to that of garch() in tseries. For example, the code

garchx(eps)

estimates a plain GARCH(1,1), and returns a print of the result (implicitly, print.garchx() is invoked):

Date: Wed Apr 15 09:19:41 2020
Method: normal ML
Coefficient covariance: ordinary
Message (nlminb): relative convergence (4)
No. of observations: 1661
Sample: 2002-01-02 to 2008-08-29

intercept arch1 garch1
Estimate: 0.005945772 0.05470749 0.93785529
Std. Error: 0.002797459 0.01180603 0.01349976

Log-likelihood: -2014.6588

Alternatively, the estimation result can be stored to facilitate the subsequent extraction of information:

mymod <- garchx(eps)
coef(mymod) #coefficient estimates
fitted(mymod) #fitted conditional variance
logLik(mymod) #log-likelihood (i.e., not the average log-likelihood)
nobs(mymod) #no. of observations
predict(mymod) #generate predictions of the conditional variance
print(mymod) #print of estimation result
quantile(mymod) #fitted quantile(s), the default corresponds to 97.5% value-at-risk
residuals(mymod) #standardized residuals
summary(mymod) #summarise with summary.default
toLatex(mymod) #LaTeX print of result (equation form)
vcov(mymod) #coefficient-covariance

The series returned by fitted, quantile, and residuals are of class zoo (Zeileis and Grothendieck,
2005).

To control the ARCH, GARCH, and asymmetry orders, the argument order, which takes a vector
of length 1, 2, or 3, can be used in a similar way to as in the garch() function of tseries:

• order[1] controls the GARCH order

• order[2] controls the ARCH order

• order[3] controls the asymmetry order
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For example, the following code estimate, respectively, a GARCH(1,1) with asymmetry and a GARCH(2,1)
without asymmetry:

garchx(eps, order = c(1,1,1)) #garch(1,1) w/asymmetry
garchx(eps, order = c(1,2)) #garch(2,1)

To illustrate how covariates can be included via the xreg argument, the lagged realized volatility from
the spyreal dataset can be used:

x <- spyreal[,"SPY_RK"]*100
xlagged <- lag(x) #this lags, since x is an xts object
xlagged[1] <- 0 #replace NA-value with 0

The code

garchx(eps, xreg = xlagged)

estimates a GARCH(1,1) with the lagged realized volatility as covariate, i.e.,

σ2
t = ω + α1ϵ2

t−1 + β1σ2
t−1 + λ1x1,t−1, (12)

and returns the print

Date: Wed Apr 15 09:26:46 2020
Method: normal ML
Coefficient covariance: ordinary
Message (nlminb): relative convergence (4)
No. of observations: 1661
Sample: 2002-01-02 to 2008-08-29

intercept arch1 garch1 SPY_RK
Estimate: 0.01763853 0.00000000 0.71873142 0.28152520
Std. Error: 0.01161863 0.03427413 0.09246282 0.08558003

Log-likelihood: -1970.247

The estimates suggest the ARCH parameter α1 is 0. In a t-test with α1 = 0 as the null hypothesis,
the parameter lies on the boundary of the permissible parameter space under the null. Accordingly,
inference is non-standard and below I illustrate how this can be carried out with the ttest0() function.
Note that if α1 is, indeed, 0, then the specification reduces to the non-exponential Realised GARCH of
Hansen et al. (2012). Below I illustrate how it can be estimated by simply omitting the ARCH term,
i.e., by imposing a zero-coefficient restriction via omission.

The "ordinary" coefficient-covariance is the default. To instead use the dependence robust
coefficient-covariance, set the vcov.type argument to "robust":

garchx(eps, xreg = xlagged, vcov.type = "robust")

The associated print

Date: Wed Apr 15 09:31:12 2020
Method: normal ML
Coefficient covariance: robust
Message (nlminb): relative convergence (4)
No. of observations: 1661
Sample: 2002-01-02 to 2008-08-29

intercept arch1 garch1 SPY_RK
Estimate: 0.01763853 0.00000000 0.7187314 0.2815252
Std. Error: 0.01864470 0.04569981 0.1507067 0.1136347

Log-likelihood: -1970.247

reveals the standard errors change, but not dramatically. If the estimation result had been stored in
an object with, say, the command mymod <-garchx(eps,xreg = xlagged), then the robust coefficient-
covariance could instead have been extracted by the code vcov(mymod,vcov.type = "robust").

Inference under nullity

If the value of a parameter is zero under the null hypothesis, then it lies on the boundary of the
permissible parameter space. In these cases, the non-standard inference is required, see Francq and
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Thieu (2018). The garchx package offers two functions to facilitate such non-standard tests, ttest0(),
and waldtest0().

Recall that ϑ0 denotes the d-dimensional vector of true parameters. In a plain GARCH(1,1), for
example, d = 3. Next, let ek denote a d × 1 vector whose elements are all 0 except element k, which is
1. The function ttest0() undertakes the following t-test of parameter k ≥ 2:

H0 : e′kϑ0 = 0 and e′lϑ0 > 0 ∀l ̸= k against HA : e′kϑ0 > 0.

Note that, in this test, all parameters – except parameter k – are assumed to be greater than 0 under the
null. While the test-statistic is the usual one, the p-value is obtained by only considering the positive
part of the normal distribution. To illustrate the usage of ttest0, let us revisit the GARCH(1,1)-X
model in (12):

mymod <- garchx(eps, xreg = xlagged)

In this model, the non-exponential Realized GARCH of Hansen et al. (2012) is obtained when the
ARCH(1)-parameter α1 is 0. This is straightforwardly tested with ttest0(mymod,k = 2), which yields

coef std.error t-stat p-value
arch1 0 0.03427413 0 0.5

In other words, at the most common significance levels, the result supports the claim that α1 = 0.
Finally, note that if the user does not specify k, then the code ttest0() returns a t-test of all the
coefficients except the intercept ω.

The function waldtest0() can be used to test whether one or more coefficients are zero. Let r
denote the restriction vector of dimension r0 × 1, and let R denote the combination matrix of dimension
r0 × d. Assuming that R has full row-rank, the null and alternative hypotheses in the Wald-test are
given by

H0 : Rϑ0 = r against HA : Rϑ0 ̸= r.

The associated Wald test-statistic has the usual form, but the distribution is non-standard (Francq and
Thieu, 2018):

WT = (Rϑ̂ − r)′R(Σ̂/T)R′(Rϑ̂ − r), WT
d→ W = ||RZ||2, Z ∼ N(0, Σ).

Critical values are obtained by parametric Bootstrap. First, the sequence{
||RẐi||2, i = 1, . . . , n

}
is simulated, where the Ẑi’s are independent and identically distributed N(0, Σ̂) vectors. In waldtest0(),
the default is n = 20000. Next, the critical value associated with significance level α ∈ (0, 1) is ob-
tained by computing the empirical (1-α)-quantile of the simulated values. To illustrate the usage of
waldtest0(), let us reconsider the GARCH(1,1)-X model in (12). Specifically, let us test whether both
the ARCH and GARCH coefficients are zero: H0 : α1 = 0 and β1 = 0. This means

r <- cbind(c(0,0))
R <- rbind(c(0,1,0,0),c(0,0,1,0))

Next, the command waldtest0(mymod,r = r,R = R) performs the test and returns a list with the
statistic and critical values:

$statistic
[1] 72.95893

$critical.values
10% 5% 1%
41.79952 57.97182 97.15217

In other words, the Wald statistic is 72.96 and the critical values associated with the 10%, 5%, and 1%
levels, respectively, are 41.80, 57.97, and 97.15. So H0 is rejected at the 10% and 5% levels, but not at the
1% level. If the user wishes to do so, the significance levels can be changed via the level argument.

Zero-coefficient restrictions via omission

The ARCH, GARCH, and asymmetry orders can be specified in two ways. Either via the order
argument as illustrated above or via the arch, garch, and asym arguments whose defaults are all NULL.
If any of their values is not NULL, then it takes precedence over the corresponding component in order.
For example, the code
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garchx(eps, order = c(0,0), arch = 1, garch = 1)

estimates a GARCH(1,1) since the values of arch and garch override those of order[2] and order[1],
respectively. Similarly, garchx(eps,asym = 1) estimates a GARCH(1,1) with asymmetry, and garchx(eps,garch
= 0) estimates a GARCH(1,0) model.

To estimate higher-order models with the arch, garch, and asym arguments, the lags must be
provided explicitly. For example, to estimate the GARCH(2,2) model σ2

t = ω + α1ϵ2
t−1 + α2ϵ2

t−2 +

β1σ2
t−1 + β2σ2

t−2, use

garchx(eps, arch = c(1,2), garch = c(1,2))

Zero-coefficient constraints, therefore, can be imposed by simply omitting the lags in question. For
example, to estimate the GARCH(2,2) model with α1 = β1 = 0, use

garchx(eps, arch = 2, garch = 2)

This returns the print

Date: Wed Apr 15 09:34:04 2020
Method: normal ML
Coefficient covariance: ordinary
Message (nlminb): relative convergence (4)
No. of observations: 1661
Sample: 2002-01-02 to 2008-08-29

intercept arch2 garch2
Estimate: 0.009667606 0.07533534 0.91392791
Std. Error: 0.004494075 0.01636917 0.01899654

Log-likelihood: -2033.7251

To estimate the non-exponential Realized GARCH of Hansen et al. (2012), use

garchx(eps, arch = 0, xreg = xlagged)

The returned print shows that the ARCH(1) term has not been included during the estimation.

Finally, a caveat is in order. The flexibility provided by the arch, garch, and asym arguments is
not always warranted by the underlying estimation theory. For example, if the ARCH-parameter
α1 in a plain GARCH(1,1) model is restricted to zero, then the normal ML estimator is invalid. The
garchx() function, nevertheless, tries to estimate it if the user provides the code garchx(eps,arch =
0). Currently, the function garchx() does not undertake any checks of whether the zero-coefficient
restrictions are theoretically valid.

Numerical optimization

The two optimization algorithms in base R that work best for GARCH estimation are, in my experience,
the "Nelder-Mead" method in the optim() function and the nlminb() function. The latter enables
bounded optimization, so it is the preferred algorithm here since the parameters of the GARCH model
must be non-negative. The "L-BFGS-B" method in optim() also enables bounded optimization, but it
does not work as well in my experience. When using the garchx() function, the call to nlminb() can
be controlled and tuned via the arguments initial.values, lower, upper, and control. In nlminb(),
the first argument is named start, whereas the other three are equal.

Suitable initial parameter values are important for numerical robustness. In the garchx() function,
the user can set these via the initial.values argument. If not, then they are automatically determined
internally. In the case of a GARCH(1,1), the default initial values are ω = 0.1, α1 = 0.1, and β1 = 0.7.
For numerical robustness, it is important that they are not too close to the lower boundary of 0 and
that β1 is not too close to instability, i.e., β1 ≥ 1. The choice c(0.1,0.1,0.7) works well across a range
of problems. Indeed, the Monte Carlo simulations of the large sample properties of the packages
(see Section 3) reveals that the numerical robustness of tseries improves when these initial values
are used instead of the default initial values. In the list returned by garchx(), the item named
initial.values contains the values used. For example, the following code extracts the initial values
used in the estimation of a GARCH(1,1) with asymmetry:

mymod <- garchx(eps, asym = 1)
mymod$initial.values
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In each iteration, nlminb() calls the function garchxObjective() to evaluate the objective function.
For additional numerical robustness, checks of the parameters and fitted conditional variance are
conducted within garchxObjective() at each iteration. The first check is for whether any of the pa-
rameter values at the current iteration are equal to NA. The second check is for whether any of the fitted
conditional variances are Inf, 0, or negative. If either of these checks fails, then garchxObjective()
returns the value of the logl.penalty argument in the garchx() function, whose default value is that
produced by the initial values. To avoid that the term ln σ2

t in the objective function explodes to minus
infinity, the fitted values of σ2

t are restricted to be equal or greater than the value provided by the
sigma2.min argument in the garchx() function.

A drawback with nlminb() is that it does not return an estimate of the Hessian at the opti-
mum, which is needed to compute the coefficient-covariance. To obtain such an estimate, the
optimHess() function is used. In garchx(), the call to optimHess() can be controlled and tuned via
the optim.control argument. Next, the inverse of the estimated Hessian is computed with solve(),
whose tolerance for detecting linear dependencies in the columns is determined by the solve.tol
argument in the garchx() function.

3 Checking the large sample properties

The function garchxAvar() returns the asymptotic coefficient-covariance of a GARCH-X model. Cur-
rently (version 1.1), only non-normality robust versions are available. The aim of this section is to
illustrate how it can be used to check whether the large sample properties of the packages correspond
to those of the underlying asymptotic estimation theory. Specifically, the aim is to explore whether
large sample estimates from Monte Carlo simulations are unbiased, whether the empirical standard
errors correspond to the asymptotic ones, and whether the estimate of the non-normality robust
coefficient-covariance is unbiased.

The garchxAvar() function

To recall, the non-normality robust asymptotic coefficient-covariance is given by

Σ =
(

E(η4
t )− 1)

)
J−1, J = E

(
∂2lt(ϑ0)

∂ϑ∂ϑ′

)
when the ηt’s are independent of the past. In general, the expression for J is not available in closed
form. Accordingly, numerical methods are needed. The garchxAvar() function combines simulation
and numerical differentiation to compute Σ. In short, the function proceeds by first simulating n
values of ϵt (the default is n = 10 million), and then the Hessian of the criterion function n−1 ∑n

t=1 lt(ϑ)
about the true value ϑ0 is obtained by numerical differentiation to compute an estimate of J. Internally,
the garchxAvar() function conducts the simulation with garchxSim() and the differentiation with
optimHess(). If we denote the numerically obtained Hessian as J̃, then the corresponding finite-
sample counterpart of the asymptotic coefficient-covariance associated with a sample of size T is given
by

1
T

(
E(η4

t )− 1
)

J̃−1. (13)

In other words, the square root of the diagonal of this expression is the asymptotic standard error
associated with sample size T.

To obtain an idea about the precision of garchxAvar(), a numerical comparison is made for the
case where the DGP is an ARCH(1) with standard normal innovations:

ϵt = σtηt, ηt
iid∼ N(0, 1), σ2

t = ω + α1ϵ2
t−1. (14)

In this case, it can be shown that

J = E

 1
(ω+α1ϵ2

t−1)
2

ϵ2
t−1

(ω+α1ϵ2
t−1)

2

ϵ2
t−1

(ω+α1ϵ2
t−1)

2
ϵ4

t−1
(ω+α1ϵ2

t−1)
2

 ; (15)

see (Francq and Zakoïan, 2019, pp. 180-181). In other words, in this specific case, it is straightforward to
obtain a numerical estimate of J without having to resort to numerical derivatives (as in garchxAvar())
by simply computing the means of the sample counterparts. For an ARCH(1) with (ω, α1) = (1, 0.1),
the code :

n <- 10000000
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omega <- 1; alpha1 <- 0.1
set.seed(123)
eta <- rnorm(n)
eps <- garchxSim(n, intercept = omega, arch = alpha1, garch = NULL,

innovations = eta)

epslagged2 <- eps[-length(eps)]^2
epslagged4 <- epslagged2^2
J <- matrix(NA, 2, 2)
J[1,1] <- mean( 1/( (omega+alpha1*epslagged2)^2 ) )
J[2,1] <- mean( epslagged2/( (omega+alpha1*epslagged2)^2 ) )
J[1,2] <- J[1,2]
J[2,2] <- mean( epslagged4/( (omega+alpha1*epslagged2)^2 ) )
Eeta4 <- 3
Avar1 <- (Eeta4-1)*solve(J)

computes the asymptotic coefficient-covariance, and stores it in an object named Avar1:

Avar1
[,1] [,2]

[1,] 3.475501 -1.368191
[2,] -1.368191 1.686703

With garchxAvar(), using the same simulated series for ηt, we obtain

Avar2 <- garchxAvar(c(omega,alpha1), arch=1, Eeta4=3, n=n, innovations=eta)
Avar2

intercept arch1
intercept 3.474903 -1.367301
arch1 -1.367301 1.685338

These are quite similar in relative terms since the ratio Avar2/Avar1 shows each entry in Avar2 is less
than 0.1% away from those of Avar1.

Bias and standard errors of estimates

To illustrate how garchxAvar() can be used to study the large sample properties of the packages, a
Monte Carlo study is undertaken. The DGP in the study is a plain GARCH(1,1) with either ηt ∼ N(0, 1)
or ηt ∼ standardized t(5), and the sample size is T = 10000:

ϵt = σtηt, ηt
iid∼ N(0, 1) or ηt

iid∼ standardized t(5), t = 1, . . . , T = 10000,

σ2
t = ω + α1ϵ2

t−1 + β1σ2
t−1, (ω, α1, β1) = (0.2, 0.1, 0.8).

The values of (ω, α1, β1) are similar to those that are usually found in empirical studies of financial
returns. The code

n <- 10000000
pars <- c(0.2, 0.1, 0.8)
set.seed(123)
AvarNormal <- garchxAvar(pars, arch=1, garch=1, Eeta4=3, n=n)
eta <- rt(n, df=5)/sqrt(5/3)
Avart5 <- garchxAvar(pars, arch=1, garch=1, Eeta4=9, n=n,

innovations=eta)

computes and stores the asymptotic coefficient-covariances in objects named AvarNormal and Avart5,
respectively. They are:

AvarNormal
intercept arch1 garch1

intercept 7.043653 1.1819890 -4.693843
arch1 1.181989 0.7784797 -1.278153
garch1 -4.693843 -1.2781529 3.616365

Avart5
intercept arch1 garch1

intercept 16.234885 3.216076 -11.313749
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m(ω̂) se(ω̂) ase(ω̂) m(α̂1) se(α̂1) ase(α̂1) m(β̂1) se(β̂1) ase(β̂1) n(NA)

N(0, 1):

tseries 0.218 0.160 0.027 0.100 0.010 0.009 0.791 0.082 0.019 0
fGarch 0.203 0.027 0.027 0.100 0.009 0.009 0.799 0.019 0.019 0
rugarch 0.204 0.027 0.027 0.100 0.009 0.009 0.797 0.019 0.019 0
garchx 0.203 0.027 0.027 0.100 0.009 0.009 0.798 0.019 0.019 0

t(5):

tseries 0.218 0.158 0.040 0.101 0.015 0.016 0.791 0.077 0.030 0
fGarch 0.204 0.039 0.040 0.101 0.016 0.016 0.797 0.030 0.030 0
rugarch 0.201 0.037 0.040 0.100 0.014 0.016 0.799 0.027 0.030 2
garchx 0.201 0.037 0.040 0.100 0.015 0.016 0.799 0.028 0.030 0

Table 2: Comparison of the large sample properties of tseries version 0.10-47 (Trapletti and Hornik,
2019), fGarch version R 3.0.1 (Wuertz et al., 2020), rugarch version 1.4-2 (Ghalanos, 2020), and garchx
version 1.1 (Sucarrat, 2020). m(·): sample average of estimates. se(·): sample standard deviation of
estimates. ase(·): asymptotic standard error. n(NA): the number of times estimation failed due to
numerical issues.

arch1 3.216076 2.483018 -3.647237
garch1 -11.313749 -3.647237 9.239820

Next, the asymptotic standard errors associated with sample size T = 10000 are obtained with

sqrt( diag(AvarNormal/10000) )
sqrt( diag(Avart5/10000) )

These values are contained in the columns labelled ase(·) in Table 2.

Table 2 contains the estimation results of the Monte Carlo study (1000 replications). For each
package, normal ML estimation is undertaken with default options on initial parameter values, initial
recursion values, and numerical control. The columns labelled m(·) contain the sample average
across the replications, and se(·) contains the sample standard deviation. Apart from tseries, the
simulations suggest the packages produce asymptotically unbiased estimates and empirical standard
errors that correspond to the asymptotic ones. Closer examination suggests the biases and faulty
empirical standard errors of tseries are due to outliers. Additional simulations, with non-default
initial parameter values, produce results similar to those of the other packages.3 This underlines the
importance of suitable initial parameter values for numerical robustness. The package rugarch ran
into numerical problems twice for ηt ∼ t(5), and thus, failed to returned estimates in these two cases.
Additional simulations confirmed rugarch is less robust numerically than the other packages under
its default options when ηt ∼ t(5), i.e., it always failed at least once. Changing the initial parameter
values to those of garchx did not resolve the problem. Also, changing the optimizer to a non-default
algorithm, nlminb(), which is the default algorithm in fGarch and the only option available in garchx,
produced more failures and substantially biased results by rugarch.4

Coefficient-covariance estimate

In each of the 1000 replications of the Monte Carlo study, the estimate of the asymptotic coefficient-
covariance is recorded. For fGarch, rugarch, and garchx, the estimate is of the non-normality robust
type. For tseries, which does not offer the non-normality robust option, the estimate is under the
assumption of normality. Note also that, for tseries, the results reported here are with the numerically
more robust non-default initial parameter values alluded to above.

Let Σ̂i denote the estimate produced by a package in replication i = 1, . . . , 1000 of the simulations.
The relative bias in replication i is given by the ratio Σ̂i/Σ, a 3× 3 matrix, which is obtained by dividing
the row i column j component in Σ̂i by the corresponding component in Σ. The average relative bias,

3The additional simulations are not reported, but they are readily conducted by minor modifications to the repli-
cation files. Specifically, the code garch(eps) needs to be modified to garch(eps, control = garch.control(start
= c(0.1, 0.1, 0.7))).

4In the replication code, these results are reproduced by changing the estimation command from
ugarchfit(data=eps, spec=spec) to ugarchfit(data=eps, spec=spec, solver="nlminb").
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m(Σ̂/Σ), is obtained by taking the average across the 1000 replications for each of the 9 entries. When
ηt ∼ N(0, 1), this produces the following averages:

##tseries:
intercept arch1 garch1

intercept 1.0702 1.0489 1.0656
arch1 1.0489 1.0256 1.0366
garch1 1.0656 1.0366 1.0566

##fGarch:
intercept arch1 garch1

intercept 1.0596 1.0335 1.0548
arch1 1.0335 1.0126 1.0229
garch1 1.0548 1.0229 1.0455

##rugarch:
intercept arch1 garch1

intercept 1.0869 1.0723 1.0848
arch1 1.0723 1.0280 1.0501
garch1 1.0848 1.0501 1.0748

##garchx:
intercept arch1 garch1

intercept 1.0630 1.0350 1.0576
arch1 1.0350 1.0142 1.0244
garch1 1.0576 1.0244 1.0479

Three general characteristics are clear. First, the ratios are all greater than 1. In other words, all
packages tend to return estimated coefficient-covariances that are too large in absolute terms. In
particular, standard errors tend to be too high. Second, the size of the biases is similar across packages.
Those of rugarch are slightly higher than those of the other packages, but the difference may disappear
if a larger number of replications is used. Third, the magnitude of the relative bias is fairly low since
they all lie between 1.26% and 8.69%.

When ηt ∼ t(5), the simulations produce the following averages:

##tseries:
intercept arch1 garch1

intercept 0.1082 0.1038 0.1088
arch1 0.1038 0.0952 0.1002
garch1 0.1088 0.1002 0.1070

##fGarch:
intercept arch1 garch1

intercept 0.9088 1.0198 0.9098
arch1 1.0198 1.0721 0.9858
garch1 0.9098 0.9858 0.9062

##rugarch:
intercept arch1 garch1

intercept 0.8423 0.8596 0.8356
arch1 0.8596 0.8361 0.8349
garch1 0.8356 0.8349 0.8263

##garchx:
intercept arch1 garch1

intercept 0.9343 0.9017 0.9200
arch1 0.9017 0.8973 0.8903
garch1 0.9200 0.8903 0.9043

The downwards relative bias of about 90% produced by tseries simply reflects that a non-normality
robust option is not available in that package. However, the size of the bias is larger than expected. If
it were simply due to E(η4

t ) in the expression for Σ being erroneous (3 instead of 9 in the simulations),
then the ratios should have been in the vicinity of (3− 1)/(9− 1) = 0.29. Instead, they are substantially
lower, since they all lie in the vicinity of 0.10. In other words, the way estimation is implemented by
tseries induces a downward bias in the standard errors that can be substantially larger than expected
when ηt is fat-tailed. The relative bias produced by fGarch, rugarch, and garchx is more moderate
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since they all lie less than 18% away from the true values. While the relative bias of rugarch is slightly
larger than those of fGarch and garchx, the general tendency of the three packages is that the bias is
downwards.

4 Comparison of speed

In nominal terms, all four packages are fairly fast. On an average contemporary laptop, for example,
estimation of a plain GARCH(1,1) usually takes less than a second if the number of observations
is 10000 or less. The reason is that all four packages use compiled C/C++ or Fortran code in the
recursion, i.e., the computationally most demanding part. While the nominal speed difference is
almost unnoticeable in simple models with small T, the relative difference among the packages is
significant. In other words, when T is large or when a large number of models are estimated (as in
Monte Carlo simulations), then the choice of a package can be important.

The comparison is undertaken with the microbenchmark (Mersmann, 2019) package version 1.4-7,
and the average estimation-time of four GARCH models are compared:

ϵt = σtηt, ηt
iid∼ N(0, 1),

1 GARCH(1,1): σ2
t = ω + α1ϵ2

t−1 + β1σ2
t−1

2 GARCH(2,2): σ2
t = ω + ∑2

i=1 αiϵ
2
t−i + ∑2

j=1 β jσ
2
t−j

3 GARCH(1,1) w/asymmetry: σ2
t = ω + α1ϵ2

t−1 + β1σ2
t−1 + γ1 I{ϵt−1<0}ϵ2

t−1

4 GARCH(1,1)-X: σ2
t = ω + α1ϵ2

t−1 + β1σ2
t−1 + λ1xt−1

The parameters of the Data Generating Processes (DGPs) are

(ω, α1, β1, α2, β2, γ1, λ1) = (0.2, 0.1, 0.8, 0.00, 0.00, 0.05, 0.3),

and xt in DGP number 4 is governed by the AR(1) process

xt = 0.5xt−1 + 0.1ut, ut
iid∼ N(0, 1).

The comparison is made for sample sizes T = 1000 and T = 2000.

Table 3 contains the results of the comparison in relative terms. A value of 1.0 means the package
is the fastest on average for the experiment in question. A value of 7.15 means the average estimation
time of the package is 7.15 times larger than the average of the fastest, and so on. The entry is empty if
the GARCH specification cannot be estimated by the package.The overall pattern of the results is clear:
tseries is the fastest among the models it can estimate, garchx is the second fastest, fGarch is the third
fastest, and rugarch is the slowest. Another salient feature is how much faster tseries is relative to the
other packages. This is particularly striking for the GARCH(2,2), where the second-fastest package
– garchx – is about 5 to 6 times slower, and the slowest package – rugarch – is about 28 to 30 times
slower. A third notable characteristic is that the relative differences tend to fall as the sample size T
increases. For example, rugarch is about 17 times slower than tseries when T = 1000, but only about
13 times slower when T = 2000. As for the specifications that tseries are not capable of estimating,
garchx is the fastest. Notably so compared with fGarch and even more so compared with rugarch.

5 Conclusions

This paper provides an overview of the package garchx and compares it with three prominent CRAN-
packages that offer GARCH estimation routines: tseries, fGarch, and rugarch. While garchx does
not offer all the GARCH-specifications available in rugarch, it is much more flexible than tseries,
and it also offers the important possibility of including covariates. This feature is not available in
fGarch. The package garchx also offers additional features that are not available in the other packages:
i) A dependence-robust coefficient covariance, ii) functions that facilitate hypothesis testing under
nullity, iii) zero-coefficient restrictions by omission, and iv) a function that computes the asymptotic
coefficient-covariance of a GARCH model.

In a Monte Carlo study of the packages, the large sample properties of the normal Quasi ML
(QML) estimator were studied. There, it was revealed that fGarch and garchx are numerically more
robust (under default options) than tseries and rugarch. However, in the case of tseries, the study also
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DGP T tseries fGarch rugarch garchx
1 GARCH(1, 1): 1000 1.00 7.15 17.42 2.69

2000 1.00 6.28 12.89 1.85

2 GARCH(2, 2): 1000 1.00 10.14 29.78 5.27
2000 1.00 14.72 27.79 6.27

3 GARCH(1, 1, 1): 1000 2.26 14.72 1.00
2000 2.97 9.91 1.00

4 GARCH(1, 1)-X: 1000 5.90 1.00
2000 6.36 1.00

Table 3: Relative speed comparison of tseries version 0.10-47 (Trapletti and Hornik, 2019), fGarch
version R 3.0.1 (Wuertz et al., 2020), rugarch version 1.4-2 (Ghalanos, 2020), and garchx version 1.1
(Sucarrat, 2020). A value of 1.00 means the package is the fastest on average for the experiment in
question. A value of 7.15 means the average estimation time of the package is 7.15 times larger than the
average of the fastest, and so on. The entry is empty if the GARCH specification cannot be estimated
by the package.

revealed how its numerical robustness could be improved straightforwardly by simply changing the
initial parameter values. In the case of rugarch, it is less clear how the numerical robustness can be
improved. The study also revealed that the standard errors of tseries could be substantially biased
downwards when ηt is non-normal. A bias is expected since tseries does not offer a non-normality
robust coefficient-covariance. However, the bias is larger than suggested by the underlying estimation
theory.

In a relative speed comparison of the packages, it emerged that the least flexible package – tseries –
is notably faster than the other packages. Next, garchx is the second fastest (1.85 to 6.27 times slower
in the experiments), fGarch is the third fastest, and rugarch is the slowest. The experiments also
revealed that the difference could be larger in higher-order models. For example, in the estimation of a
GARCH(2,2), rugarch was about 28 times slower than tseries. In estimating a plain GARCH(1,1), by
contrast, it was only 13 to 17 times slower. Another finding was that the difference seems to fall in
sample size: The larger the sample size, the smaller the difference in speed.
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6 Appendix: Estimation of the dependence robust coefficient-covariance

Francq and Thieu (2018) show that
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This means
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The computationally challenging part to estimate in I is ∂σ2
t (ϑ0)/∂ϑ since it entails the computation

of a numerically differentiated gradient of a recursion at each t. In garchx, this is implemented with
numericDeriv() in the vcov.garchx() function.
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RLumCarlo: Simulating Cold Light using
Monte Carlo Methods
by Sebastian Kreutzer, Johannes Friedrich, Vasilis Pagonis, Christian Laag, Ena Rajovic, and
Christoph Schmidt

Abstract The luminescence phenomena of insulators and semiconductors (e.g., natural minerals such
as quartz) have various application domains. For instance, Earth Sciences and archaeology exploit
luminescence as a dating method. Herein, we present the R package RLumCarlo implementing sets of
luminescence models to be simulated with Monte Carlo (MC) methods. MC methods make a powerful
ally to all kinds of simulation attempts involving stochastic processes. Luminescence production
is such a stochastic process in the form of charge (electron-hole pairs) interaction within insulators
and semiconductors. To simulate luminescence-signal curves, we distribute single and independent
MC processes to virtual MC clusters. RLumCarlo comes with a modularized design and consistent
user interface: (1) C++ functions represent the modeling core and implement models for specific
stimulations modes. (2) R functions give access to combinations of models and stimulation modes,
start the simulation and render terminal and graphical feedback. The combination of MC clusters
supports the simulation of complex luminescence phenomena.

1 Introduction

Light is perhaps the most basic everyday experience. Light emission that is not caused by the heating
of a substance is called luminescence or ‘cold light’. Various fields exploit this phenomenon. For
instance, Earth Sciences and archaeology determine the timing of past events (e.g., last sunlight
exposure or heating) with a technique called luminescence dating. Since 2012, the luminescence-dating
(or more general trapped-charge dating) community has gradually adapted R as a universal tool to
analyze, model, and visualize their data. Relevant related CRAN packages are: BayLum (Bayesian
modeling: Philippe et al., 2019; Christophe et al., 2018), Luminescence (luminescence- data analysis,
Kreutzer et al., 2012, 2020), numOSL (luminescence-data analysis, Peng et al., 2013; Peng and Li,
2018), RLumModel (luminescence-data modeling, Friedrich et al., 2016, 2020), RLumShiny (graphical
interface to functions for plotting and calculation in the framework of luminescence-data analysis,
Burow et al., 2016, 2019), and tgcd (curve deconvolution, Peng et al., 2016; Peng, 2020).

Figure 1: RLumCarlo simulates luminescence production in natural minerals such as quartz using
Monte Carlo methods. Input is fairly simple (energy-band) models simulating movements of, e.g.,
electrons in the crystal lattice of quartz. The probability of observing such transitions is a function
of energy input in the form of light, heat, or ionizing radiation (e.g., β- or γ-radiation). Th output of
RLumCarlo is a luminescence curve. This is the light output observed when electrons descend from a
higher energy state to a lower energy state emitting part of the energy difference as light.
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The luminescence production process is a stochastic process involving discrete random state
transitions of subatomic particles. In the case of luminescence, this translates to electrons (and holes)
moving to different energy levels, e.g., in the crystal lattice of the natural mineral quartz. Such
processes are ideal for Monte Carlo (MC) simulations, and their application has a long and propelling
history in physics (cf. Landau and Binder, 2015). Figure 1 summarizes the purpose of RLumCarlo
developed to simulate luminescence signals in semiconductors and insulators (e.g., quartz) using MC
methods. To that end, RLumCarlo employs simple (energy-band) models that describe the physical
processes in, e.g., the quartz crystal, to simulate xy-curves (luminescence curves). The modeling
output expresses the evolution of the light production (luminescence process) over time.

Our contribution, and so RLumCarlo, sits on precedent work by Pagonis and Chen (2015), Pagonis
et al. (2014), Pagonis et al. (2019), and Pagonis et al. (2020). The included collection of energy-band
models for different stimulation modes adapted to MC methods are valuable for, e.g., studying the
impact of model parameters on the signal-related stochastic uncertainties or statistic effects in tiny,
dosimetric systems. Technically, our approach is closely related to the simulation of birth-and-death
processes (for a review on birth-and-death process cf. Novozhilov et al., 2006). Each simulation run
describes a Markov process. However, in our case, we allow only a reduction of an initial number of
particles (i.e., only death processes).

Herein, we will not derive the full theoretical background of the models, but we will focus on the
technical aspects of the package design and the integration of the MC methods. Such a presentation
was beyond the scope of previous articles (e.g., Pagonis et al., 2019, 2020), but it is likely of interest to a
broader community.

We structured our contribution as follows. The introduction continues with a brief paragraph
on luminescence and the term ‘cold light’. After that, we detail the rationales for our contribution
by recalling conventional modeling approaches in the field. Readers familiar with these topics
may safely skip this part. The subsequent section outlines the concept and the implementation of
RLumCarlo, including code examples. The remainder addresses (A) the implementation of a virtual
dosimetric system to simulate weak spatial correlation of dosimetric cluster groups. (B) We outline
how RLumCarlo can simulate more complex models compared to other solutions, with respect to its
strengths and limitations. An outlook outlining the potential to implement more interactions between
models will close our manuscript.

‘Cold light’ in a nutshell

Light emissions of semiconductors or insulators after exposure to ionizing radiation is a luminescence
phenomenon now and then paraphrased as ‘cold light’. The term luminescence relates to light
production not purely caused by the heating of a substance, a condition called ‘incandescence’ or black
body radiation, but a phenomenon expressing the inherent capacity of a material (dosimeter) to emit
light (energy) in the ultraviolet to infrared wavelength range (e.g., Newton Harvey, 1957; Mahesh
et al., 1989). Heat-related luminescence phenomena of solids have been explored systematically in
physics since the 1930s (Urbach, 1930) to characterize materials and understand charge transfers in
dosimeters (e.g., McKeever, 1983; Mahesh et al., 1989). The amount of luminescence, in the context of
this manuscript, correlates to the energy absorbed by a dosimeter during ionizing irradiation. The
closest analogy to a dosimeter is a battery that can be charged by, e.g., γ-radiation and discharges while
emitting light. Natural minerals such as quartz or feldspar are dosimeters. Defects and impurities
in their crystal lattice can trap charges (electrons or holes) in metastable states between valence and
conduction band. The time an electron spends in such a state can vary from a fraction of a second to
millions of years, depending on the crystal lattice configuration and the environmental conditions.
The amount of (potential) energy held by an electron in such a center is approximately the energy
difference between the valence band and the energy level of the center. A transition of the electron to a
lower energy state may lead to a photon emission of the form Ephoton = h̄ωnm = En − Em

1. Energy
input (‘stimulation’) can move the electron out of the defect and eventually it recombines with a
hole trapped at another defect (‘recombination centre’). Types of stimulation methods relevant for
our contribution are heat (thermally stimulated luminescence, TL), visible light (optically stimulated
luminescence, OSL), and infrared light (infrared stimulated luminescence, IRSL).

Luminescence phenomena have versatile use in the fields of personal, medical, and accidental
dosimetry (e.g., Yukihara and McKeever, 2011). As aforementioned, in Earth Sciences and archaeology,
the luminescence of natural minerals gained considerable attractiveness as a dating method (lumi-
nescence dating). First attempts exploiting luminescence signals as a chronological tool reach back to
the 1950s (Daniels et al., 1953; Houtermans and Stauffer, 1957; Grögler et al., 1958). Nevertheless, it
needed a few decades more before the method took off and became today one of the most frequently

1 h̄ (eV s): Planck constant divided by 2π; ω (radians per s): frequency; En (eV): higher energy state; Em (eV):
lower energy state
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used dating methods on sediments for the last 250,000 years and beyond (e.g., Aitken, 1985, 1998;
Bateman, 2019).

2 Towards Monte Carlo simulations

To explain luminescence production, Johnson (1939) and Randall and Wilkins (1945) introduced the
first basic energy-band models. Today, most of the commonly accepted luminescence models use
series of more or less complicated systems of differential equations (for an overview, see Chen and
McKeever, 1997; Bøtter-Jensen et al., 2003; Chen et al., 2011) employing energy-band models. Those
models provide a proper phenomenological match with measured data for various experimental
designs by simulating electronic transitions. ’Conventional’ energy-band models available to simulate
luminescence production are developed as a set of nonlinear differential equations. This brings some
limitations:

1. The models become complex easily and cannot be solved analytically.
2. If numerical methods are used, some equations are numerically unstable, which may lead to

wrong simulation results.
3. A convenient assumption in many of such models is a great abundance of spatially uniformly

distributed traps and recombination centers. However, this is not always the most prudent
assumption. A spatial correlation and cluster formation of centers may exist for various reasons
(cf. Mandowski and Świaltek, 1992; Chen et al., 2011; Horowitz et al., 2017).

4. Deterministic models do not consider stochastic uncertainties and simulated curves are ‘noise
free’. These limits subsequent analyses for materials where such uncertainties would matter
due to the low, finite, number of charge carriers, and in these scenarios, simulation results are
used as reference data to test statistical models used for luminescence data analysis in general.

Modeling code for simulating luminescence production was often written with the tools at hand,
e.g., Mathematica (e.g., Pagonis et al., 2006), which has led to a fragmentation of incompatible solutions.
In 2016, Friedrich et al. (2016) introduced RLumModel (Friedrich et al., 2020), pooling available kinetic
(non-MC) models available for the luminescence production in quartz. A tantamount suite of R code
was presented simultaneously by Peng and Pagonis (2016). We will compare results from RLumModel
and RLumCarlo at the end of this manuscript.

MC simulations offer an alternative and are indispensable if the simulation of defect clusters in
combination with the analysis of stochastic uncertainties is desired. Usually, the underlying models are
very simple, but can be combined to describe complex systems. Important early work simulating TL
using MC methods goes back to Mandowski and Świaltek (1992) and Kulkarni (1994). Mandowski and
Świaltek (1992) tried to overcome the prerequisite of a large number of sample carriers, and Kulkarni
(1994) investigated MC methods to overcome very long calculation times encountered for numerical
calculations in particular scenarios. Kulkarni (1994) (p. 103) also reported a “statistical fluctuation”
(noise like scatter) caused by the MC simulations but considered this more as a disadvantage. Later,
Pagonis et al. (2020) explicitly exploited this as a feature, similar to birth-and-death processes and their
related random uncertainties, to investigate specifically the stochastic uncertainties.

Before we start to detail RLumCarlo, a preceding note of caution: Any attempt to answer the
question of whether a particular model may better explain the one or the other effect measured in
luminescence studies would open Pandora’s box (e.g., Horowitz et al., 2017). Consequently, we will
not engage in such a discussion. What we have implemented so far in RLumCarlo can be modified
and exchanged. However, the underlying design concept remains applicable.

3 The concept of RLumCarlo

RLumCarlo implements energy-band models in a modular approach. Each model can simulate only
an isolated effect (e.g., a single curve, see below), but the package design allows various combinations,
e.g., in the form of clusters. Hence, RLumCarlo can evolve beyond a specific mathematical model
through a combination of simple models.

To that end, RLumCarlo differs fundamentally from RLumModel, where the collected models
allow the simulation of complex phenomena and even entire measurement sequences (Friedrich et al.,
2016) but are self-contained by design. In other words, simulations cannot evolve beyond a specific
mathematical model selected by the user. In RLumCarlo, the implemented energy-band models
can simulate only isolated effects (e.g., a single curve, see below), but the package design allows a
combination in the form of clusters. Throughout the text, we will use the word ‘clusters’ to (1) ascribe
virtual units used in the MC simulation to run independent random processes (henceforth MC clusters)
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Figure 2: Energy-band model representation of the models implemented in RLumCarlo. Letters
represent physical model parameters, and arrows indicate allowed transitions. (A) Delocalized
transition: the model consists of one single trap and one recombination center. Transition processes
involve the conduction band. (B) Localized transition: the model consists of two sub-conduction
band energy levels. Charge transitions do not involve the conduction band but take place locally
with a constant recombination rate. (C) Tunneling transition: The model consists of one trap and
one recombination center. Transitions take place from the excited state into the recombination center
without involving the conduction band, and the recombination rate depends on the distance between
electrons and holes. All symbols are detailed in the package manual, the package vignette, and the
main text. Side note: For the creation of the plots we used scales and ggplot2 (https://github.com/
JohannesFriedrich/EnergyBandModels).

and (2) to define groups of defects (defect clusters) e.g., defined by their spatial distance. Only the
latter carry a physical meaning.

Implemented energy-band models

To date, RLumCarlo ships three simple energy-band models (Figure 2) to simulate luminescence
production using (A) delocalized transitions, (B) localized transitions, and (C) excited state tunneling
transitions. The models are distinguished by the allowed routes of electrons involved in the lumi-
nescence process from one energy state to another. Only the first model (Figure 2A) involves the
conduction band, while the models in Figures 2B and C limit the allowed electron pathways to energy
levels below the conduction band.

While the parameters differ from model to model and depend on the stimulation mode (heat
or light, continuous or ramped), key entities remain alike across the models, such as the trap depth
(the energy difference of the electron state from the conduction band) E (eV), the attempt to escape
frequency of an electron from the trap (short: frequency factor) s (s−1), the temperature T (K), and the
trapped concentration of electrons n (cm−3) in the trap. N (models A and B) is the total number of
available electrons in cm−3 and ρ′ is the dimensionless density of recombination centers (model C,
Huntley, 2006). The symbols An, Am, and A (model A), B and A (model B), and B, A, and r′ (model C)
plotted next to the arrows in Figure 2 parametrize, simply put, the rates of the electronic transitions.

The conditions of the simulations are defined through these parameters, with n being the crucial
number. Once the electrons have all recombined, the simulation may still continue, but the lumi-
nescence signal is zero. As we will detail below, the essential point of the MC simulation, from the
physical point of view, is that these concentrations become dimensionless, absolute numbers in a finite
system.

Each model supports up to four different stimulation modes (Figure 3), i.e., the type of energy
input (light or heat) and its modulation (continuous or ramped).

As an example, we will detail the mathematical background and its implementation for delocalized
transitions below. For all other models, we may refer to the cited literature as well as the package
manual.
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Figure 3: Stimulation modes in RLumCarlo applicable to the models. ISO-TL: isothermal TL, i.e.,
constant stimulation temperature over time. TL: thermal luminescence, i.e., temperature ramps (ap-
proximately linearly) over time. CW-OSL/IRSL: continuous wave optically stimulated luminescence
respectively infrared stimulated luminescence, constant optical stimulation over time. LM-OSL: lin-
early modulated optically stimulated luminescence, i.e., linearly ramped optical stimulation over time.

Conceptional overview of the implementation

The basic implementation of the MC processes as a software algorithm consists of two nested loops.
The outer loop iterates over a time 0 < t ⩽ tmax with t ∈ R > 0. The inner part loops over particles
0 < j ⩽ n with n ∈ Z. The model tests a random number, newly sampled with replacement in each
run, against a threshold P. If the sampled random number is smaller than P, the absolute number
of particles is reduced by one. The code below shows the basic algorithm outlined above for the
radioactive decay, which we have chosen because it can be found in standard textbooks (e.g., Landau
and Binder, 2015). Below we used R code for illustrative reasons, while the package implementation is
written in C++.

n <- 1000
t <- 1:100
P <- 0.2
remaining <- numeric(length(t))

for (t in t) {
for (j in 1:n) {
if (runif(1) < P && n > 0)
n <- n - 1

}

if (n > 0)
remaining[t] <- n

}

For example, the algorithm starts with 1,000 particles. In time instant t1, the random number
was smaller for two particles j6 and j576. Hence, in time instant t2, the inner loop iterates only over
j = {1, 2, ..., 998} particles. The absolute number of remaining particles for each t is stored in a vector
of length tmax/∆t. This vector is the observed signal curve (in the case of luminescence, the righthand
side graph on the green board in Figure 1).

Implementation example for the OTOR model

The implementation for luminescence production in RLumCarlo is very similar. To exemplify the adap-
tation of the models to be run as an MC simulation, we have selected the one-trap one-recombination
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center (OTOR) model (based on Halperin and Braner, 1960) for TL. Our description below follows
Pagonis and Chen (2015).

The OTOR model for TL can be expressed with the following set of differential equations:

dn
dt

= −ns exp(− E
kBT

) + nc(N − n)An (1)

dnc

dt
= − dn

dt
− ncmAm (2)

ITL(t) = − dm
dt

= ncmAm. (3)

Beyond already mentioned symbols, we used in the equations ITL, the time-dependent intensity,
and nc (cm−3), the current concentration of electrons in the conduction band. The concentration
of recombination centers is represented by m (cm−3), where for reasons of charge neutrality m =
n + nc. An and Am (both in cm3 s−1) are the capture coefficients for traps and recombinations centers,
respectively. kB (eV K−1) is the Boltzmann constant and T (K), the absolute temperature.

By assuming quasi-static equilibrium conditions (Chen et al., 2011)∣∣∣ dnc

dt

∣∣∣ ≪ ∣∣∣ dn
dt

∣∣∣, ∣∣∣ dm
dt

∣∣∣ ; nc ≪ n, n ≃ m, (4)

the resulting TL intensity becomes the general one trap equation, GOT:

ITL(t) = − dn
dt

= s exp(− E
kBT

)
Amn2

(N − n)An + nAm
. (5)

T = T0 + β × t, (6)

with T (K) and T0 (K) being temperatures, β (K s−1) the (heating) rate, and t (s) the simulation time.
p(t) = s exp(− E

kBT ) is the rate of thermal excitation, and R = An
Am

is the dimensionless retrapping ratio.
The translation into a finite system with a discrete distribution of charge carriers (cf. Mandowski and
Swiatek, 1991, 1994), can be expressed through

χn, χN → n̄, N̄, (7)

and the differential equation becomes a difference equation:

ITL(t) = − 1
β

∆n̄
∆t

= p(t)
n̄2

N̄R + n̄(1 − R)
. (8)

χ (cm3) is a constant, n̄, N̄ ∈ Z, and ∆t = 1 s is an appropriate time interval. R is the dimensionless
re-trapping ratio in the finite system. To simulate the luminescence process, the related Markov
process renders similar to the theory of birth-and-death processes (e.g., Novozhilov et al., 2006), where
the population (here of electrons) decreases over continuous time with the probability to observe
a transition within ∆t being P = µn̄∆t (here µn̄ is the “death-rate” in s−1) until the population is
depleted. The so-called ‘brute force’ approach (e.g., Landau and Binder, 2015) tests the population of
electrons (n̄) per integer time step sequentially by comparing it against a random number sampled
with replacement from a continuous distribution r ∼ U (0, 1) against the conditional probability P for
an electron to get evicted from the trap. In our case, P is calculated as follows:

p(t)× δt × n
N̄R + n̄(1 − R)

. (9)

The factor δt allows values of ∆t ̸= 1 while ensuring that P ≪ 1. p(t) depends on the stimulation
mode and the chosen model. For TL (functions named run_MC_TL_<model>()) and isothermal TL
(functions named run_MC_ISO_<model>()) applying the localized or delocalized model p(t) becomes:

p(t) = s exp(− E
kBT

), (10)

and for TL, from tunneling transitions it reads:

p(t) = s exp(− E
kBT

) exp(−ρ′−1/3r′), (11)
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with ρ′ being the dimensionless concentration of recombination centers, and r′ being the dimensionless
tunneling radius (Huntley, 2006). The basic structure in RLumCarlo is, however, identical, except
for the models based on excited-state tunneling. Here, an additional outer loop iterates over the
dimensionless tunneling radius 0 ⩽ r′ ⩽ 2 (Huntley, 2006).

The package design

C
++

&

Rcp
p

run_MC_TL_DELOC()
run_MC_TL_LOC()
run_MC_TL_TUN()
.
.
.
run_MC_ISO_TUN()

Modeling functions

Helper functions
plot_RLumCarlo()
summary(), c()
...

> summary(results)

time mean var
Min. :200 Min. : 0.00000 ... Min. :0.0000000
1st Qu.:275 1st Qu.: 0.06356 ... 1st Qu.:0.0000016
Median :350 Median : 0.91324 ... Median :0.0011150
Mean :350 Mean : 4.02468 ... Mean :0.1690922
3rd Qu.:425 3rd Qu.: 6.66946 ... 3rd Qu.:0.1059095
Max. :500 Max. :17.37302 ... Max. :1.5895814

Modeling core Graphical feedback

Terminal output

Internal helpers

Figure 4: The conceptional design of RLumCarlo. User interaction is realized via exported R functions,
one function for each model and stimulation type. For the MC runs, we use C++ functions interfaced
via Rcpp. Helper functions support graphical and terminal feedback.

In Figure 4, we outline the basic layout of RLumCarlo. Two design decisions stand out: (1) Each
stimulation mode/energy-band model combination has its own exported R function commencing with
the prefix run_MC. (2) These functions interface one C++ function, each via Rcpp (Eddelbuettel et al.,
2020) (for an overview, see the vignette of RLumCarlo). The R functions provide a convenient user
interface, and the C++ functions constitute the workhorse, as shown in the modeling core (Figure 4).
While the apparent reason for using C++ was speed, the implementation could have been programmed
more concisely, i.e., completely in C++ instead of interfacing C++ with R. However, we wanted to
allow code inspection by non-specialists from our field, who may wish to implement other models
alike. We found that the separation of the user interface (in R) from the modeling core (in C++) aligns
best with our premise of simplicity and flexibility.

As indicated above in the example implementation algorithm, each simulation run (Kulkarni, 1994,
used the term ‘particle tracking’) starts with n > 1 and ends at tmax, while I(t) = 0 for n = 0. In reality,
one has to execute several simulation runs separately (henceforth ‘MC clusters’, to be distinguished
from defect clusters), either to reduce the statistical fluctuation or to estimate the stochastic error
(Kulkarni, 1994). RLumCarlo runs the simulations in virtual MC clusters on single or multicore
systems using parallel (R Core Team, 2020), doParallel (Microsoft Corporation and Weston, 2020), and
foreach (Microsoft and Weston, 2020) supported by helper functions (Figure 4), to summarize results
and to provide S3-class based graphical output.

4 Simple illustrative examples

Simulations start with a call of the respective function, e.g., for TL using the DELOC model run_MC_TL_DELOC()
or run_MC_TL_LOC() for the LOC model, respectively (see Figures 2A-B).

results <- run_MC_TL_DELOC(
s = 3.5e12,
E = 1.45,
clusters = 10,
n_filled = 200,
R = 1,
times = 100:450)

The function parameter names follow the terminology used for the mathematical expression of
the models as closely as possible. For example, E and s are E (trap depth in eV) and s (frequency
factor in s−1). R (R in Figure 3) is the so-called re-trapping ratio, expressing the chance an electron of
not passing into the conduction band, and n_filled is n̄, the number of electrons at the beginning of
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Figure 5: Exemplary comparison of TL signals simulated for all three RLumCarlo models: (A)
delocalized (DELOC), (B) localized (LOC), and (C) tunneling (TUN). General physical parameters,
such as E (1.45 eV), s (3.5 × 1012 s−1), and the stimulation temperature (100–450 ◦C) were kept constant
for all models.
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Figure 6: (A) Plot of the remaining electrons for the TL process using the delocalized transition model
for which we show the luminescence signal in Figure 5A. (B) Plot of remaining electrons for two
models combined in one system. (C) Stochastic uncertainty structure from (B).

the simulation. The duration of the simulation on the time domain (which is not the duration of the
computation) is set by times. The parameter clusters sets the number of MC clusters, i.e., the number
of Markov chains. High numbers in clusters increase the confidence in the simulation output at the
cost of more computation time.

The output can be passed to a dedicated plot function (plot_RLumCarlo()). The function supports
a couple of standard plot arguments, such as main for the title of the plot, which is passed down to
graphics::plot.default() via ... (type ?dots in the R terminal).

plot_RLumCarlo(
object = results,
legend = TRUE,
main = "(A) Delocalized transition")

The parameter n_filled can be a vector enabling different starting conditions for each MC cluster.
Figure 5A shows the graphical output for delocalized transitions along with the simulation results for
TL stimulation using localized (Figure 5B) and tunneling transitions (Figure 5C). The output is an
object of class RLumCarlo_Model_Output, which is a list comprising a multi-dimensional array (one
slice per MC cluster) with the resulting luminescence signal and a numeric vector for the stimulation
time.

Currently we provide S3-generics for summary() and c(). The first one is also used internally by
plot_RLumCarlo() to melt the array into a data.frame before plotting. The plot output adapts to the
used stimulation mode provided via an attribute with each output object.

A straightforward application for this kind of simulation is the study of the impact of physical
parameters on the luminescence signal output and the estimation of the stochastic uncertainties, which
cannot be achieved with the deterministic approach of differential equations.
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We provide more, always up-to-date examples with the package vignette, where we also compiled
a table with meaningful physical parameter ranges for each model.

Advanced examples and further considerations

The examples so far presented may not appear very sophisticated, and still, they allow insight that
goes beyond a simple educational purpose of simulating luminescence based on phenomenological
models. Pagonis et al. (2020), who used a preliminary version of RLumCarlo, addressed in detail the
stochastic uncertainties of TL and OSL models. These uncertainties come into play in nano-dosimetric
materials with a small number of defect clusters where the “finite-size” (Mandowski and Swiatek,
1991) of the system starts to matter in terms of a presumed spatial correlation of defect cluster groups.
To some extent, this should also be true for systems exposed to high-energy radiation causing defect
clusters (e.g., Mandowski and Swiatek, 1991; Mandowski and Świaltek, 1992). Previously in this paper,
we have used the term ‘MC clusters’. For a start, in RLumCarlo, ‘MC clusters’ entail independent and
continuous Monte Carlo Markov chains employed to simulate luminescence production, starting with
a particular number of electrons in the system. Whether the processes are run in parallel or sequentially
has no impact on the outcome, except for computation speed. In other words, ‘MC clusters’ carry
no meaning regarding the underlying physics. However, as mentioned above, ‘MC clusters‘ from
different models (with the same stimulation mode) can be concatenated (see Figure 6B-C) to simulate
defect clusters (also, dosimetric clusters), to which we can attribute physical meaning.

Spatial correlation

To simulate a three-dimensional (dosimetric) system, we can add meaning to MC clusters by reinter-
preting them as dosimetric clusters. From the modeling perspective, nothing changes, but MC clusters
gain a connotation of having a physical meaning.

Figure 7A illustrates the situation of model combinations transferred into a virtual, three-dimen-
sional dosimetric system. Since all defect clusters are distributed evenly over the system, the distance
to each neighboring point is identical, and it is a constant rather than a variable. In other words, the
spatial distance between neighboring points does not matter and is of no relevance for the simulation
but here chosen for illustrative reasons only. Figure 7B represents a situation that takes one step further.
Here, the points are randomly distributed over the system, and points form groups (defect cluster
groups). Additionally, RLumCarlo supports the mixing of models for the same stimulation mode
as in Figure 7A (not shown here). The driving idea of the implementation is the assumption of an
individual spatial ordering of defects in a, e.g., quartz crystal to which the luminescence production
process might be assigned based on models mentioned above.

Such a system can be created in RLumCarlo via create_ClusterSystem(). The function distributes
points randomly with their coordinates:

x1, y1, z1, ..., xk, yk, zk ∼ U (0, 1) | k ∈ Z. (12)

Mixing of models,
no spatial correlation, no interaction

Mixing of models,
simple spatial correlation, no interaction

A B C

Mixing of models,
advanced spatial correlation, interaction

Model 1

Model 2

Model 3

transfer function
enabling charge
exchange based
on their spatial

distance e-
e-

e-

e-

e-
e-e-

Model 1

Cluster
groups

Cluster
groups

Model 2

Model 3

Figure 7: A dosimetric system with three possible approaches of cluster correlation and interaction.
(A) Models can be mixed, but no spatial correlation is realized, and no interaction possible. This is
the basic mode in RLumCarlo. (B) Clusters are grouped by their Euclidean distance, and models can
be mixed. Electrons are distributed according to the spatial distance of clusters and also models can
be mixed (not shown in the figure). The advanced mode in RLumCarlo. (C) Clusters can interact
with each other and even exchange electrons. This last stage is subject to future developments of
RLumCarlo.
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Then, the Euclidean distance between the points is determined with stats:dist(), which is
used by stats:hclust() to group the defect clusters (Ξ). To avoid too many small groups, we then
cut the cluster tree using stats:cutree(), with the outcome shown in Figure 7B. The selection of
stats:hclust() and stats:cutree() for defining the clusters is somewhat arbitrary and might be
refined in the future. Therefore, more research, supported by measurements, is needed.

Now, any function from RLumCarlo can be used, and the output of create_ClusterSystem() is
taken as input for the argument clusters. For example:

run_MC_TL_LOC(s = 3.5e12, E = 1.45, n_filled = 1000,
clusters = create_ClusterSystem(100))

creates a system with 100 randomly distributed defect clusters. If the simulation is run in such a mode,
the meaning of n_filled changes. Previously, it defined the number of electrons in each cluster (n̄cli

).
However, now the same parameter defines the total number of electrons in the entire system. The
number of electrons in the ith cluster (n̄cli

) is then an integer fraction of electrons available in each
cluster group (n̄Ξi = n_filled/NΞ, with NΞ the total number of cluster groups). The more clusters
are in one group, the less electrons are available per cluster in the group and vice versa. While this
is a very simple approach, it allows us to simulate basic spatial correlation. Figure 7C drafts a better
way of mimicking spatial interaction of clusters, which is, however, not yet part of RLumCarlo. While
it would be, based on the designed system, easy from the programming perspective, the needed
equations to describe to exchange electrons are yet to be developed.

Comparison to RLumModel

In the remainder, we want to compare simulation results from RLumCarlo, with other types of so-
lutions, such as RLumModel which uses coupled differential equations to simulate luminescence
production. RLumModel was selected since it was developed by some of the authors of this contribu-
tion. However, in theory, simple scripts using any existing models to simulate luminescence should
work as well (as long as the models are comparable).

In contrast to RLumCarlo, RLumModel input values for physical parameters are preset. RLum-
Model encourages users to write a virtual luminescence signal measurement sequence, which is
processed based on a pre-defined model with preset physical parameters.

For the comparison, we have selected a TL curve simulated with the luminescence model for
quartz by Bailey (2001).

output <- RLumModel::model_LuminescenceSignals(
sequence = list(IRR = c(20, 10, 1), TL = c(20, 400, 1)),
model = "Bailey2001"

)

The results are shown in Figure 8 (here already with the simulation results from RLumCarlo
plotted on top of it). The output of RLumModel is a three-peak-shaped curve. To simulate the same
curve in RLumCarlo, we used the parameters from the model by Bailey (2001) (his Table 1), e.g., for
the first peak:

TL110 <- RLumCarlo::run_MC_TL_DELOC(
s = 5e+12, E = 0.97, R = 5e-10, times = seq(20, 400, 2),
N_e = output$`conc. level 1 (TL)`[1,2] / 1e+5)

N_e was divided by a constant to reduce the computation time. The dimensionless parameter R
corresponds to B (s−1) in Bailey (2001). The other two peaks were simulated alike (objects TL230 and
TL325) before all three objects were combined via:

object <- c(TL110, TL230, TL325)

and plotted on the top of the curve derived from RLumModel:

RLumCarlo::plot_RLumCarlo(
object = object,
plot_value = "sum",
add = TRUE,
FUN = function(x) {
x * 1/(1 + (1e+7 * exp(-0.61/(8.617e-5 * (object$time + 273)))))}

)
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Figure 8: Simulation results of RLumModel and RLumCarlo. Qualitatively both approaches show a
good match.

The argument plot_value = "sum" was used to plot the total count sum instead of its average. The
additional function injected via the argument FUN corrects the TL curves for a phenomenon known as
thermal quenching (Wintle, 1975). This is a reduction of luminescence production efficiency at higher
temperatures. The chosen quenching parameters follow roughly data measured for quartz by Friedrich
et al. (2018). In summary, the results in Figure 8 show that even complex luminescence models can be
simulated through the combination of clusters, which brings us back to the initial ‘simplicity’ premise
of RLumCarlo. Still, a big ‘but’ remains. Luminescence models such as those proposed by Bailey
(2001) or Pagonis et al. (2008) go beyond single curve simulations. Their purpose is to deliver a general
kinetic model for luminescence production of, e.g., quartz, including the simulation of trap filling by
irradiation and the simulation of the thermal activation history of the mineral. By contrast, so far all
simulations in RLumCarlo start with a predefined number of electrons in a trap and are not by default
limited to a specific dosimeter. RLumCarlo can model more complex luminescence phenomena,
but not in a pre-described way out of the box. Instead, RLumCarlo is more like a patch box with
each model representing a socket ready to be flexibly rewired in many ways to simulate cascades of
luminescence production. Due to the nature of the chosen MC approach, in theory (adhering to the
patch box picture), the number of sockets is not limited.

5 Summary

The modeling of luminescence phenomena (cold light) of semiconductors and insulators after having
received ionizing radiation is a challenging task. MC methods allow setting up flexible and simple
systems to simulate luminescence with a finite number of charge carriers. This enables users to address
effects usually observed for nano-dosimetric systems, and it provides insight into the stochastic
uncertainty structure. We presented RLumCarlo, which renders, to our best knowledge, the first
open-source and ready-to-use compilation of basic MC luminescence models for different stimulation
modes (so far CW-OSL, LM-OSL, ISO-TL, and TL). We showed that the output from different models,
which are simulated in separate MC chains in virtual clusters, can be combined to either simulate
more complex systems or to mimic simple spatial correlations between cluster groups. The way of
the implementation does not limit RLumCarlo to a specific dosimeter (e.g., quartz). In this light,
RLumCarlo can be used in education, and research to test the impact of model parameters, such as
cluster sizes and related stochastic uncertainties. Furthermore, RLumCarlo can help in in formulating
research hypotheses and test them with commonly accepted or new models, still to be developed.

Future work will implement more models to run as MC simulation, e.g., for irradiation processes
in crystals (including its luminescence output: radiofluorescence) and for an advanced interaction of
clusters.
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The R Package smicd: Statistical Methods
for Interval-Censored Data
by Paul Walter

Abstract The package allows the use of two new statistical methods for the analysis of interval-
censored data: 1) direct estimation/prediction of statistical indicators and 2) linear (mixed) regression
analysis. Direct estimation of statistical indicators, for instance, poverty and inequality indicators,
is facilitated by a non parametric kernel density algorithm. The algorithm is able to account for
weights in the estimation of statistical indicators. The standard errors of the statistical indicators are
estimated with a non parametric bootstrap. Furthermore, the package offers statistical methods for
the estimation of linear and linear mixed regression models with an interval-censored dependent
variable, particularly random slope and random intercept models. Parameter estimates are obtained
through a stochastic expectation-maximization algorithm. Standard errors are estimated using a
non parametric bootstrap in the linear regression model and by a parametric bootstrap in the linear
mixed regression model. To handle departures from the model assumptions, fixed (logarithmic) and
data-driven (Box-Cox) transformations are incorporated into the algorithm.

1 Introduction

Interval-censored or grouped data occurs when only the lower Ak−1 and upper Ak interval bounds
(Ak−1, Ak) of a variable are observed, and its true value remains unknown. Instead of measuring
the variable of interest on a continuous scale, for instance, income data, the scale is divided into nk
intervals. The variable k (1 ≤ k ≤ nk) indicates in which of the nk intervals an observation falls into.
This leads to a loss of information since the shape of the distribution within the intervals remains
unknown. In the field of survey statistics, asking for interval-censored data is often done in order
to avoid item non-response and thus increase data quality. Item non-response is avoided because
interval-censored data offers a higher level of data privacy protection (Hagenaars and Vos, 1988; Moore
and Welniak, 2000). Among others, popular surveys and censuses that collect interval-censored data
are the German Microcensus (Statistisches Bundesamt, 2017), the Colombian census (Departamento
Administrativo Nacional De Estadística, 2005), and the Australian census (Australian Bureau of
Statistics, 2011). While item non-response is reduced or avoided, the statistical analysis of the data
requires more elaborate mathematical methods. Even statistical indicators that are easily calculated
for metric data, e.g., the mean, cannot be estimated using standard formulas (Fahrmeir et al., 2016).
Also, estimating linear and linear mixed regression models, which are applied in many fields of
statistics, requires advanced statistical methods when the dependent variable is interval censored.
Therefore, the presented R package implements three major functions: kdeAlgo() to estimate statistical
indicators (e.g., the mean) from interval-censored data, semLm(), and semLme() to estimate linear and
linear mixed regression models with an interval-censored dependent variable. The package code
and the open-source contribution guidelines for the package are available on GitHub. Potential code
contributions, feature requests, and bugs can be reported there by creating issues.

For the estimation of statistical indicators from interval-censored data, different approaches are
described in the literature. These approaches can be broadly categorized into four groups: Estimation
on the midpoints (Fahrmeir et al., 2016), linear interpolation of the distribution function, non paramet-
ric modeling via splines (Berger and Escobar, 2016), and fitting a parametric distribution function to
the censored data (Dagum, 2008; McDonald, 1984; Bandourian et al., 2002). Some of these methods
are implemented in R packages available on the Comprehensive R Archive Network (CRAN). The
method of linear interpolation is implemented for the estimation of quantiles in the R package actuar
(Goulet et al., 2020; Dutang et al., 2008). The package also enables the estimation of the mean on the
interval midpoints. Fitting a parametric distribution to interval-censored data can be done by using
the R package fitdistrplus (Delignette-Muller et al., 2020; Delignette-Muller and Dutang, 2015).

In survey statistics, interval-censored data is often collected for income or wealth variables. Thus,
the performance of the above-mentioned methods is commonly evaluated by simulation studies that
rely on data that follows some kind of income distribution. The German statistical office (DESTATIS)
uses the method of linear interpolation for the estimation of statistical indicators from interval-censored
income data collected by the German Microcensus. This approach gives the same results as assuming
a uniform distribution within the income intervals. Estimation results are reasonably accurate if the
estimated indicators do not depend on the whole shape of the distribution, e.g., the median (Lenau
and Münnich, 2016). Fitting a parametric distribution to the data enables the estimation of indicators
that rely on the whole shape of the distribution. This method works well when the data is censored to
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only a few equidistant intervals (Lenau and Münnich, 2016). Non parametric modeling via splines
shows especially good results for a high number of intervals in ascending order (Lenau and Münnich,
2016). However, according to Lenau and Münnich (2016), all of the above-mentioned methods show
large biases and variances when the estimation is based on a small number of intervals. Therefore, a
novel kernel density estimation (KDE) algorithm is implemented in the smicd package that overcomes
the drawbacks of the previously mentioned methods (Walter, 2019, 2020). The algorithm bases the
estimation of statistical indicators on pseudo samples that are drawn from a fitted non parametric
distribution. The method automatically adapts to the shape of the true unknown distribution and
provides reliable estimates for different interval-censoring scenarios. It can be applied via the function
kdeAlgo().

Similar to the direct estimation of statistical indicators from interval-censored data, there exists
a variety of ad-hoc approaches and explicitly formulated mathematical methods for the estimation
of linear regression models with an interval-censored dependent variable. The following methods
and approaches are used for handling interval-censored dependent variables within linear regression
models: Ordinary least squares (OLS) regression on the midpoints (Thompson and Nelson, 2003),
ordered logit- or probit-regression (McCullagh, 1980), and regression methodology formulated for
left-, right-, and interval-censored data (Tobin, 1958; Rosett and Nelson, 1975; Stewart, 1983). All of
these methods are implemented in different R packages available on CRAN. OLS regression on the
midpoints is applicable by using the lm() function from the stats package (R Core Team, 2020), ordered
logit regression is implemented in the MASS package (Ripley, 2019; Venables and Ripley, 2002), and
interval regression is implemented in the survival (Therneau, 2020; Therneau and Grambsch, 2000)
package.

While OLS regression on the midpoints of the intervals is easily applied, it comes with the
disadvantage of giving biased estimation results (Cameron, 1987). This approach disregards the
uncertainty stemming from the unknown true distribution of the data within the intervals, and
therefore, leads to biased parameter estimates. Its performance relies on the number of intervals, and
estimation results are only comparable to more advanced methods when the number of intervals is
very large (Fryer and Pethybridge, 1972). Conceptualizing the model as an ordered logit or probit
regression is feasible by treating the dependent variable as an ordered factor variable (McCullagh,
1980). However, this approach also neglects the unknown distribution of the data within the intervals.
Furthermore, the predicted values are not on a continuous scale but are in terms of the probability of
belonging to a certain group. To overcome these disadvantages and obtain unbiased estimation results
Stewart (1983) introduces regression methodology for models with an interval-censored dependent
variable. Walter (2019) further develops his approach and introduces a novel stochastic expectation-
maximization (SEM) algorithm for the estimation of linear regression models with an interval-censored
dependent variable that is implemented in the smicd package. The model parameters are unbiasedly
estimated as long as the model assumptions are fulfilled. The function semLm() provides the SEM
algorithm and enables the use of fixed (logarithmic) and data-driven (Box-Cox) transformations
(Box and Cox, 1964). The Box-Cox transformation automatically adapts to the shape of the data and
transforms the dependent variable in order to meet the model assumption.

In order to analyze longitudinal or clustered data (e.g., students within schools), linear mixed
regression models are applicable. These kinds of models control for the correlated structure of the
data by including random effects in addition to the usual fixed effects. In order to deal with an
interval-censored dependent variable in linear mixed regression models, there are several approaches
described in the literature. Linear mixed regression models, just like linear regression models, can be
estimated on the interval midpoints of the censored-dependent variable. Furthermore, conceptualizing
the model as an ordered logit or probit regression model is feasible (Agresti, 2010). These approaches
inherit the same advantages and disadvantages as previously discussed. Linear mixed regression
on the midpoints can be applied by the lme4 (Bates et al., 2020b, 2015) or nlme (Pinheiro et al., 2020)
package and the ordered logit regression is implemented in the ordinal package (Christensen, 2019).
To my knowledge, there are no R packages for the estimation of linear mixed regression models with
an interval-censored dependent variable. Therefore, the package smicd contains the SEM algorithm
proposed by Walter (2019) for the estimation of linear mixed regression models with an interval-
censored dependent variable. If the model assumptions are fulfilled, the method gives unbiased
estimation results. The function semLme() enables the estimation of the regression parameters, and it
also allows for the usage of the logarithmic and Box-Cox transformation in order to fulfill the model
assumptions (Gurka et al., 2006).

The paper is structured into two main sections. Section 2.2 deals with the direct estimation of
statistical indicators from interval-censored data, whereas Section 2.3 introduces linear and linear
mixed regression models with an interval-censored dependent variable. Both sections have been
divided into three subsections: first, the statistical methodology is introduced, then the core functions
of the smicd package are presented, and finally, illustrative examples with two different data sets are
provided. In Section 2.4, the main results are summarized, and an outlook is given.
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2 Direct estimation of statistical indicators

In the following three subsections, the methodology for the direct estimation of statistical indicators
from interval-censored data is introduced, the core functionality of the function kdeAlgo() is presented,
and statistical indicators are estimated using the synthetic EU-SILC (European Union Statistics on
Income and Living Conditions) data set from Austria.

Methodology: Direct estimation of statistical indicators

In order to estimate statistical indicators from interval-censored data, the proposed algorithm generates
metric pseudo samples of an interval-censored variable. These pseudo samples can be used to estimate
any statistical indicator. They are drawn from a non parametrically estimated kernel density. Kernel
density estimation was first introduced by (Rosenblatt, 1956) and (Parzen, 1962). By its application, the
density f (x) of a continuous independently and identically distributed random variable is estimated
without assuming any distributional shape of the data. The estimator is defined as:

f̂h(x) =
1

nh

n

∑
i=1

K
(

x − xi
h

)
, i = 1, . . . , n,

where K (·) is a kernel function, h > 0 the bandwidth, and x = {x1, x2, . . . , xn} denotes a sample of
size n. The performance of the estimator is determined by the optimal choice of h. The selection of
an optimal h is widely discussed in the literature; see Jones et al. (1996); Loader (1999); Zambom and
Dias (2012). When working with interval-censored data, a standard KDE cannot be applied since x is
not observed on a continuous scale. Nevertheless, its unobserved true distribution is of continuous
form. As an ad hoc solution, the density f̂h (x) can be estimated based on the interval midpoints. The
resulting density estimate will be spiky unless the bandwidth is sufficiently large. A large bandwidth,
however, leads to a loss of information (Wang and Wertelecki, 2013). Therefore, Walter (2019) proposes
an iterative KDE algorithm for density estimation from interval-censored data. The approach is based
on Groß et al. (2017), who introduce a similar KDE algorithm in a two-dimensional setting with an
equidistant interval width. Walter (2019) shows that the algorithm can be adjusted to one-dimensional
data with an arbitrary class width. For the estimation of linear and non-linear statistical indicators, the
unknown distribution of x has to be reconstructed by using the observed interval k = {k1, k2, . . . , kn}
that an observation falls into. From Bayes’ theorem (Bayes, 1763), it follows that the conditional
distribution of (x|k) is:

π (x|k) ∝ π (k|x)π (x) ,

with π (k|x) is defined by a product of a Dirac distribution π (k|x) = ∏n
i=1 π (ki|xi) with

π (ki|xi) =

{
1 if Aki−1 ≤ xi ≤ Aki

,
0 else,

for i = 1, . . . , n. Since π (x) is unknown, it is replaced by a kernel density estimate f̂h (x).

Estimation and computational details

To fit the model, pseudosamples of xi are drawn from the conditional distribution

π (xi|ki) ∝ I
(

Aki−1 ≤ xi ≤ Aki

)
f (xi) ,

where I (·) denotes the indicator function. The conditional distribution of π (xi|ki) is given by the
product of a uniform distribution and density f (xi). As the density is unknown, it is replaced by an
estimate f̂h (x), which is obtained by the KDE. In particular, xi is repeatedly drawn from the given
interval

(
Aki−1, Aki

)
by using the current density estimate f̂h (x) as a sampling weight. The explicit

steps of the iterative algorithm as given in Walter (2019) are stated below:

1. Use the midpoints of the intervals as pseudo x̃i for the unknown xi. Estimate a pilot estimate
of f̂h (x) by applying KDE. Note: Choose a sufficiently large bandwidth h in order to avoid
rounding spikes.

2. Evaluate f̂h (x) on an equal-spaced grid G = {g1, . . . , gj} with grid points g1, . . . , gj. The width
of the grid is denoted by δg. It is given by

δg =
|A0 − Ank |

j − 1
,
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and the grid is defined as:

G = {g1 = A0, g2 = A0 + δg, g3 = A0 + 2δg, . . . , gj−1 = A0 + (j − 2) δg, gj = Ank}.

3. Sample from π (x|k) by drawing randomly from Gk = {gj|gj ∈ (Ak−1, Ak)} with sampling
weights f̂h (x̃i) for k = 1, . . . , nk. The sample size for each interval is given by the number of
observations within each interval. Obtain x̃i for i = 1, . . . , n.

4. Estimate any statistical indicator of interest Î using x̃i.

5. Recompute the density f̂h (x) using the pseudo samples x̃i obtained in iteration Step 3.

6. Repeat Steps 2-5, with B(KDE) burn-in and M(KDE) additional iterations.

7. Discard the B(KDE) burn-in iterations and estimate the final Î by averaging the obtained M(KDE)

estimates.

For open-ended intervals, e.g., (15000,+∞), the upper bound has to be replaced by a finite number.
Walter (2019) shows through model-based simulations that a value of three times the value of the
lower bound (15000, 45000) gives appropriate estimation results when working with income data.

The variance of the statistical indicators is estimated by bootstrapping. Bootstrap methods were
first introduced by Efron (1979). These methods serve as an estimation procedure when the variance
cannot be stated as a closed-form solution (Shao and Tu, 1995). While bootstrapping avoids the
problem of the non-availability of a closed-form solution, it comes with the disadvantage of long
computational times. In the package, a non parametric bootstrap that accounts for the additional
uncertainty coming from the interval-censored data is implemented. This non parametric bootstrap is
introduced in Walter (2019).

Core functionality: Direct estimation of statistical indicators

The presented KDE algorithm is implemented in the function kdeAlgo() (see Table 1). The arguments
and default settings of kdeAlgo() are briefly summarized in Table 2. The function gives back an S3
object of class "kdeAlgo". A detailed explanation of all components of a "kdeAlgo" object can be found
in the package documentation. The generic functions plot() and print() can be applied to "kdeAlgo"
objects to output the main estimation results (see Table 1). In the next section, the function kdeAlgo()
is used to estimate a variety of statistical indicators from interval-censored EU-SILC data, and its
arguments are explained in more detail.

Table 1: Implemented functions for the direct estimation of statistical indicators.

Function Name Description

kdeAlgo() Estimates the statistical indicators and its standard errors from
interval-censored data

plot() Plots convergence of the estimated statistical indicators and
estimated density of the pseudo x̃i

print() Prints the estimated statistical indicators and its standard errors

Example: Direct estimation of statistical indicators

To demonstrate the function kdeAlgo(), the equivalized household income and the corresponding
household sample weight from the Austrian synthetic EU-SILC survey data set are used. The data set
is included in the laeken package (Alfons et al., 2020; Alfons and Templ, 2013). Its synthetic nature
makes it unusable for inferential statistics. However, the data set has the advantage over the scientific
use file by being freely available which enables the easy reproducibility of the presented example.
Since the total disposable household income is measured on a continuous scale, it is censored to
22 intervals for demonstration purposes. For a realistic censoring scheme, the interval bounds are
chosen such that they closely follow the interval bounds used in the German Microcensus from 2013
(Statistisches Bundesamt, 2014). The German Microcensus is a representative household survey that
covers 830,000 persons in 370,000 households (1% of the German population) in which income is only
collected as an interval-censored variable (Statistisches Bundesamt, 2016).

In a first step, the variable total disposable household income called hhincome_net is interval-
censored according to 22 intervals using the function cut(). The vector of interval bounds is called
intervals, and the newly obtained interval-censored income variable is called c.hhincome.
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Table 2: Arguments of function kdeAlgo().

Argument Description Default

xclass Interval-censored variable
classes Numeric vector of interval bounds
threshold Threshold used for poverty indicators

(% of the median of the target variable) 0.6

burnin Number of burn-in iterations B(KDE) 80

samples Number of additional iterations M(KDE) 400
bootstrap.se If TRUE, standard errors of the statistical

indicators are estimated FALSE
b Number of bootstraps for the estimation of

the standard errors 100
bw Smoothing bandwidth used "nrd0"
evalpoints Number of evaluation grid points 4000
adjust Bandwidth multiplier bw = adjust ∗ bw 1
custom_indicator A list of user-defined statistical indicators NULL
upper If upper bound of the upper interval is +∞, e.g.,

(15000,+∞), then +∞ is replaced by
15000 ∗ upper 3

weights Survey weights NULL
oecd Household weights of equivalence scale NULL

R> intervals <- c(
+ 0, 150, 300, 500, 700, 900, 1100, 1300, 1500, 1700, 2000, 2300, 2600, 2900,
+ 3200, 3600, 4000, 4500, 5000, 5500, 6000, 7500, Inf
+ )
R> c.hhincome <- cut(hhincome_net, breaks = intervals)

In order to get a descriptive overview of the distribution of the censored income data, the function
table() is applied.

R> table(c.hhincome)
c.hhincome

(0,150] (150,300] (300,500]
66 113 280

(500,700] (700,900] (900,1.1e+03]
462 1137 1433

(1.1e+03,1.3e+03] (1.3e+03,1.5e+03] (1.5e+03,1.7e+03]
2040 1811 1671

(1.7e+03,2e+03] (2e+03,2.3e+03] (2.3e+03,2.6e+03]
2006 1383 849

(2.6e+03,2.9e+03] (2.9e+03,3.2e+03] (3.2e+03,3.6e+03]
508 389 242

(3.6e+03,4e+03] (4e+03,4.5e+03] (4.5e+03,5e+03]
158 107 61

(5e+03,5.5e+03] (5.5e+03,6e+03] (6e+03,7.5e+03]
21 18 52

(7.5e+03,Inf]
17

Most incomes are in interval (1100, 1300], and only 17 incomes are in the upper interval. For the
estimation of the statistical indicators, the function kdeAlgo() of the smicd package is called with the
following arguments.

R> Indicators <- kdeAlgo(
+ xclass = c.hhincome, classes = intervals,
+ bootstrap.se = TRUE, custom_indicator =
+ list(
+ quant05 = function(y, threshold, weights) {
+ wtd.quantile(y, probs = 0.05, weights)
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+ },
+ quant95 = function(y, threshold, weights) {
+ wtd.quantile(y, probs = 0.95, weights)
+ }
+ ),
+ weights = hhweight
+ )

The variable c.hhincome is assigned to the argument xclass, and the vector of interval bounds
intervals is assigned to the argument classes. The default settings of the arguments burnin, samples,
bw, evalpoints, adjust, and upper are retained. Simulation results from Walter (2019) and Groß et al.
(2017) show that these settings give good results when working with income data. Changing these
arguments has an impact on the performance of the KDE algorithm. As default, the statistical
indicators: mean, Gini coefficient, headcount ratio (HCR), the quantiles (10%, 25%, 50%, 75%, 90%),
the poverty gap (PGAP), and the quintile share ratio (QSR) are estimated (Gini, 1912; Foster et al.,
1984). The HCR and PGAP rely on a poverty threshold. The default choice of the threshold argument
is 60% of the median of the target variable, as suggested by Eurostat (2014). Besides the mentioned
indicators, any other statistical indicator can be estimated via the argument custom_indicator. In the
example, the argument is assigned a list that holds functions to estimate the 5% and 95% quantile.
The custom indicators must depend on the target variable, the threshold (even if it is not needed
for the specified indicator), and optionally on the weights argument if the estimation of a weighted
indicator is required. To estimate the standard errors of all indicators, bootstrap.se = TRUE, and
the number of bootstrap samples is 100 (the default value as suggested in Walter (2019)). Lastly,
the household weight (hhweight) is assigned to the argument weights in order to estimate weighted
statistical indicators. It can also be controlled for households of different sizes by assigning oecd a
variable with household equivalence weights. By applying the print() function to the "kdeAlgo"
object, the estimated statistical indicators (default and custom indicators) as well as their standard
errors are printed. For instance, in this example, the estimated mean is about 1,658 Euro and its
standard error is 8.486.

R> print(Indicators)
Value:

mean gini hcr quant10 quant25 quant50
1658.329 0.265 0.145 802.227 1117.714 1507.947
quant75 quant90 pgap qsr quant05 quant95
2020.063 2654.707 0.040 3.920 630.326 3142.296

Standard error:
mean gini hcr quant10 quant25 quant50

8.486 0.002 0.002 5.839 5.977 6.605
quant75 quant90 pgap qsr quant05 quant95
10.548 21.622 0.001 0.044 10.327 24.401

For demonstration purposes, the statistical indicators are also estimated using the continuous
household income variable from the synthetic EU-SILC data set (Table 3). The estimation results of the
KDE algorithm using the interval-censored data are very close to those based on the continuous data.
Slightly larger deviations are observable for the more extreme quantiles. This is due to the fact that
these quantile estimates fall into intervals with a lower number of observations (compared to the other
quantile estimates). Estimation results for these quantiles could potentially be further improved by
increasing the number of evalpoints of the kdeAlgo().

Table 3: Estimated weighted statistical indicators using the continuous household income variable
from the synthetic EU-SILC data set.

mean gini hcr quant10 quant25 quant50
1657.910 0.265 0.144 805.468 1114.028 1508.657

quant75 quant90 pgap qsr quant05 quant95
2017.585 2653.617 0.040 3.960 619.666 3153.425

In Walter (2019), the performance of the KDE algorithm is evaluated via detailed simulation
studies. By applying the function plot(), "kdeAlgo" objects can be plotted. Thereby, convergence
plots for all estimated statistical indicators and a plot of the estimated final density are obtained.

R> plot(Indicators)

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 372

Figure 1 shows convergence plots for two of the estimated indicators. Additionally, a plot of the
estimated final density with a histogram of the observed data in the background is given in Figure 2.
In Figure 1, the estimated statistical indicator (Gini, 10% quantile) for each iteration step of the KDE
algorithm and the average over the estimates up to iteration step M (excluding the burn-in iterations)
are plotted. A vertical line marks the end of the burn-in period. The horizontal line gives the value of
the final estimate (average over the M iterations). All convergence plots indicate that the number of
iterations is chosen sufficiently large for the estimates to converge.

If convergence were not achieved, the arguments burnin and samples should be increased. It is
notable that the estimated 10% quantile has the same value for almost all iterations steps. This is the
case because the quantile, as any other statistical indicator, is estimated using the pseudo samples
that are drawn on 4,000 grid points G. Estimating a quantile on only 4,000 unique outcomes (pseudo
values) leads to equal quantile estimates for numerous iteration steps of the KDE algorithm.

0 100 200 300 400

0.
26

35
0.

26
55

Convergence gini

Iteration step

P
oi

nt
 e

st
im

at
e 

fo
r 

ea
ch

 it
er

at
io

n

0 100 200 300 400

0.
26

41
0.

26
45

Iteration step

A
ve

ra
ge

 u
p 

to
 it

er
at

io
n 

st
ep

 M

0 100 200 300 400

79
5

80
5

Convergence quant10

Iteration step

P
oi

nt
 e

st
im

at
e 

fo
r 

ea
ch

 it
er

at
io

n

0 100 200 300 400

79
9

80
1

Iteration step

A
ve

ra
ge

 u
p 

to
 it

er
at

io
n 

st
ep

 M

Figure 1: Convergence plots of the estimated indicators (Gini and 10% quantile).

Lastly, it should be mentioned that the computation time can be very long if the estimation
of the standard errors is enabled. Hence, if the estimation of the standard errors is not required,
the argument bootstrap.se should be set to FALSE. Furthermore, it should always be checked how
many iterations are needed for the desired statistical indicator to converge. Reducing the number of
required iterations (arguments burnin and samples) lowers the computation time significantly (with
and without standard errors).

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 373

Estimated Density

x

f(
x)

0 2000 4000 6000 8000 10000

0e
+

00
2e

−
04

4e
−

04
6e

−
04

Figure 2: Estimated final density with a histogram of the observed distribution of the data in the
background.

3 Regression analysis

In the following three subsections, the statistical methodology for linear and linear mixed regression
models with an interval-censored dependent variable is introduced, the core functionality of the
functions semLM() and semLME() is presented, and examination scores of students from schools in
London are exemplary modeled.

Methodology: Regression analysis

The theoretical introduction of the new regression method, proposed by Walter (2019), is presented
for linear mixed regression models. The theory for linear regression models can be obtained by
simplifying the introduced method. In its standard form, the linear mixed regression model serves
to analyze the linear relationship between a continuous dependent variable and some independent
variables (Goldstein, 2010). Random parameters (random slopes and random intercepts) are included
in the model to account for correlated data, e.g., students within schools. The model in matrix notation
(Laird and Ware, 1983) is given by

y = Xβ + Zv + e, (1)

where y is an n × 1 column vector of the dependent variable, n is the sample size, X is a n × p matrix
where p is equal to the number of predictors, β is a column vector of the fixed effects regression
parameters of size p × 1, Z is the n × q design matrix with q random effects, v is a q × 1 vector of
random effects, and e is the residual vector of size n × 1. The distribution of the random effects is
given by

v ∼ N (0, G) , where G =


σ2

0 σ01 . . . σ0q
σ10 σ2

1 . . . σ1q
...

...
. . .

...
σq0 σq1 . . . σ2

q

 ,

and the distribution of the residuals is given by e ∼ N (0, R) with R = Inσ2
e , where In is the identity

matrix, and σ2
e is the residual variance. The random effects v and the residuals e are assumed to be

independent. For a more detailed introduction of mixed models, see Searle et al. (1992); McCulloch
et al. (2008); Snijders and Bosker (2011). In the case of an interval-censored dependent variable, the
parameters of Model (1) have to be estimated without observing y on a continuous scale. Instead,
only the interval identifier k, now defined as n × 1 column vector, is observed. Open-ended interval
bounds A0 = −∞ and Ank = +∞ and unequal interval widths are allowed. Since the true distribution
of y is unknown, the aim is to reconstruct the distribution of y using the known intervals k and the
linear relationship stated in Model (1). As presented in Walter (2019), in order to reconstruct the
unknown distribution of f (y|X, Z, v, k, θ), where θ = (β, R, G), the Bayes theorem (Bayes, 1763) is
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applied. Hence,
f (y|X, Z, v, k, θ) ∝ f (k|y, X, Z, v, θ) f (y|X, Z, v, θ) ,

with f (k|y, X, Z, v, θ) = f (k|y) because the conditional distribution of the interval identifier k only
depends on y. It is given by f (k|y) = r, with r being an n × 1 column vector r = (r1, r2, . . . , rn)

T , with

ri =

{
1 if Aki−1 ≤ yi ≤ Aki

,
0 else,

for i = 1, . . . , n and
f (y|X, Z, v, θ) ∼ N (Xβ + Zv, R) . (2)

The relationship in Equation (2) follows from the linear mixed model assumptions (Model (1)). The
unknown parameters θ = (β, R, G) are estimated based on pseudo samples ỹ (since y is unknown)
that are iteratively drawn from f (y|X, Z, v, k, θ). The next subsection states the computational details
of the SEM algorithm.

Estimation and computational details

To fit Model (1), the parameter vector θ̂ =
(

β̂, R̂, Ĝ
)

is estimated, and pseudo samples of the unknown
y are iteratively generated by the following SEM algorithm. The pseudo samples ỹ are drawn from
the conditional distribution

f (y|X, Z, v, k, θ) ∝ I (Ak−1 ≤ y ≤ Ak)× N (Xβ + Zv, R) ,

where I (·) denotes the indicator function. Hence, for y with explanatory variables X, the corresponding
ỹ is drawn from N (Xβ + Zv, R) conditional on the given interval (Ak−1 ≤ y ≤ Ak). If θ̂ is estimated,
the conditional distribution f (y|X, Z, v, k, θ) follows a two-sided truncated normal distribution. Its
probability density function equals

f̂
(
y|X, Z, v̂, k, θ̂

)
=

ϕ
(

y−µ̂
σ̂e

)
σ̂e

(
Φ
(

Ak−µ̂
σ̂e

)
− Φ

(
Ak−1−µ̂

σ̂e

)) , (3)

with µ̂ = Xβ̂ + Zv̂. ϕ (·) denotes the probability density function of the standard normal distribution,

and Φ(·) denotes its cumulative distribution function. From its definition, it follows that Φ
(

Ak−µ̂
σ̂e

)
= 1

if Ak = +∞, and Φ
(

Ak−1−µ̂
σ̂e

)
= 0 if Ak−1 = −∞. The steps of the SEM algorithm as described in

Walter (2019) are:

1. Estimate θ̂ =
(

β̂, R̂, Ĝ
)

from Model (1) using the midpoints of the intervals as substitutes for
the unknown y. The parameters are estimated by restricted maximum likelihood theory (REML)
(Thompson, 1962).

2. Stochastic step: For i = 1, . . . , n, draw randomly from N
(

Xβ̂ + Zv̂, R̂
)

within the given interval

(Ak−1 ≤ y ≤ Ak) (the two-sided truncated normal distribution given in Equation (3)) obtaining
(ỹ, X, Z). The drawn pseudo ỹ are used as replacements for the unobserved y.

3. Maximization step: Re-estimate the parameter vector θ̂ from Model (1) by using the pseudo
samples (ỹ, X, Z) from Step 2. Again, parameter estimation is carried out by REML.

4. Iterate Steps 2-3 B(SEM) + M(SEM) times, with B(SEM) burn-in iterations and M(SEM) additional
iterations.

5. Discard the burn-in iterations B(SEM) and estimate θ̂ by averaging the obtained M(SEM) esti-
mates.

If open-ended intervals A0 = −∞ and Ank = +∞ are present, the midpoints M1 and Mnk of these
intervals in iteration Step 1 are computed as follows:

M1 =
(

A1 − D
)

/2,

Mnk =
(

Ank−1 + D
)

/2,

where

D =
1

(nk − 2)

nk−1

∑
k=2

|Ak−1 − Ak|.
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These midpoints serve as proxies for the unknown interval midpoints in Step 1 of the algorithm. The
SEM algorithm for the linear regression model is obtained by simplifying the conditional distribution
f (y|X, Z, v, θ) ∼ N (Xβ + Zv, R) to f

(
y|X, β, σ2

e
)
∼ N

(
Xβ, σ2

e
)

according to the model assumptions
of a linear regression model. In the SEM algorithm for linear models, it is then drawn from N

(
Xβ, σ2

e
)

within the given interval.

The standard errors of the regression parameters are estimated using bootstrap methods. For the
linear regression model, a non parametric bootstrap (Efron and Stein, 1981; Efron, 1982; Efron and
Tibshirani, 1986, 1993) and for the linear mixed regression model, a parametric bootstrap (Wang et al.,
2006; Thai et al., 2013) is used to estimate the standard errors. The non parametric, as well as the
parametric bootstrap, are further developed to account for the additional uncertainty that is due to
the interval-censored dependent variable. Both newly proposed bootstraps are available in the smicd
package, and the theory is explained in (Walter, 2019).

To assure that the model assumptions are fulfilled, the logarithmic and the Box-Cox transformations
are incorporated into the function semLm() and semLme().

Core functionality: Regression analysis

The introduced SEM algorithm is implemented in the functions described in Table 4. The arguments
and default settings of the estimation functions semLm() and semLme() are summarized in Table 5. Both
functions return an S3 object of class "sem", "lm" or "sem", "lme". A detailed explanation of all the
components of these objects can be found in the smicd package documentation. The generic functions
plot(), print(), and summary() can be applied to objects of class "sem","lm" and "sem","lme" in
order to summarize the main estimation results. In the next section, the functionality of semLm() and
semLme() is demonstrated based on an illustrative example.

Table 4: Implemented functions for the estimation of linear and linear mixed regression models.

Function Name Description

semLm() Estimates linear regression models with an interval-censored
dependent variable

semLme() Estimates linear mixed regression models with an
interval-censored dependent variable

plot() Plots convergence of the estimated parameters and estimated
density of the pseudo ỹ from the last iteration step

print() Prints basic information of the estimated linear and linear mixed
regression models

summary() Summary of the estimated linear and linear mixed regression models

Table 5: Arguments of functions semLm() and semLme().

Argument Description Default

formula A two-sided linear formula object
data A data frame containing the variables of the model
classes Numeric vector of interval bounds
burnin Burn-in iterations 40
samples Additional iterations 200
trafo Transformation of the dependent variable: None, "None"

logarithmic, or Box-Cox transformation
adjust Extends the number of iterations for the estimation 2

of the Box-Cox transformation parameter:
(burnin + samples) ∗ adjust

bootstrap.se If TRUE, standard errors and confidence intervals of FALSE
the regression parameters are estimated

b Number of bootstraps for the estimation of
the standard errors 100
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Example: Regression analysis

To demonstrate the functions semLm() and semLme(), the famous London school data set that is
analyzed in Goldstein et al. (1993) is used. The data set contains the examination results of 4,059
students from 65 schools in six Inner London Education Authorities. The data set is available in
the R package mlmRev (Bates et al., 2020a) and also included in the package smicd. The variables
used in the following example are: general certificate of secondary examination scores (examsc), the
standardized London reading test scores at the age of 11 years (standLRT), the sex of the student
(sex), and the school identifier (school). In the original data set, the variable examsc is measured on a
continuous scale. In order to demonstrate the functionality of the functions semLm() and semLme(), the
variable is arbitrarily censored to nine intervals. As before, the censoring is carried out by the function
cut(), and the vector of interval bounds is called intervals.

R> intervals <- c(1, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.7, 8.5, Inf)
R> Exam$examsc.class <- cut(Exam$examsc, intervals)

The newly created interval-censored variable is called examsc.class. The distribution is visualized
by applying the function table().

R> table(Exam$examsc.class)
(1,1.5] (1.5,2.5] (2.5,3.5] (3.5,4.5] (4.5,5.5] (5.5,6.5]

1 32 249 937 1606 951
(6.5,7.7] (7.7,8.5] (8.5,Inf]

267 15 1

It can be seen that most examination scores are concentrated in the center intervals. To fit the linear
regression model, the function semLM() is called.

R> LM <- semLm(
+ formula = examsc.class ~ standLRT + sex, data = Exam,
+ classes = intervals, bootstrap.se = TRUE
+ )

The formula argument is assigned the model equation, where examsc.class is regressed on
standLRT and sex. The argument data is assigned the name of the data set Exam, and the vector of
interval bounds intervals is assigned to the classes argument. The arguments burnin and samples
are left as defaults. The specified number of default iterations is sufficiently large for most regression
models. However the convergence of the parameters has to be checked by plotting the estimation
results with the function plot() after the estimation. No transformation is specified for the interval-
censored dependent variable and therefore, trafo is assigned its default value. The argument adjust is
only relevant if the Box-Cox transformation trafo="bc" is chosen. In this case, the number of iterations
for the estimation of the Box-Cox transformation parameter λ can be specified by this argument. The
convergence of the transformation parameter λ has to be checked using the function plot(). More
information on the Box-Cox transformation and on the estimation of the transformation parameter
is given in Walter (2019). For the estimation of the standard errors of the regression parameters, the
argument bootstrap.se is set to TRUE. The number of bootstrap samples b is 100, its default value,
which again is reasonable for most settings. A summary of the estimation results is obtained by the
application of the function summary().

R> summary(LM)
Call:
semLm(formula = examsc.class ~ standLRT + sex, data = Exam,

classes = intervals, bootstrap.se = TRUE)

Fixed effects:
Estimate Std.Error Lower 95%-level Upper 95%-level

(Intercept) 5.0702791 0.01816102 5.0326739 5.1033905
standLRT 0.5908015 0.01349275 0.5614197 0.6163845
sexM -0.1715966 0.03093346 -0.2308930 -0.1010877

Multiple R-squared: 0.3501 Adjusted R-squared: 0.3498
Variable examsc.class is divided into 9 intervals.

The output shows the function call, the estimated regression coefficients, the bootstrapped standard
errors, and the confidence intervals, as well as the R-squared and the adjusted R-squared. Furthermore,
the output reminds the user that the dependent variable is censored to nine intervals. All estimates are
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interpreted as in a linear regression model with a continuous dependent variable. Hence, if standLRT
increases by one unit and all other parameters are kept constant, examsc.class increases by 0.59 on
average. The bootstrapped confidence intervals indicate that all regressors have a significant effect on
the dependent variable.

By using the generic function plot() on an object of class "sem" and "lm", convergence plots of
each estimated regression parameter and of the estimated residual variance are obtained. Furthermore,
the density of the generated pseudo ỹ variable from the last iteration step is plotted with a histogram
of the observed distribution of the interval-censored variable examsc.class in the background.

R> plot(LM)
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Figure 3: Convergence plots of estimated model parameters (β1 and σe).

In Figure 3, a selection of convergence plots is given, and in Figure 4, the density of the pseudo ỹ
from the last iteration step of the SEM algorithm is plotted. In the convergence plots, the estimated
parameter and the average up to iteration step M (excluding B) are plotted for each iteration step of
the SEM algorithm. A vertical line indicates the end of the burn-in period (40 iterations). The final
parameter estimate marked by the horizontal line is obtained by averaging the M(SEM) additional
iterations (200). The selected 240 iterations are enough to obtain reliable estimates in this example
because the estimates have converged.

As already mentioned, the smicd package also enables the estimation of linear mixed regression
models by the function semLme(). In the London school data set, students are nested within schools,
and therefore, it is necessary to control for the correlation within-schools. In order to do that, the
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Figure 4: Estimated final density with a histogram of the observed distribution of the data in the
background.

variable school is specified as a random intercept. If necessary, a random slope parameter could
also be included in the model. Again, the variable sex is included as an additional regressor. Hence,
the formula argument is assigned the following model equation examsc.class ∼ standLRT + sex
+ (1|school). So far, the function semLme() enables the estimation of linear mixed models with a
maximum of one random slope and one random intercept parameter. Regarding all other arguments,
the same specifications as before are made.

R> LME <- semLme(
+ formula = examsc.class ~ standLRT + sex + (1|school),
+ data = Exam, classes = intervals, bootstrap.se = TRUE
+ )

By using the generic function summary(), the estimation results are printed. In addition to the
fixed effects, the estimated random effects are obtained as in the lme4 and nlme packages. Since
the R-squared and the adjusted R-squared are not defined for mixed models, the summary() function
prints the marginal R-squared and conditional R-squared (Nakagawa and Schielzeth, 2013; Johnson,
2014).

> summary(LME)
Call:
semLme(formula = examsc.class ~ standLRT + sex + (1 | school),

data = Exam, classes = intervals, bootstrap.se = TRUE)

Random effects:
Groups Name Variance Std.Dev.
school (Intercept) 0.08755431 0.2958958

Residual 0.58417586 0.7643140

Fixed effects:
Estimate Std.Error Lower 95%-level Upper 95%-level

(Intercept) 5.0777581 0.0005188930 5.0769749 5.0791095
standLRT 0.5605049 0.0003665976 0.5599456 0.5613711
sexM -0.1711065 0.0008159909 -0.1724193 -0.1692369

Marginal R-squared: 0.324 Conditional R-squared: 0.4121
Variable examsc.class is divided into 9 intervals.

Again, interpretation is the same as in linear mixed models with a continuous dependent variable.
By applying the generic function plot() to a "sem" "lme" object, the same plots as for the linear
regression model are plotted.
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4 Discussion and outlook

Asking for interval-censored data can lead to lower item non-response rates and increased data quality.
While item non-response is potentially avoided, applying traditional statistical methods becomes
infeasible because the true distribution of the data within each interval is unknown. The functions of
the smicd package enable researchers to easily analyze this kind of data. The paper briefly introduces
the new statistical methodology and presents, in detail, the core functions of the package:

• kdeAlgo() for the direct estimation of any statistical indicator,

• semLm() to estimate linear models with an interval-censored dependent variable,

• semLme() to estimate linear mixed models with an interval-censored dependent variable.

The functions are applied in order to estimate statistical indicators from interval-censored synthetic
EU-SILC income data and to analyze interval-censored examination scores of students from London
with linear and linear mixed regression models.

Further developments of the smicd package will include the possibility to estimate the boot-
strapped standard errors in parallel computing environments. Additionally, it is planned to allow for
the use of survey weights in the linear (mixed) regression models.
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OneStep : Le Cam’s One-step Estimation
Procedure
by Alexandre Brouste, Christophe Dutang and Darel Noutsa Mieniedou

Abstract The OneStep package proposes principally an eponymic function that numerically computes
Le Cam’s one-step estimator, which is asymptotically efficient and can be computed faster than the
maximum likelihood estimator for large datasets. Monte Carlo simulations are carried out for several
examples (discrete and continuous probability distributions) in order to exhibit the performance of Le
Cam’s one-step estimation procedure in terms of efficiency and computational cost on observation
samples of finite size.

1 Introduction

In the statistical experiments generated by i.i.d. observation samples, the sequence of maximum
likelihood estimators (MLE) is known to be asymptotically efficient under very general assumptions
and consequently presents the fastest convergence rate and the lowest possible asymptotic variance.

Although the sequence of MLE is asymptotically efficient, it is generally not expressed in a closed
form and requires time consuming numerical computations. On the other hand, the other generic
estimation procedures which can sometimes be computed faster, as the method of moments, do not
generally reach the optimal asymptotic variance.

In R, the package fitdistrplus (see Delignette-Muller and Dutang (2015)) is commonly used to
infer the parameters of univariate probability distributions. For non-censored datasets, fitdistrplus
allows four different estimation methods: maximum likelihood, moment matching, quantile matching,
and maximum goodness-of-fit estimation. The unified approach is provided by fitdist() which
returns an S3-object having usual generic functions (plot, summary, logLik, . . . ) as well as dedicated
fitdist-functions (gofstat, bootdist, . . . ).

Other packages with similar purposes are EstimationTools and DistributionFitR, providing MLE
for non-censored data. Many other packages also provide estimation procedure on the basis of one
function per probability distribution; see, e.g., packages univariateML, propagate. A final package,
which is worth mentioning, is fitter, which fits a set of probability distributions on a given dataset
sequentially.

However, as soon as the Fisher information matrix is sufficiently regular with respect to the
parameter to be estimated, Le Cam’s one-step estimation procedures can be achieved (see Le Cam
(1956)). They are based on an initial sequence of guess estimators and a single Newton step or a Fisher
scoring step on the loglikelihood function. Namely, they write

ϑn = ϑ∗
n + I(ϑ∗

n)
−1 · 1

n

n

∑
j=1

ℓ̇(ϑ∗
n, Xj), n ≥ 1, (1)

for the Fisher scoring type procedure, where (ϑ∗
n, n ≥ 1) is the initial sequence of guess estimators,

ℓ(ϑ) is the loglikelihood function, the dot is the notation for the gradient with respect to ϑ, and
I(ϑ) = −Eϑ(ℓ̈(ϑ)) is the Fisher information matrix and

ϑn = ϑ∗
n + În(ϑ

∗
n)

−1 · 1
n

n

∑
j=1

ℓ̇(ϑ∗
n, Xj), n ≥ 1, (2)

for the Newton type procedure, where În(ϑ) = − 1
n ∑n

j=1 ℓ̈(ϑ, Xj) is the opposite of the Hessian for the
loglikelihood function.

The sequence of Le Cam’s one-step estimators presents certain advantages over the sequence of
MLE and over the initial sequence of estimators (method of moments, quantile matching method, etc.)
in terms of computational cost and asymptotic variance. It is much less computationally expensive
than the MLE, while it has the same rate and the same asymptotic variance. Since there is no full
numerical optimization (but only one computation of the Newton step or the Fisher scoring step), the
procedure is faster and appropriate for very large datasets. On the other hand, it is asymptotically
optimal in terms of asymptotic variance, which is generally not the case for the initial sequence of
guess estimators.

For several probability distributions (Gaussian, Exponential, Lognormal, Poisson, Geometric),
a fast computable sequence of estimators is already asymptotically efficient, and no correction is
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needed. When the Fisher information is given in a closed form (Gamma, Beta, χ2, Weibull, Pareto II,
Cauchy), Le Cam’s one-step estimation procedure (1) is executed. In all the other cases, the estimation
procedure (2) is used either with the score function and the Hessian in a closed form (Negative
Binomial) or with the numerical approximation of the score function and the Hessian with the package
numDeriv (see Gilbert and Varadhan (2019)).

Le Cam’s one-step estimation procedures are implemented in the package OneStep, and the
eponymic function onestep is described in this paper and used on different examples. Monte Carlo
simulations are performed for several examples in order to exhibit the performance of Le Cam’s
one-step procedure on samples of finite size. They exhibit their asymptotic efficiency simultaneously
with their better computational cost for several probability distributions.

2 The function onestep

Let (X1, X2, . . . , Xn) be a sample of i.i.d. random variables. The probability density function of X1 is
denoted f and depends on an unknown parameter ϑ ∈ Θ ⊂ R

p which is to be estimated.

Le Cam’s one-step estimation procedure is based on an initial sequence of guess estimators and
a Fisher scoring step or a single Newton step on the loglikelihood function. For the novice user, the
function onestep automatically chooses the best procedure to be used. There is, consecutively, a single
command for the user, which is

onestep(data,distr)

The function onestep presents several procedures internally depending on whether the initial se-
quence of guess estimators is in a closed-form or not and whether the score and the Fisher information
matrix can be elicited in a closed-form.

Here is the list of the procedures taken into account in the onestep function:

1. Distributions for which the MLE is already explicit: norm, exp, lnorm, invgauss for continuous
probability distributions, and pois, geom for discrete probability distributions. For this class, the
explicit MLE is returned.

2. Distributions for which the initial sequence of guess estimators, the score and the Fisher infor-
mation matrix have been elicited in a closed-form: gamma, beta, chisq with an initial sequence
of moment estimators, cauchy with an initial sequence of quantile matching estimators, and
weibull with an initial sequence of graphical plot estimators. For this class, Le Cam’s one-step
procedure (1) is applied.

3. Distributions for which the initial sequence of guess estimators, the score, and the Hessian have
been elicited in a closed-form: nbinom. For this class, Le Cam’s one-step procedure (2) is applied.

4. Distributions for which the initial sequence is numerically computed on a subsample, but the
score and the Fisher information matrix have closed-form: pareto. For this class, Le Cam’s
one-step procedure (1) is executed.

5. For all other distributions, if the density function is well defined, the numerical computation
of the Newton step in Le Cam’s one-step procedure (2) is proposed with an initial sequence
of guess estimators, which is the sequence of maximum likelihood estimators computed on a
subsample.

As is described, all explicit distributions of the mmedist function from fitdistrplus have been
corrected in the onestep function, except unif and logis. The example unif is a famous example of
the singular behavior of the MLE. The correction of logis is of very small gain from the method of
moments estimator to the MLE. For these two distributions, the method of moments is returned.

However, the package also offers several new explicit computations as cauchy, chisq and weibull
and applies to distributions coming from the actuar package (see Dutang et al. (2008)) such as invgauss
and pareto.

The function onestep allows the user to propose its own initial guess estimation in the one-step
procedure by specifying the parameter init in the command

onestep(data,distr,init)

The user can consequently use different initial guess estimators for the aforementioned classical
distributions (moment estimators, estimators based on the characteristic function, quantile matching
estimators, Bayesian estimators, mode-type estimators, graphical methods, etc.). Several examples can
be found in the documentation of the onestep function.

Monte Carlo simulations are done for several examples (discrete and continuous probability
distributions) in order to exhibit the performance of Le Cam’s one-step estimation procedure in terms
of efficiency and computational cost on observation samples of finite size.
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For the assessment of the efficiency, the proximity of the renormalized statistical errors (Y1, Y2, . . . , YM)
to the centered Gaussian asymptotic distribution (for a coordinate in the multivariate setting) is evalu-
ated with the Cramer-Von Mises statistic

T = Mω2
M = M

∫
R
(FM(y)− F∗(y))

2 dF∗(y) =
1

12M
+

M

∑
i=1

(
F∗(Y(i))−

2i − 1
2M

)2
,

where the order statistics are denoted Y(1) ≤ Y(2) ≤ · · · ≤ Y(M), F∗(·) is the theoretical Gaussian
asymptotic cumulative distribution function and

FM(y) =
1
M

M

∑
i=1
1{Yi≤y}

is the empirical cumulative distribution function. The asymptotic distribution of T is tabulated, for
instance, in the goftest package. Note that a value of the statistic below 0.7434 corresponds to accept
the null (and the equivalence to theoretical Gaussian asymptotic distribution) with an error of type I
equal to 1%.

Timing performance (given in seconds) is done with the proc.time function ("elapsed" time) on
a laptop with an Intel Core i7 2.7 GHz processor with 8GB RAM. The onestep function is compared
to the MLE computed with mledist of the fitdistrplus package and to the sequence of initial guess
estimators (for instance, the moment estimator is computed with mmedist for the gamma, beta, and
nbinom distributions).

The functions benchonestep and benchonestep.replicate were used to compare the performance
of estimators (see documentation of the OneStep package).

Closed-form sequence of initial guess estimators

For the majority of the "closed formula" cases, the initial sequence of guess estimators of the unknown
parameter ϑ is the sequence of moment estimators.

Let (X1, X2, . . . , Xn) be a sample of i.i.d. random variables. Let us denote the theoretical moments
mk(ϑ) = Eϑ(Xk

1) and the empirical moments m̃k = 1
n ∑n

j=1 Xk
j . The sequence of moment estimators

(ME) is generally defined as the solution of the system of equations

mk(ϑ
∗
n) = m̃k, k = 1, . . . , p.

Indeed, under very mild conditions, the sequence of moment estimators (ϑ∗
n, n ≥ 1) is asymptotically

normal, and therefore,
√

n-consistent (see Ibragimov and Has’minskii (1981)). Namely,

√
n (ϑ∗

n − ϑ) −→ N
(

0, J−1(ϑ)A(ϑ)J−T(ϑ)
)

(3)

in law as n → ∞, where

J(ϑ) =

(
∂

∂ϑj
mi(ϑ)

)
1≤i≤p,1≤j≤p

and
A(ϑ) = Eϑ

(
(Xi

1 − mi(ϑ))(X j
1 − mj(ϑ))

)
1≤i≤p,1≤j≤p

.

Here, the notation MT means the transpose matrix of M. Several examples (Gamma, Beta, and
Negative Binomial) are given later on in this section.

However, other
√

n-consistent sequences of initial guess estimators can be used. For instance, an
initial sequence of quantile matching estimators is employed for the Cauchy distribution.

It had been shown in Le Cam (1956) that for a
√

n–consistent initial sequence of guess estimators
and an uniformly continuous Fisher information matrix, the sequence of Le Cam’s one-step estimators
defined in (1) or (2) is consistent, asymptotically normal and efficient (in the Fisher sense) with

√
n
(

ϑ̂n − ϑ
)
→ N

(
0, I(ϑ)−1

)
.

In other words, for an initial sequence which is asymptotically rate but not variance efficient, the new
sequence is asymptotically rate and variance efficient.

Gamma The first example is the joint estimation of the shape parameter α and scale parameter β in
the statistical experiment generated by a sample (X1, X2, . . . , Xn) of i.i.d. Gamma random variables
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whose probability density function is given by

f (x) =
βα

Γ(α)
xα−1 exp(−βx), x > 0.

Let us denote ϑ = (α, β). In this statistical experiment, the sequence of maximum likelihood
estimators (ϑ̂n, n ≥ 1) of ϑ is not in a closed-form. The sequence of MLE satisfies

√
n
(

ϑ̂n − ϑ
)
→ N

(
0, I(ϑ)−1

)
,

where

I(ϑ) =
(

ψ(2)(α) − 1
β

− 1
β

α
β

)
.

Here, ψ(n) is the polygamma functions (see (Abramowitz and Stegun, 1972, section 6.4.1, page 260))
defined by ψ(n)(α) = ∂n

∂αn log Γ(α). Consider that

mk(ϑ) =
α(α + 1) . . . (α + k − 1)

βn .

Consecultively, the sequence of moment estimators (ϑ∗
n = (α∗n, β∗n), n ≥ 1) given by

α∗n =
m̃2

1
m̃2 − m̃2

1
and β∗n =

m̃1

m̃2 − m̃2
1

is asymptotically normal (see (3)) with

J =

( 1
β − α

β2

1+2α
β2 − 2α(α+1)

β3

)
and A(ϑ) =

 α
β2

2α(α+1)
β3

2α(α+1)
β3

α(4α+6)(α+1)
β4

 ,

and consequently does not reach asymptotical efficiency.

We can see in Figure 1 (and in Table 1 with the Cramer-Von Mises statistics) that the sequence of
Le Cam’s one-step estimators (LCE) reaches efficiency and naturally overperforms the initial sequence
of ME in terms of asymptotic variance. Moreover, this sequence is faster to be computed on M = 10000
Monte Carlo simulations than the sequence of MLE, as shown in Table 1, displaying total computation
times over M.

MLE ME LCE
Computation time (s) 1559.74 29.72 37.46

CvM statistic alpha 0.63 1.04 0.23
CvM statistic beta 0.47 0.86 0.19

Table 1: Computation time and CvM statistics

As it was mentioned in the introduction, the major advantage of the sequence of one-step estimators
is that it is computed faster than the maximum likelihood estimator for large datasets. We illustrate
this fact in Table 2, where the average computation times (over 10 Monte Carlo simulations) are done
for different sample sizes n = 10r, r = 3, . . . , 9 for both MLE and LCE. LCE is between 20 times and 55
times faster than MLE, especially for large sample sizes when there is memory overload.

10^3 10^4 10^5 10^6 10^7 10^8 10^9
MLE 0.0121 0.1193 1.0056 10.4735 99.4203 2339.0437 31600.8313
LCE 0.0007 0.0053 0.0252 0.2361 2.3152 40.0440 540.7393

Table 2: Average computation time (s)

Beta The second example is the joint estimation of the first shape parameter α and the second shape
parameter β in the statistical experiment generated by a sample (X1, X2, . . . , Xn) of i.i.d. Beta random
variables whose probability density function is given by

f (x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1, x ∈ [0, 1].
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Figure 1: Histograms for the M = 10000 Monte Carlo simulations of the rescaled statistical error of
the MLE, ME, and LCE for the Gamma distribution with (α, β) = (2, 3) and n = 10000. Superimposed
red and blue lines are the theoretical centered Gaussian asymptotic distributions of the MLE and the
ME, respectively.

Let us denote ϑ = (α, β). In this statistical experiment, the sequence of maximum likelihood
estimators (ϑ̂n, n ≥ 1) of ϑ is not in a closed-form. The sequence of MLE satisfies

√
n
(

ϑ̂n − ϑ
)
→ N

(
0, I(ϑ)−1

)
,

where

I(ϑ) =
(

ψ(2)(α)− ψ(2)(α + β) −ψ(2)(α + β)

−ψ(2)(α + β) ψ(2)(β)− ψ(2)(α + β)

)
.

It is worth mentioning that for the Beta distribution

mk(ϑ) =
Γ(α + k)Γ(α + β)

Γ(α)Γ(α + β + k)

that allows one to build closed-form moment estimators. Namely, denoting w̃n = m̃1(1−m̃1)
m̃2−m̃2

1
− 1, we

obtain
α∗n = m̃1w̃n and β∗n = (1 − m̃1)w̃n.

Asymptotic variance in (3) of the sequence of moment estimators (ϑ∗
n = (α∗n, β∗n), n ≥ 1) can also be

computed with

J =

 β
(α+β)2 − α

(α+β)2

2α2 β+2αβ2+2αβ+β2+β
(α+β)2(α+β+1)2 − α(α+1)(2α+2β+1)

(α+β)2(α+β+1)2


and

A(ϑ) =

 αβ
(α+β)2(α+β+1)

2αβ(α+1)
(α+β)2(α+β+1)(α+β+2)

2αβ(α+1)
(α+β)2(α+β+1)(α+β+2)

α(α+1)(2α3+6α2 β+4αβ2+14αβ+4α2+4α+6β2+6β)
(α+β)2(α+β+1)(α+β+2)(α+β+3)

 ,

and consequently the sequence does not reach asymptotical efficiency.

Here again, the sequence of Le Cam’s one-step estimators naturally overperforms the initial
sequence of ME in terms of asymptotic variance (see Figure 2 and the next Table for CvM statistics).

It is computed faster than the sequence of MLE, as shown in Table 3.
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Figure 2: Histograms for the M = 10000 Monte Carlo simulations of the rescaled statistical error of
the MLE, ME, and LCE for the Beta distribution with (α, β) = (0.5, 1.5) and n = 10000. Superimposed
red and blue lines are the theoretical centered Gaussian asymptotic distributions of the MLE and the
ME, respectively.

MLE ME LCE
Computation time (s) 2324.99 43.26 52.02

CvM statistic alpha 0.22 0.06 0.05
CvM statistic beta 0.34 0.11 0.20

Table 3: Computation time and CvM statistics

Cauchy The third example is the joint estimation of the location parameter m ∈ R and the scale
parameter d > 0 in the statistical experiment generated by a sample (X1, X2, . . . , Xn) of i.i.d. Cauchy
random variables whose probability density function is given by

f (x) =
d

π
(

d2 + (x − m)2
) , x ∈ R. (4)

Let us denote ϑ = (m, d). In this statistical experiment, the sequence of maximum likelihood estimators
(ϑ̂n, n ≥ 1) of ϑ is not in a closed-form. The sequence of MLE satisfies

√
n
(

ϑ̂n − ϑ
)
→ N

(
0, I(ϑ)−1

)
,

where

I(ϑ) =
(

1
2d2 0
0 1

2d2

)
.

It is worth mentioning that the Cauchy distribution has no first moment, and consecutively its
unknown parameter ϑ cannot be estimated via the classical method of moments. But a quantile
matching method allows one to define

m∗
n = Qn

(
1
2

)
and d∗n =

1
2

(
Qn

(
3
4

)
− Qn

(
1
4

))
, (5)
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where the sample quantile is usually computed for p ∈ (0, 1) as

Qn(p) = X(⌊np⌋),

with the order statistics denoted X(1) ≤ X(2) ≤ · · · ≤ X(n). This sequence of estimators (ϑ∗
n =

(m∗
n, d∗n), n ≥ 1) can be shown to be consistent and asymptotically normal, namely

√
n (ϑ∗

n − ϑ)−→N (0, Γ1) ,

where

Γ1 =

( 1
4 f (m)2 0

0 1
16 f (q1)2

)
. (6)

Here q1 is the theoretical first quartile. Consequently, this estimator does not reach the efficient
asymptotic variance.

As mentioned previously, the sequence of Le Cam’s one-step estimators overperforms the initial
sequence of quantile matching estimators (QME) in terms of asymptotic variance (see Figure 3 and the
next Table for CvM statistics).
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Figure 3: Histograms for the M = 10000 Monte Carlo simulations of the rescaled statistical error of the
MLE, QME, and LCE for the Cauchy distribution with (m, d) = (2, 3) and n = 10000. Superimposed
red and blue lines are the theoretical centered Gaussian asymptotic distributions of the MLE and the
QME, respectively.

It is computed faster than the sequence of MLE, as shown in Table 4.

MLE QME LCE
Computation time (s) 225.32 7.40 27.59

CvM statistic m 0.08 0.42 0.08
CvM statistic d 0.04 0.10 0.04

Table 4: Computation time and CvM statistics

Pólya (negative binomial) The fourth example is the joint estimation of the size parameter r and
the mean parameter µ in the statistical experiment generated by a sample (X1, X2, . . . , Xn) of i.i.d.
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negative binomial random variables whose (discrete) probability density function is given by

f (x) =
Γ(r + x)
Γ(r)x!

(
r

µ + r

)r ( µ

µ + r

)x
, x ∈ N.

Let us denote ϑ = (r, µ). In this statistical experiment, the sequence of maximum likelihood estimators
(ϑ̂n, n ≥ 1) of ϑ is not in a closed-form and the Fisher information matrix neither.

For this distribution,

m1(ϑ) = µ and m2(ϑ) = µ2 + µ +
µ2

r
that gives closed-form sequence of moment estimators (ϑ∗

n = (r∗n, µ∗
n), n ≥ 1) given by

r∗n =
m̃2

1
(m̃2 − m̃2

1)− m̃1
and µ∗

n = m̃1.

In this discrete case, the sequence of Le Cam’s one-step estimators (2) defined with the Hessian
still overperforms the initial sequence of ME in terms of asymptotic variance (see Figure 4 and the
next Table for CvM statistics). Let us mention that the CvM statistics are computed with the estimated
variances for MLE and LCE.
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Figure 4: Histograms for the M = 10000 Monte Carlo simulations of the rescaled statistical error of
the MLE, ME, and LCE for the Polya distribution with (r, µ) = (1, 5) and n = 10000. Superimposed
red line is the empirical Gaussian asymptotic distributions of the MLE. Superimposed blue line is the
theoretical centered Gaussian asymptotic distributions of the ME.

It also overperforms the sequence of MLE in terms of computation time, as shown in Table 5.

MLE ME LCE
Computation time (s) 2038.33 39.59 104.75

CvM statistic r 0.18 0.71 0.19
CvM statistic mu 0.05 0.05 0.05

Table 5: Computation time and CvM statistics

Weibull The fifth example is the joint estimation of the shape parameter τ > 0 and the rate parameter
β > 0 in the statistical experiment generated by a sample (X1, X2, . . . , Xn) of i.i.d. Weibull random
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variables whose probability density function is given by

f (x) = βτ(βx)τ−1 exp (−(βx)τ) , x ∈ R+
∗ .

Let us denote ϑ = (τ, β). In this example, neither the ME nor the MLE is in closed-form. However, the
score and the Fisher information matrix can be explicitly computed. For instance,

I(ϑ) =

 1
τ2

(
ψ(2)(1) + [ψ(1)(2)]2

)
1
β ψ(1)(2)

1
β ψ(1)(2) τ2

β2

 .

Moreover, it is possible to define a closed-form initial sequence of graphical plot estimators (based
on the explicit form of the cumulative distribution function). Let us denote xi = log(− log(1 − i/(n +

1))) and Zi = log
(

X(i)

)
for i = 1, . . . , n. The sequence of ordinary least square (OLS) based estimators

(ϑ∗
n = (τ∗

n , β∗n), n ≥ 1) is defined by

τ∗
n =


n
∑

i=1
(xi − xn)Zi

n
∑

i=1
(xi − xn)2


−1

and β∗n = exp
(

Zn − (τ∗
n )

−1xn

)
,

where Zn stands for the average of Z1, . . . , Zn.

The sequence of Le Cam’s one-step estimators overperforms the initial sequence of OLS-based
estimators in terms of asymptotic variance (see Figure 5 and the next Table). Since OLS presents a
small bias for samples of finite size, its CvM statistics are bigger in the next Table.
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Figure 5: Histograms for the M = 10000 Monte Carlo simulations of the rescaled statistical error of the
MLE, OLS, and LCE for the Weibull distribution with (τ, β) = (0.8, 3) and n = 10000. Superimposed
red line is the theoretical centered Gaussian asymptotic distributions of the MLE. Superimposed blue
line is the empirical Gaussian asymptotic distributions of the OLS.

It also overperforms the sequence of MLE in terms of computation time for large datasets, as
shown in Table 6.
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MLE OLS LCE
Computation time (s) 568.83 32.64 82.64

CvM statistic tau 0.13 17.26 0.06
CvM statistic beta 0.59 2.33 0.59

Table 6: Computation time and CvM statistics

Numerically computed initial sequence of guess estimators and numerical computations
in the generic case

As soon as the ME is not in closed form or no other closed form estimators can be elicited, the use of a
numerical ME as an initial sequence of guess estimator in Le Cam’s one-step procedure is difficult to
justify. Indeed, no gain will be given in terms of time computation and the use of the MLE is finally
equivalent. We propose therefore to use in the onestep function an improvement of the classical Le
Cam procedure.

Indeed, it can be shown (see Kamatani and Uchida (2015) or Kutoyants and Motrunich (2016))
that for a nδ/2–consistent initial sequence of guess estimators (with 1

2 < δ ≤ 1) and a Lipshitz Fisher
information matrix, the sequence of Le Cam’s one-step estimators is also consistent, asymptotically
normal and efficient (in the Fisher sense). In this setting, for a initial sequence which is neither
asymptotically rate nor variance efficient, the new sequence is asymptotically rate and variance
efficient.

This result allows one to use the numerical computation of the MLE on a subsample (of size nδ,
for 1

2 < δ ≤ 1) as an initial sequence of guess estimators. Namely, for this initial sequence of guess
estimators (ϑ∗

n, n ≥ 1),
n

δ
2 (ϑ∗

n − ϑ) → N
(

0, I(ϑ)−1
)

.

Then the sequence of Le Cam’s one-step estimators given by (2) is also consistent, asymptotically
normal and efficient (in the Fisher sense) with

√
n
(

ϑ̂n − ϑ
)
→ N

(
0, I(ϑ)−1

)
.

The choice of the exponent δ that measures the size of the subsample 1
2 < δ ≤ 1 is set to 0.9 by

default and can be chosen by the user with the parameter control, for instance in the call

onestep(data, distr, control=list(delta=0.7))

The example of Pareto II distribution is interesting and shows the gain in terms of variance (with
respect to the initial sequence of guess estimators) and in terms of computation time in comparison
with the MLE.

This improved method is also used when the distribution does not belong to the closed-formula
family. The initial sequence of maximum likelihood estimators is computed on a subsample with the
mledist function of the fitdistrplus package. The score and the Hessian in the Newton step of the Le
Cam procedure (2) are numerically computed with the functions grad and hessian of the numDeriv
package (see Gilbert and Varadhan (2019)).

Pareto II The sixth example is the joint estimation of the shape parameter α > 0 and the scale
parameter σ > 0 in the statistical experiment generated by a sample (X1, X2, . . . , Xn) of i.i.d. Pareto II
(Lomax) random variables whose probability density function is given by

f (x) =
ασα

(σ + x)α+1 , x ∈ R+.

In this example neither the ME (when it exists for α > 2) nor the MLE are in closed-form. But the
score and the Fisher information matrix can be explicitly computed.

Let ϑ = (α, σ). Then, considering the MLE computed on a subsample of size nδ, 1
2 < δ ≤ 1, as an

initial sequence of guess estimators (ϑ∗
n, n ≥ 1), we get

n
δ
2 (ϑ∗

n − ϑ) → N
(

0, I(ϑ)−1
)

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 393

with

I(ϑ) =
(

α
σ2(α+1) − 1

σ(α+1)
− 1

σ(α+1)
1
α2

)
.

The computation of the Fisher information matrix can be found in Brazauskas (2003).

Here again, the sequence of Le Cam’s one-step estimators naturally overperforms the initial
sequence of MLE computed on a subsample in terms of asymptotic variance (see Figure 6 and the next
Table for the CvM statistics).
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Figure 6: Histograms for the M = 10000 Monte Carlo simulations of the rescaled statistical error of the
MLE, ME, and LCE for the Pareto II distribution with (α, σ) = (1.1, 0.3) and n = 10000. Superimposed
red and blue lines are the theoretical centered Gaussian asymptotic distributions of the MLE and the
MLE on a subsample, respectively.

It is also computed faster than the sequence of MLE, as shown in Table 7.

MLE MLEsub LCE
Computation time (s) 1013.00 393.42 414.08

CvM statistic alpha 0.25 4.72 1.44
CvM statistic sigma 0.43 5.54 1.42

Table 7: Computation time and CvM statistics

Generic function For the generic example, we study the Weibull distribution again and force it to be
numerically computed with the function parameter method="numeric" in order not to use the closed
form processing.

We recall that, in the generic procedure, the score and the Hessian in the Newton step of the Le Cam
procedure (2) are numerically computed with the functions grad and hessian of the numDeriv pack-
age. By default, the initial sequence of maximum likelihood estimators is computed on a subsample if
size nδ with δ = 0.9.

The numerically computed sequence of Le Cam’s one-step estimators reaches asymptotic efficiency
for a simulation of M = 10000 Monte-Carlo replications of samples of size n = 10000 as shown by the
CvM statistics summarized in the next table. It is still computed faster than the sequence of MLE, see
Table 8.
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MLE LCE GLCE
Computation time (s) 568.83 82.64 405.10

CvM statistic tau 0.13 0.06 0.25
CvM statistic beta 0.59 0.59 1.08

Table 8: Computation time and CvM statistics

paper.
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The HBV.IANIGLA Hydrological Model
by Ezequiel Toum, Mariano H. Masiokas, Ricardo Villalba, Pierre Pitte and Lucas Ruiz

Abstract Over the past 40 years, the HBV (Hydrologiska Byråns Vattenbalansavdelning) hydrological
model has been one of the most used worldwide due to its robustness, simplicity, and reliable results.
Despite these advantages, the available versions impose some limitations for research studies in
mountain watersheds dominated by ice-snow melt runoff (i.e., no glacier module, a limited number of
elevation bands, among other constraints). Here we present HBV.IANIGLA, a tool for hydroclimatic
studies in regions with steep topography and/or cryospheric processes which provides a modular
and extended implementation of the HBV model as an R package. To our knowledge, this is the first
modular version of the original HBV model. This feature can be very useful for teaching hydrological
modeling, as it offers the possibility to build a customized, open-source model that can be adjusted to
different requirements of students and users.

1 Introduction

Hydrological modeling is widely used by engineers, meteorologists, geographers, geologists, and
researchers interested in knowing the runoff of rivers in the coming days or the variations of the
snowpack under certain temperature or precipitation changes, among many other hydrological
processes.
The Swedish Meteorological and Hydrological Institute (SMHI) ran the first successful simulation
of the HBV model in 1972. It was developed to forecast river runoff for hydropower generation in
Sweden (Bergström and Lindström, 2015). Up to now, many versions have been developed: HBV-ETH
(Switzerland - Braun and Renner (1992) ), HBV-Light (Switzerland - Seibert and Vis (2012) ), HBV-D
(Germany - Krysanova et al. (1999) ), HBV-CE (Canada - Stahl et al. (2008) ), TUWmodel (Austria -
Viglione and Parajka (2016) ), among others. Despite all these free versions, none of them allows the
users to build their own model using a self-defined combination of modules.

Buytaert et al. (2008) identified some prerequisites for hydrological model development: (1)
accessibility in order to reproduce experimental results; (2) modularity as a key element for the devel-
opment of new ‘ad-hoc’ models to evaluate several aspects of the hydrological cycle and to propose
improvements; (3) portability, so the model can run in many operating systems; and (4) open-source
code as a fundamental scientific requirement that allows users to revise, correct, and suggest code
improvements.

Slater et al. (2019) highlighted some of the key R packages for hydrological modeling; TUWmodel
is an R version of the HBV model originally written in Fortran (Viglione and Parajka, 2016); topmodel
and dynatopmodel are the R versions of the well-known semi-distributed models TOPMODEL and
Dynamic TOPMODEL (Buytaert, 2018; Metcalfe et al., 2015); airGR (Coron et al., 2017, 2020) includes
several conceptual rainfall-runoff models, a snow accumulation and melt model and the associated
functions for their calibration and evaluation; finally, hydromad (Andrews et al., 2011) provides
a modeling framework for environmental hydrology through water balance accounting and flow
routing in spatially aggregated catchments.

Of the models mentioned above, only airGR, hydromad, and TUWmodel present a snow routine
to account for accumulation and melting processes (temperature index model), but none of them have
routines to account for glacier mass balance. On the other hand, the glacierSMBM package (Groos
and Mayer, 2017) allows the modeling of glacier surface mass balance in a fully distributed manner,
but it was designed to work on the mass balance of a single glacier and to run on a raster-based grid,
two aspects that limit its applicability at the basin scale.

The HBV.IANIGLA (Toum, 2021) package was built with the aim of providing a modular hydro-
logical model approach that adds to the classic HBV routines functions for the modeling of the surface
mass balance of clean and debris-covered glaciers, a fundamental aspect in the hydrological cycle of
cold regions of the Andes (Masiokas et al., 2020). The main objective of this article is to present the
HBV.IANIGLA model structure through its implementation as an R package to serve as a practical
guide to better understand how it works. The paper is organized as follows:

• In the next section, we describe the modeling philosophy under HBV and justify the use of a
modular approach. We then present the HBV.IANIGLA modules and related equations (with
some conceptual drawings). We end this section with a small study on model computation
times, a fundamental aspect for sensitivity and uncertainty analysis.

• Following the methodology, we focus on two examples: on a synthetic basin and on glacier
mass balance. The reader will find more reproducible examples in the package vignettes.
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• Finally, we condense the key points of the current version of HBV.IANIGLA and propose future
improvements.

2 The HBV.IANIGLA model

The HBV model

The HBV model has been used for 40 years for hydrological studies in mountain regions around
the world (Bergström and Lindström, 2015). The model requires relatively few data inputs (air
temperature, precipitation, and potential evapotranspiration), which makes it very appropriate in
scarce data regions such as the Southern Andes. It has been well-documented by other authors (Seibert
and Vis, 2012; Parajka and Blöschl, 2008; Stahl et al., 2008), a feature that facilitates writing new codes
and modifying or improving existing equations. Also , it is a bucket-type model with relatively few
free parameters to calibrate.

The HBV.IANIGLA version not only takes into account precipitation phase partitioning, snow
accumulation and melting, actual evaporation and streamflow discharge, but also incorporates a
module for simulating the surface mass balance of clean and debris-covered glaciers and another
module for glacier-melt routing. In addition, the package has been designed in a modular fashion,
allowing users to build their own model. To our knowledge, this is the first HBV version and R
hydro-modeling package to combine these two features.

General modeling philosophy

According to Bergström and Lindström (2015), the HBV model was inspired in the works developed
in the early 1970s by Nash and Sutcliffe (1970), O’Connell et al. (1970), and Mandeville et al. (1970).
The primary objective of this model was operational: to forecast streamflow discharge for the Swedish
hydropower industry. This overriding requirement dictated the characteristics of the model: it
should not be too complex but physically sound; the input data should conform to standard Swedish
meteorological measurements; the number of free parameters should be kept to a minimum; and it
should be easy to understand.

The above features and lessons learned over more than two decades (Bergström, 1991) resulted
in a hydrological model composed of four modules: (1) a temperature index model with an air
temperature-based precipitation partitioning algorithm; (2) a soil moisture routine with a nonlinear
empirical algorithm to account for abstractions, actual evaporation, and antecedent conditions; (3) a
bucket-type model (many variants exist up to now) to simulate the catchment storage effect; and (4) a
transfer function to adjust the timing of the hydrograph to the observed discharge.

To date, the model has not only been used in operational hydrology but also in scientific research.
Konz and Seibert (2010) used the HBV-Light version in three alpine catchments in Switzerland and
Austria to show the value of glacier mass balances in constraining uncertainty in the parameter
estimation of conceptual models such as HBV. Ali et al. (2018) also applied HBV-Light to evaluate
model performance in a climate change context in the snow- and ice-dominated Hunza River basin in
the Karakoram Mountains, Pakistan. Finger et al. (2015) compared model performance in simulations
of increasing complexity for glacier mass balance and streamflow at the outflow of three Swiss
watersheds. Stahl et al. (2008) used HBV-CE to estimate streamflow sensitivity to different climate
change scenarios in British Columbia, Canada. Staudinger et al. (2017) studied the variation of water
storage with elevation in 21 Swiss alpine and pre-alpine catchments using four different methods:
water balance analysis, flow recession analysis, calibration of the HBV model, and calibration of
a transfer function hydrograph separation model using stable isotope observations. In another
interesting application, Ren et al. (2018) combined HBV with a Bayesian neural network to improve
seasonal water supply forecasting in the Yarkant River basin, Central Asia. Therefore, the original
conception of HBV and its evolution have made it a longstanding multipurpose tool for a diverse and
dynamic user community.

Modules and equations

Models are based on a perceptual conception of the basin’s functioning. This perception leads to the
decision of the equations (hydrological processes) and the construction of a conceptual model (Beven,
2012). In the HBV.IANIGLA model, these first two stages have already been decided, as the equations
and coding are in the package, but the user still has a choice on how the watershed or glacier will
be discretized (in terms of land use and spatial aggregation) and on how the different modules will
be assembled. This decision should be guided by the objective of the project, the knowledge of the
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hydrological driving process at the chosen modeling scale, and the data available not only for the
implementation but also for the model evaluation.

Figure 1: Example of HBV.IANIGLA module assembly in a mountain basin. To account for snow
accumulation and snowmelt, the basin has been discretized into elevation bands (a and b). Each of
these polygons has snow and soil routine (c), the effective soil recharge, weighted according to the
relative area of the elevation band, is passed to the bucket model (d). Finally, the river runoff timing is
adjusted by a triangular transfer function.

The following lines describe the modules that must be assembled to build a complete HBV.IANIGLA
hydrological model. There are three other functions within the package: PET, Pecip_model, and Temp_
model. The first function contains a potential evapotranspiration model that provides a simple and
straightforward way to calculate one of the inputs to the soil routine. However, for real-world applica-
tions we strongly recommend the use of the specialized Evapotranspiration package (Guo et al., 2020).
The other two functions are linear models to extrapolate air temperature and precipitation records.
Since we consider that their use is straightforward, we refer the user to the package manual.

Snow and ice melt models – SnowGlacier_HBV()

Precipitation is considered to be either snow or rain, depending on whether the temperature is above
or below a threshold temperature Tr (ºC).

Prain = P if Tair > Tr
Psnow = P ∗ SFCF if Tair ≤ Tr

(1)

After partitioning, the snowfall is corrected using the SFCF parameter to account for the under-capture
effect of the precipitation gauge on snow events.

This function uses a temperature index approach for snow and glacier melt simulation. This kind
of approximation has been widely used in snow hydrology and glaciology, and different formulations
have emerged (Hock, 2003; Seibert and Vis, 2012; Braun and Renner, 1992). The temperature index
formulation takes into account the strong correlation between snow line retreat and accumulated
temperatures above a certain threshold (with typical values around 0ºC). Hence although many
authors have proposed more complex formulations (e.g., HBV-Light uses a refreezing and liquid
retention factor) or even a radiation term (Pellicciotti et al., 2005), this empirical formulation must be
parsimonious to avoid problems of overparameterization (Kirchner, 2006).

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=Evapotranspiration


CONTRIBUTED RESEARCH ARTICLE 398

Melt = (Tair − Tt) ∗ fx if Tair > Tt, (2)

where Tair is the measured or estimated air temperature, Tt is the melting temperature, and fx is a
generic expression of melting factors for snow, clean, or debris-covered ice.

If the air temperature is above the threshold (Tt), melting occurs at a rate proportional to the
melting factor ( fx). Both the temperature threshold and the melting factor are parameters that must be
calibrated by the user. Note that the time units depend on the resolution of the input data. Although
the examples shown in this article are in a daily time step, the model can be used in the hourly or
monthly resolution. In the next lines, we will describe in detail the different arguments of the function.

The model argument presents three options:

1. Temperature index model: this model is described by equation 2. Here, the user can apply the
most common and recommended set of temperature index formulations.

2. Temperature index model with variable snow cover area: this option is an attempt to offer,
within the package, the same temperature index model as in the Snowmelt Runoff Model
(DeWalle and Rango, 2008). However, this routine has certain limitation: the snow cover series
forces the model to simulate a total effective value (e.g., snow water equivalent), which is not
in-line with the original idea of modeling in elevation bands, where average values are expected.

3. Temperature index model with a variable glacier area: this routine explicitly takes into account
the change in glacier area. Since the automatic reduction of glacier area forces the simulation to
the observed values, the user should evaluate the correspondence between the simulated and
observed mass balances.

The package documentation contains all the necessary information (vignettes with reproducible
examples included) to correctly construct the inputData argument. The data matrix must not contain
missing values (NA's) because HBV.IANIGLA is a continuous hydrological model, meaning that it
simulates all the variables in every time step.

The initial conditions of the model are (initCond):

1. Initial snow water equivalent: this is a state variable, whose initial value will be used in the first
loop. Unless field data is available, it is recommended to use a zero value. Because uncertainties
are common in the initial state variables of the model, it is recommended to use a warm-up
period (between one and two years in daily time step modeling). If the period covered by the
data is very limited, these same values can be used as calibration parameters.

2. Numeric integer indicating the surface type: 1: clean ice; 2: soil; 3: debris-covered ice.
HBV.IANIGLA uses this argument to know which parameters (param argument) to look for. It
also constrains the function output.

3. Area of the glacier(s) (in the elevation band) relative to the basin: this is required only if the
surface is a clean or debris-covered glacier. The area is used to scale the total amount of water
produced (rainfall plus melted water) according to the area of the polygon in the basin. Thus, if
the area of this portion of the glacier corresponds to 5% of the basin area, a value of 0.05 should
be assigned.

The last argument is a numeric vector that stores the parameter values (param) of the modules. For
debris-covered glaciers, a dummy value for the clean glacier melting factor ( fic) must be supplied.
This value will not be used internally but simplifies the calibration exercise when working in a basin
with both types of glaciers.

It should be noted that this function allows the construction of a single and lumped simulation.
In order to develop the model for the example shown in figure 1, it will be necessary to build the
model by running the function once per every elevation band (see examples in vignette(package =
"HBV.IANIGLA")).

Soil routine – Soil_HBV()

This routine is based on an empirical formulation that takes into account actual evapotranspiration,
antecedent conditions, and effective soil infiltration. This relationship is described by the so-called
beta function (Bergström and Lindström, 2015),

In f = (Melt + Rain f all) ∗
(

SM
FC

)β

, (3)
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where In f is the soil box infiltration, SM is the soil moisture state variable, and β is a nonlinear
parameter between the total amount of water entering the soil box, soil moisture storage, and runoff
generation. This equation is not unique among bucket-type hydrological models. A similar formulation
can be found in the VIC model (Liang et al., 1994). HBV.IANIGLA assumes that all evapotranspiration
occurs from the soil box, so this function implicitly accounts for all abstractions:

Eact = Epot ∗ min
(

SM
FC ∗ LP

; 1.00
)

, (4)

where Eact is the actual evapotranspiration, Epot is the potential evapotranspiration, FC is the soil box
water capacity parameter, and LP is a reduction factor.

This type of relationship between potential, actual evapotranspiration, and soil moisture content
has been found by Zhang et al. (2003) in eastern Asia, suggesting that despite its empirical formulation,
in some places, it could have some physical meaning. Finally, and similar to the snow and ice melt
modules, this routine represents a single and lumped simulation.

Routine module – Routing_HBV()

After infiltration, the water follows several complex pathways to streams (McDonnell, 2003). A
detailed description and modeling of these water pathways requires field data and measurements
that are generally not available. An early engineering-based solution to this issue was to consider
this multi-causal delay as a water storage effect at the catchment scale (Dooge, 1973). This practical
modeling approach could be seen as series of linearly interconnected and interrelated reservoirs
(Sivapalan and Blöschl, 2017).

The current HBV.IANIGLA (version 0.2.1) has five different bucket formulations, which are
selected by changing the model argument number (figure 2). To solve the time step change in the
bucket water storage, we used the explicit finite difference form of the mass balance equation over a
discrete-time step (Beven, 2012). Although the general solution has been implemented for a single
linear reservoir (figure 3), we provide solutions for the five-bucket models.

(a) Model 1 (b) Model 2

Figure 2: Diagrams for two of the five available bucket models. The reader will find all the diagrams
in the help menu (?Routing_HBV).

Figure 3: General outline for a water reservoir.
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dS
dt

= u − Q mass balance equation (5)

Q = K ∗ S continuity equation (6)

from (6),

S =
Q
K

= T ∗ Q (7)

we replace (7) into (5),

T ∗ dQ
dt

= u ∗ Q

In discrete time steps, we use the explicit finite difference form,

Qt − Qt−∆t
∆t

=
ut − Qt−∆t

T

Qt =
∆t
T

∗ ut + (1 − ∆t
T
) ∗ Qt−∆t

a = (1 − ∆t
T
)

b =
∆t
T

Qt = a ∗ Qt−∆t + b ∗ ut (8)
St − St−∆t

∆t
= ut − Qt−∆t

St = St−∆t + ∆t ∗ (ut − Qt−∆t) (9)

Glacier routine module – Glacier_Disch()

Following an approach similar to previous routines, we adopt bucket storage and release scheme
(Jansson et al., 2003). In HBV.IANIGLA, we use the approach proposed by Stahl et al. (2008) for the
HBV-EC model, employed to estimate glacier and streamflow responses to future climate scenarios in
the Bridge River Basin (British Columbia, Canada). The glacier outflow is calculated as:

Figure 4: The glacier runoff release (precipitation plus snow and ice melt) is modeled as a linear water
reservoir with a variable storage coefficient (KG), which is a function of the snow water equivalent
above the ice body.

KG = KGmin + dKG ∗ exp (SWE/AG) (10)

qG = KG ∗ SG, (11)

where KG is the actual glacier outflow coefficient, KGmin a minimum storage release coefficient, dKG
the maximum glacier outflow increment, SWE the total snow water equivalent over the glacier, AG a
scaling parameter, SG the glacier water storage, and qG the glacier runoff.

Note that the storage coefficient is a function of a minimum coefficient (denoting poor drainage
conditions on the glacier), the snow water equivalent, and a calibration parameter. When the snowpack
is at its maximum value, drainage occurs at a minimum rate, the opposite occurs in the late summer
when all the snow on the glacier has melted.

For the resolution of the time step change, we also use the explicit finite difference formulation of
the mass balance equation.
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Transfer Function – UH()

To represent the runoff routing in streams, we provide a single parameter triangular function. This
parameter is calibrated to adjust the timing of the simulated river discharge,

Q =
Bmax

∑
i=1

Qt−i+1 ∗ bi, (12)

where Bmax is the base of the triangular weighting function, bi is the weight for the ith step, and Qt−i+1
is the sum of the glacier and soil bucket runoff.

Computation times

The HBV.IANIGLA functions were written using Rcpp (Eddelbuettel, 2013; Eddelbuettel et al., 2019),
a package that extends the R language using C++. This approach combines the speed and efficiency of
C++, a compiled language, with the powerful interactive environment of R (see table 1), a language
where it is easy to implement specific hydrological workflows (from data retrieval to results analysis)
in a single environment (Slater et al., 2019).

min lq mean median uq max

1.79 1.95 2.65 2.01 2.19 55.81

Table 1: Summary of computation times (in milliseconds) over 1000 runs of the glacier_hbv function
(see vignette("alerce_mass_balance")) . The glacier was discretized into 8 elevation bands (∼ 100
m range). The model was built with the modules Temp_model, Precip_model, and SnowGlacier and
was run on a daily time step over a period of almost 9 years (from 2010-01-01 to 2018-05-30). The
analysis was performed on a CPU with an Intel Core i7-4790 processor at 3.60GHz, on a 64-bit OS
running Ubuntu 18.04 using the microbechmark package (Mersmann, 2019).

Speed is an important issue for hydrological models, as it allows the user to perform not only
uncertainty and sensitivity analysis in reasonable times, but also to apply demanding optimization
algorithms such as DEoptim (Ardia et al., 2016) or different model structures. This is a recommended
practice in the field of hydrological modeling (Beven, 2006, 2008; Pianosi et al., 2016). In addition, the
package only depends on Rcpp (v 0.12.0), a fact that supports its long-term maintenance.
If the reader is interested in comparing the computation times of different R hydrological models we
recommend the work of Astagneau et al. (2020).

3 Case studies

Lumped synthetic catchment

As a first attempt at applying HBV.IANIGLA, a synthetic lumped catchment (the simplest hydrological
model) is used to introduce the construction of the model and to present a basin discharge calibration
exercise.

Initially, the dataset containing: date, air temperature, precipitation, potential evapotranspiration,
and the catchment outflow is loaded, and then the model construction is conducted (from top to
bottom).

library(HBV.IANIGLA)

# load the lumped catchment dataset
data("lumped_hbv")

# take a look at our dataset
head(lumped_hbv)
summary(lumped_hbv)

For a basin without glaciers, the SnowGlacier module is used only with soil as the underlying
surface. In this exercise, we provide the correct initial conditions and parameters for all modules
except the Routing_HBV function. Consistent with the development of hydrologic models, we build our
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model in a top-down direction, from precipitation to streamflow routing (note that most hydrological
books are structured in the same way).

# consider the SnowGlacier module to take into account
# precipitation partitioning and the snow accumulation/melting.
snow_module <-
SnowGlacier_HBV(model = 1,

inputData = as.matrix( lumped_hbv[ , c(2, 3)] ),
initCond = c(20, 2),
param = c(1.20, 1.00, 0.00, 2.5) )

# now pass rainfall plus snowmelt to
# the soil routine. Note that we are using the PET series,

soil_module <-
Soil_HBV(model = 1,

inputData = cbind(snow_module[ , "Total"], lumped_hbv[ , "PET(mm/d)"]),
initCond = c(100, 1),
param = c(200, 0.8, 1.15) )

The actual evapotranspiration, soil moisture, and recharge series are obtained from the last module.
Subsequently, the recharge is incorporated into the routing function. Recall that the routing parameters
(param argument) are not calibrated.

routing_module <-
Routing_HBV(model = 1,

lake = F,
inputData = as.matrix(soil_module[ , "Rech"]),
initCond = c(0, 0, 0),
param = c(0.9, 0.01, 0.001, 0.5, 0.01) )

# finally apply the transfer function in order to adjust
# the hydrograph timing

tf_module <-
round(
UH(model = 1,

Qg = routing_module[ , "Qg"],
param = c(1.5) ),

2)

# plot the "true" and simulated hydrographs

library(ggplot2)

ggplot(data = data.frame(date = lumped_hbv[ , "Date"],
qsim = tf_module,
qobs = lumped_hbv[ , "qout(mm/d)"]),

aes(x = date)) +
geom_line(aes(y = qsim), col = "dodgerblue") +
geom_line(aes(y = qobs), col = "red") +
xlab(label = " ") + ylab(label = "q(mm/d)") +
theme_minimal() +
scale_x_date(date_breaks = "1 year") +
scale_y_continuous(breaks = seq(0, 15, 2.5)) +
theme(

title = element_text(color = "black", size = 12, face = "bold"),
axis.title.x = element_text(color = "black", size = 12, face = "bold"),
axis.title.y = element_text(color = "black", size = 12, face = "bold"),
legend.text = element_text(size = 11),
axis.text = element_text(size = 11),
axis.text.x = element_text(angle = 90) )

It is required to manually change the Routing_HBV parameters to approximate the simulation to
the observed basin discharge. Users will find in the package vignette (vignette("lumped_basin"))
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Figure 5: Observed (red) and simulated (blue) basin discharge. Note that the simulation does not
precisely reproduce the observed basin discharge, suggesting that the model needs some calibration.

more information on this example, including the construction of an HBV model as a function and how
to run a sensitivity analysis.

Semi-distributed glacier mass balance

In mountain areas with scarce meteorological information, temperature index models are widely
used to simulate snow and ice melting (Hock, 2003; Konz and Seibert, 2010; Finger et al., 2015; Ayala
et al., 2017). Since air temperature is the most readily available meteorological data in remote areas,
the temperature index approach has been widely used in glaciological and hydrological modeling
(Ohmura, 2001). This package has been built with the SnowGlacier_HBV function, a module that uses
this empirical approach to simulate snow, clean ice, and debris-covered melting.

In this section, we simulate the glacier mass balance for the Alerce glacier. Located on Monte
Tronador (41.15º S ; 71.88º W), nearby the border between Argentina and Chile in the Andes of
Northern Patagonia, Alerce is a medium-size mountain glacier with an area of about 2.33 km2 that
ranges between 1629 and 2358 masl showing a SE aspect (Ruiz et al., 2017; IANIGLA-ING, 2018).

Since 2013, the Alerce glacier has been part of the monitoring network of the National Glacier
Inventory (IANIGLA-ING, 2010). Measurements are conducted following the glaciological method for
seasonal mass balance computation (Kaser et al., 2003). Puerto Montt precipitation (Dirección General
de Aguas, Chile) and Bariloche air temperature (Servicio Meteorológico Nacional - Argentina) were used as
meteorological records to simulate the annual mass balance of the glacier (data(alerce_data)).
When calibrating the model parameters, simulations showing an annual mass balance in the range of
MB ± 400 mm were considered acceptable. MB is the annual surface mass balance of the glacier.

## load the dataset
data(alerce_data)

# now extract
meteo_data <- alerce_data[["meteo_data"]] # meteorological forcing series
mass_balance <- alerce_data[["mass_balance"]] # annual glacier mass balances
mb_dates <- alerce_data[["mb_dates"]] # fix seasonal dates
gl_topo <- alerce_data[["topography"]] # elevation bands

z_tair <- alerce_data[["station_height"]][1] # topo. elev. air temp.
z_precip <- alerce_data[["station_height"]][2] # topo. elev. precip.

To evaluate the topographic effect on surface mass balance (derived from field measurements),
the glacier was discretized into elevation bands. To solve this problem, a semi-distributed glacier
surface mass balance model (glacier_hbv), an aggregation function (agg_mb - since measurements and
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Figure 6: Satellite image of the Monte Tronador showing the location of the main glaciers. The Alerce
glacier, located in the eastern sector, is one of the smallest glaciers at Monte Tronador.

simulations are on different temporal scales), and a goodness-of-fit function (my_gof) were constructed.
The definition of this functions are included in vignette("alerce_mass_balance").

In the following code lines, the sampling strategy for finding acceptable parameter sets is indicated.

# air temperature model
tair_range <- rbind(
t_grad = c(-9.8, -2)

)

# precip model
precip_range <- rbind(
p_grad = c(5, 25)

)

# glacier module
glacier_range <- rbind(
sfcf = c(1, 2),
tr = c(0, 3),
tt = c(0, 3),
fm = c(1, 4),
fi = c(4, 8)

)

## aggregate them in a matrix
param_range <-
rbind(
tair_range,
precip_range,
glacier_range

)

In the next step, we generate the random parameter sets:

# set the number of model runs that you want to try
n_run <- 10000

# build the matrix
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n_it <- nrow(param_range)

param_sets <- matrix(NA_real_, nrow = n_run, ncol = n_it)

colnames(param_sets) <- rownames(param_range)

set.seed(123) # just for reproducibility
for(i in 1:n_it){

param_sets[ , i] <- runif(n = n_run,
min = param_range[i, 1],
max = param_range[i, 2]

)

}

Now, we combine the functions and extract our best simulations.

# goodness of fit vector
gof <- c()

# make a loop
for(i in 1:n_run){

# run the model
glacier_sim <- glacier_hbv(topography = gl_topo,

meteo = meteo_data,
z_topo = c(z_tair, z_precip),
param_tair = param_sets[i, rownames(tair_range)],
param_precip = param_sets[i, rownames(precip_range) ],
param_ice = param_sets[i, rownames(glacier_range)] )

# aggregate the simulation
annual_mb <- agg_mb(x = glacier_sim,

start_date = as.Date( mb_dates$winter[-4] ),
end_date = as.Date( mb_dates$winter[-1] ) - 1 )

# compare the simulations with measurements
gof[i] <- my_gof(obs_upp = mass_balance$upp,

obs_lwr = mass_balance$lwr,
sim = annual_mb[ , 3])

rm(glacier_sim, annual_mb)
}

param_sets <- cbind(param_sets, gof)

# we apply a filter
param_subset <- subset(x = param_sets, subset = gof == 3)

Once we have the subsetted our parameter matrix, we run the simulations to obtain a mean value
(one per year).

# now we run the model again to get our simulations
n_it <- nrow(param_subset)

mb_sim <- matrix(NA_real_, nrow = 3, ncol = n_it)

for(i in 1:n_it){
glacier_sim <- glacier_hbv(topography = gl_topo,

meteo = meteo_data,
z_topo = c(z_tair, z_precip),
param_tair = param_subset[i, rownames(tair_range)],
param_precip = param_subset[i, rownames(precip_range) ],
param_ice = param_subset[i, rownames(glacier_range)] )
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annual_mb <- agg_mb(x = glacier_sim,
start_date = as.Date( mb_dates$winter[-4] ),
end_date = as.Date( mb_dates$winter[-1] ) - 1 )

mb_sim[ , i] <- annual_mb[ , 3]

rm(i, glacier_sim, annual_mb)

}

# now we are going to make a data frame with the mean surface mass balance simulation
mean_sim <- cbind( mass_balance,

"mb_sim" = rowMeans(mb_sim) )

# make the plot
library(ggplot2)
g1 <-
ggplot(data = mean_sim, aes(x = year)) +
geom_pointrange(aes(y = `mb(mm we)`, ymin = `lwr`, color = 'obs',

ymax = `upp` ), size = 1, fill = "white", shape = 21) +
geom_point(aes(y = `mb_sim`, fill = 'sim'), shape = 23,

size = 3) +
geom_hline(yintercept = 0) +
scale_y_continuous(limits = c(-1500, 500), breaks = seq(-1500, 500, 250) ) +
scale_color_manual(name = '', values = c('obs' = 'blue') ) +
scale_fill_manual(name = '', values = c('sim' = 'red') ) +
ggtitle('') +
xlab('') + ylab('mb (mm we)') +
theme_minimal() +
theme(
title = element_text(color = "black", size = 12, face = "bold"),
axis.title.x = element_text(color = "black", size = 12, face = "bold"),
axis.title.y = element_text(color = "black", size = 12, face = "bold"),
legend.text = element_text(size = 11),
axis.text = element_text(size = 11))

4 Summary

In this study, we present the HBV.IANIGLA package, a modular version of HBV hydrological model
that incorporates routines for clean and debris-covered glacier modeling. We explain its modeling
principles and philosophy; address the package modules and related equations; and reinforce the
importance of C++ code to speed up calculations, a characteristic that facilitates sensitivity and
uncertainty analysis. To our knowledge, this is the first freely available, open-source modular version
of the HBV model that incorporates routines for glacier surface mass balance modeling (clean and
debris-covered ice).

We present two examples. The first one consists of a synthetic case to show how to build a model.
This is the simplest hydrological modeling case and should be use to understand how to concatenate
the package functions and how a numerical hydrological model works. The vignette("lumped_basin")
also illustrates the importance of sensitivity analysis and shows how it can be easily done in R. In
fact, any kind of sensitivity or uncertainty analysis (Pianosi et al., 2016) could be incorporated into
HBV.IANIGLA. The second example, a real-world glacier surface mass balance estimation, was
selected to show the use of the glacier module in a semi-distributed case. This module could be
of interest to the glaciological community, extending the use of the R language to other scientific
communities.

The new package version (0.2.1) documentation has been greatly improved in relation to previous
versions, not only by clarifying some aspects of the existing function’s documentation but also by
adding six vignettes with reproducible examples (see vignette(package = "HBV.IANIGLA")).

The modular design of the package allows the use of various spatio-temporal scales with dissim-
ilar objectives in the same environment (e.g., real-time streamflow forecasting, hydrological model
teaching, or glacier mass balance simulation). The different modules can be combined with other

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 407

Figure 7: Annual mass balances for the period April 2013 - March 2016. All acceptable simulations lies
between the observed uncertainty bounds (despite the fact that we have plot just the mean value).

R-related hydrological packages (e.g., Evapotranspiration, DEoptim, topmodel) or functions (Guo
et al., 2019; Ardia et al., 2016; Buytaert, 2018).

HBV.IANIGLA can also be combined with packages such as tidyverse, sp, raster, hydroGOF, or
plotly to build a single environmental hydrological workflow (Wickham, 2019; Pebesma and Bivand,
2017; Hijmans, 2017; Mauricio Zambrano-Bigiarini, 2017; Sievert et al., 2019). Thus, a hydrological
project can be developed from the beginning to the end in the R environment, facilitating reproducible
and repeatable research (Hutton et al., 2016; Ceola et al., 2015). This type of model design opens up
the possibility for applications beyond the Andes region as well as to incorporate new functions, such
as modules, to explicitly considering the dynamics of glaciers (Huss et al., 2010).

The package functions were built under generic classes (numeric vectors and matrices). This is
an aspect where future improvements can be made. Since HBV.IANIGLA is available in modules, it
could be greatly enhanced using the object-oriented programming (OOP) paradigm. In doing so, the
model could represent an object with properties (e.g., areas, polygons, elevations, among others), and
the HBV routines as part of the methods (functional OOP - S4 types). These methods may also include
(but not limited to): sensitivity and uncertainty analysis, automatic plotting of results, and temporal
aggregation functionality. Even some methods could be recycled from the hydroToolkit OOP package
(Toum, 2020).

The package could also be improved by adding some GUI functionality keeping in mind that in
the words of Chambers (2017), ...extending R is about contributing to the language through applications
designed for a wider audience than the package author itself. Moreover, this objective should not be a target by
its own, but a part or a piece of a bigger project directed to solve real world problems.
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krippendorffsalpha: An R Package for
Measuring Agreement Using
Krippendorff’s Alpha Coefficient
by John Hughes

Abstract R package krippendorffsalpha provides tools for measuring agreement using Krippendorff’s
α coefficient, a well-known nonparametric measure of agreement (also called inter-rater reliability
and various other names). This article first develops Krippendorff’s α in a natural way and situates
α among statistical procedures. Then, the usage of package krippendorffsalpha is illustrated via
analyses of two datasets, the latter of which was collected during an imaging study of hip cartilage.
The package permits users to apply the α methodology using built-in distance functions for the
nominal, ordinal, interval, or ratio levels of measurement. User-defined distance functions are also
supported. The fitting function can accommodate any number of units, any number of coders, and
missingness. Bootstrap inference is supported, and the bootstrap computation can be carried out in
parallel.

1 Introduction

Krippendorff’s α (Hayes and Krippendorff, 2007) is a well-known nonparametric measure of agree-
ment (i.e., consistency of scoring among two or more raters for the same units of analysis (Gwet,
2014)). In R (Ihaka and Gentleman, 1996), Krippendorff’s α can be applied using function kripp.alpha
of package irr (Gamer et al., 2012), function kripp.boot of package kripp.boot (Proutskova and
Gruszczynski, 2020), function krippalpha of package icr (Staudt and L’Ecuyer, 2020), and functions
krippen.alpha.raw and krippen.alpha.dist of package irrCAC (Gwet, 2019). However, these pack-
ages fail to provide a number of useful features. In this article we present package krippendorffsalpha,
which improves upon the above mentioned packages in (at least) the following ways. Package
krippendorffsalpha

• offers commonly used built-in distance functions for the nominal, ordinal, interval, and ratio
levels of measurement and also supports user-defined distance functions;

• conforms to the R idiom by providing S3 methods confint, influence, plot, and summary;

• supports embarrassingly parallel bootstrap computation; and

• supports verbose communication with the user, including the display of a progress bar during
the production of the bootstrap sample.

The remainder of this article is organized as follows. In Section 2.2, we locate Krippendorff’s
α among statistical procedures. In Section 2.2.1, we first develop a special case of Krippendorff’s
α (call it αSED) in a well-known parametric setting, and then we present α in its most general (i.e.,
nonparametric) form. In Section 2.2.2, we show that α is a type of multiresponse permutation procedure.
In Section 2.2.3, we generalize αSED in a fully parametric fashion, arriving at Sklar’s ω. In Section 2.3,
we describe our package’s bootstrap inference for α and compare the performance of our procedure
to that of two alternative approaches. In Section 2.4, we briefly discuss robustness and influence. In
Section 2.5, we provide a thorough demonstration of krippendorffsalpha’s usage before concluding
in Section 2.6.

2 Situating Krippendorff’s Alpha among statistical procedures

Since Krippendorff’s α is defined in terms of discrepancies (Krippendorff, 2013), at first glance,
one might conclude, erroneously, that α is a measure of dis-agreement, and so answers the wrong
question. In Sections 2.2.1–2.2.3, we will show, by examining Krippendorff’s α’s place among statistical
procedures, that α is, in fact, a sensible measure of agreement. Also, establishing a context for α may
help practitioners make educated decisions regarding α’s use.

The UML class diagram (Fowler et al., 2004) shown below in Figure 1 provides a conceptual
roadmap for our development. Briefly, a special case of α (which we denote as Alpha(SED) or αSED)
arises naturally in the context of the one-way mixed-effects ANOVA model. Alpha(SED) can then be
generalized in a nonparametric fashion to arrive at Krippendorff’s α as it has been presented by Hayes
and Krippendorff (see Gwet (2015) for development of nonparametric α in terms of agreement rather
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than discrepancies); this nonparametric form of α is a (slightly modified) multiresponse permutation
procedure. Alternatively, αSED can be generalized in a parametric fashion to arrive at Sklar’s ω, a
Gaussian copula-based methodology for measuring agreement.

Figure 1: A UML class diagram that shows the relationships between Krippendorff’s α and other
statistical procedures.

Parametric genesis of Krippendorff’s Alpha coefficient

In this section, we develop Krippendorff’s α (Hayes and Krippendorff, 2007) in an intuitive and
bottom-up fashion. Our starting point is a fully parametric model, namely, the classic one-way mixed-
effects ANOVA model (Ravishanker and Dey, 2001). To ease exposition, we will consider only a
balanced version of the model. We have, for nu units and nc coders, scores

Yij = µ + τi + εij, (i = 1, . . . , nu; j = 1, . . . , nc),

where

• µ (the population mean) is a fixed real number,

• the τi are independent N (0, σ2
τ) random variables,

• the εij are independent N (0, σ2
ε ) random variables, and

• the τi are independent of the εij.

In this setup, we have nc Gaussian codes Yi1, . . . , Yinc for unit i ∈ {1, . . . , nu}. Conditional on τi, said
codes are N (µ + τi, σ2

ε ) random variables. Since the variables share the “unit effect” τi, the variables
are correlated. The correlation, which is usually called the intraclass correlation, is given by

α =
σ2

τ

σ2
τ + σ2

ε
= 1 − σ2

ε

σ2
τ + σ2

ε
.

We use α to denote this quantity precisely because Krippendorff’s α is the intraclass correlation for
codes that conform to this model. That is, for the one-way mixed-effects ANOVA model, Krippen-
dorff’s α is the intraclass correlation. The reader may recall that the estimator of α for this model
is

α̂ = 1 − σ̂2
ε

σ̂2
τ + σ2

ε

= 1 −
1

nu(nc−1) ∑nu
i=1 ∑nc

j=1(Yij − Ȳi•)
2

1
nunc−1 ∑nu

i=1 ∑nc
j=1(Yij − Ȳ••)2

, (1)
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where Ȳi• and Ȳ•• denote the arithmetic means for the ith unit and for the entire sample, respectively.
The form of this estimator is not surprising, of course, since it is well-known that assuming Gaussianity
leads to variance estimators involving sums of weighted squared deviations from sample arithmetic
means.

We can eliminate the arithmetic means in (1) by employing the identity

n

∑
i=1

(xi − x̄•)2 =
1

2n

n

∑
i=1

n

∑
j=1

(xi − xj)
2.

This gives

α̂ = 1 −
1

2nunc(nc−1) ∑nu
i=1 ∑nc

j=1 ∑nc
k=1(Yij − Yik)

2

1
2nunc(nunc−1) ∑nu

i=1 ∑nc
j=1 ∑nu

k=1 ∑nc
l=1(Yij − Ykl)2

. (2)

Now, let d2(x, y) = (x − y)2, and rewrite (2) as

α̂ = 1 − Do

De
= 1 −

1
2nunc(nc−1) ∑nu

i=1 ∑nc
j=1 ∑nc

k=1 d2(Yij, Yik)

1
2nunc(nunc−1) ∑nu

i=1 ∑nc
j=1 ∑nu

k=1 ∑nc
l=1 d2(Yij, Ykl)

, (3)

where Do and De denote observed and expected disagreement, respectively. This is Krippendorff’s α
for the squared Euclidean distance (which is not a metric but a Bregman divergence (Bregman, 1967)).
We will henceforth refer to this version of α as Alpha(SED) or αSED. As we mentioned above, this
form of Krippendorff’s α arises quite naturally when the data at hand conform to the one-way mixed-
effects ANOVA model, for which agreement corresponds to a positive correlation. More generally,
Krippendorff recommends this form of α for the interval level of measurement. For other levels of
measurement, Krippendorff presents other distance functions d2 (several possibilities are shown in
Table 1). Note that package krippendorffsalpha supports user-defined distance functions as well as
the interval, nominal, and ratio distance functions shown in the table.

Level of Measurement Distance Function

interval d2(x, y) = (x − y)2

nominal d2(x, y) = 1{x ̸= y}

ratio d2(x, y) =
(

x−y
x+y

)2

bipolar d2(x, y) = (x−y)2

(x+y−2xmin)(2xmax−x−y)

circular d2(x, y) =
{

sin
(

π
x−y

I

)}2
(I = number of equal intervals on circle)

ordinal d2(x, y) = (x − y)2 (adjacent ranks are equidistant)

Table 1: Several distance functions that may be appropriate for use in Krippendorff’s α.

Alpha as a multiresponse permutation procedure

In any case, (3) is nonparametric for arbitrary d2 since then the estimator α̂ does not usually correspond
to a well-defined population parameter α. This more general form of Krippendorff’s α is, in fact,
a special case of the so-called multiresponse permutation procedure (MRPP). The MRPPs form a
class of permutation methods for discerning differences among two or more groups in one or more
dimensions (Mielke and Berry, 2007). Note, however, that although α can be viewed as an MRPP
(as we are about to show), α has been modified for the purpose of measuring agreement rather than
discerning differences.

To show that Krippendorff’s α is an MRPP, we first present the general form of the MRPP. Following
Mielke and Berry, let Ω = {ω1, . . . , ωn} be a finite sample that is representative of some population of
interest, let S1, . . . , Sa+1 denote a partition of Ω into a + 1 disjoint groups, and let ρ be a metric that
makes sense for the objects of Ω. (Strictly speaking, ρ need not be a metric; a symmetric distance
function will suffice.) To ease notation a bit, let ρjk ≡ ρ(ωj, ωk). Then, the MRPP statistic can be
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written as

δ =
a

∑
i=1

Ciθi,

where Ci > 0 are group weights such that ∑i Ci = 1;

θi =
1ni

2


∑
j<k

ρjk1i{ωj}1i{ωk}

is the average distance between distinct pairs of objects in group Si; ni ≥ 2 is the number of objects in
group i; l = ∑a

i=1 ni; na+1 = n − l ≥ 0 is the number of remaining unclassified objects in group Sa+1;
and 1i is the indicator function for membership in group i.

Note that this formulation is quite general since the objects in Ω can be scalars, vectors, or more
exotic objects, and we are free to choose the metric and the weights. In the case of Krippendorff’s
α, we can produce δ = Do by letting ρ = d2 for some appropriately chosen distance function d2 and
choosing weights Ci = 1/nu.

A parametric generalization of Alpha(SED)

In the preceding sections, we generalized αSED in a nonparametric fashion by substituting other notions
of distance for the squared Euclidean distance. Now, we will present a fully parametric generalization
of αSED, namely, Sklar’s ω (Hughes, 2018).

The statistical model underpinning Sklar’s ω is a Gaussian copula model (Xue-Kun Song, 2000).
The most general form of the model is given by

Z = (Z1, . . . , Zn)
′ ∼ N (0, Ω)

Ui = Φ(Zi) ∼ U (0, 1) (i = 1, . . . , n)

Yi = F−1
i (Ui) ∼ Fi, (4)

where Ω is a correlation matrix, Φ is the standard Gaussian cdf, and Fi is the cdf for the ith outcome
Yi. Note that U = (U1, . . . , Un)′ is a realization of the Gaussian copula, which is to say that the Ui are
marginally standard uniform and exhibit the Gaussian correlation structure defined by Ω. Since Ui
is standard uniform, applying the inverse probability integral transform to Ui produces outcome Yi
having the desired marginal distribution Fi.

To see that the one-way mixed-effects ANOVA model (and hence αSED) is a special case of Sklar’s
ω, let the copula correlation matrix Ω be block diagonal, where the ith block corresponds to the ith
unit (i = 1, . . . , nu) and has a compound symmetry structure. That is,

Ω = diag(Ωi),

where

Ωi =


c1 c2 . . . cnc

c1 1 ω . . . ω
c2 ω 1 . . . ω
...

...
...

. . .
...

cnc ω ω . . . 1

.

Complete the specification by letting Fij (i = 1, . . . , nu; j = 1, . . . , nc) be the cdf for the Gaussian
distribution with mean µ and variance σ2. Then ω = α, the intraclass correlation coefficient.

3 Inference for Krippendorff’s Alpha

Mielke and Berry describe hypothesis testing for MRPPs. Specifically, they discuss three approaches:
permutation, Monte Carlo resampling, and Pearson type III moment approximation. The latter has
significant advantages. For Krippendorff’s α, though, we are interested not in hypothesis testing but in
interval estimation. This can be done straightforwardly and efficiently using Monte Carlo resampling.
Since De is invariant to permutation of the scores, our resampling procedure focuses on Do only. The
algorithm proceeds as follows.

1. Collect the scores in an nu × nc matrix, A, where each row corresponds to a unit.
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2. For i ∈ {1, . . . , nb}, form matrix Ai by sampling, with replacement, nu rows from A.

3. For each Ai, compute D(i)
o using the same distance function d2 that was used to compute α̂.

4. For each D(i)
o , compute α̂i = 1 − D(i)

o /De.

The resulting collection {α̂1, . . . , α̂nb} is a bootstrap sample for α̂, sample quantiles of which are
estimated confidence limits for α.

We carried out a number of realistic simulation experiments and found that this approach to
interval estimation performs well in a wide variety of circumstances. When the true distribution of α̂
is (at least approximately) symmetric, Gwet’s closed-form expression for V̂(α̂), which is implemented
(for categorical data only) in package irrCAC, also performs well. By contrast, we found that the
bootstrapping procedure recommended by Krippendorff (2016), which is implemented in packages
kripp.boot and icr, generally performs rather poorly, producing intervals that are far too narrow (e.g.,
95% intervals achieve 74% coverage).

4 Robustness and interpretation

For some levels of measurement, one may, in the interest of robustness, be tempted to replace squares
with absolute values (in the distance function d2). This would be advantageous if one aimed to do
hypothesis testing. But for Krippendorff’s α, using absolute values instead of squares proves disastrous,
for the resulting estimator α̂ is substantially negatively biased and tends to lead to erroneous inference
regarding agreement. All is not lost, however, since package krippendorffsalpha provides a means of
investigating the influence on α̂ of any unit or coder (see the next section for examples).

5 Illustrations

Here we illustrate the use of krippendorffsalpha by applying Krippendorff’s α to a couple of datasets.
We will interpret the results according to the ranges given in Table 2, but we suggest—as do Krippen-
dorff and others (Artstein and Poesio, 2008; Landis and Koch, 1977)—that an appropriate reliability
threshold may be context-dependent.

Range of Agreement Interpretation

α ≤ 0.2 Slight Agreement

0.2 < α ≤ 0.4 Fair Agreement

0.4 < α ≤ 0.6 Moderate Agreement

0.6 < α ≤ 0.8 Substantial Agreement

α > 0.8 Near-Perfect Agreement

Table 2: Guidelines for interpreting values of an agreement coefficient.

Nominal data analyzed previously by Krippendorff

Consider the following data, which appear in (Krippendorff, 2013). These are nominal values (in
{1, . . . , 5}) for twelve units and four coders. The dots represent missing values.

Note that the scores for all units except the sixth are constant or nearly so. This suggests near-
perfect agreement, and so we should expect α̂ to be greater than 0.8.

To apply Krippendorff’s α to these data, first we load package krippendorffsalpha.

R> library(krippendorffsalpha)

krippendorffsalpha: Measuring Agreement Using Krippendorff's Alpha Coefficient
Version 1.1 created on 2021-01-13.
copyright (c) 2020-2021, John Hughes
For citation information, type citation("krippendorffsalpha").
Type help(package = krippendorffsalpha) to get started.
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u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

c1 1 2 3 3 2 1 4 1 2 • • •

c2 1 2 3 3 2 2 4 1 2 5 • 3

c3 • 3 3 3 2 3 4 2 2 5 1 •

c4 1 2 3 3 2 4 4 1 2 5 1 •

Figure 2: Some example nominal outcomes for twelve units and four coders, with seven missing
values.

Now, we create the dataset as a matrix such that each row corresponds to a unit and each column
corresponds to a coder.

R> nominal = matrix(c(1,2,3,3,2,1,4,1,2,NA,NA,NA,
+ 1,2,3,3,2,2,4,1,2,5,NA,3,
+ NA,3,3,3,2,3,4,2,2,5,1,NA,
+ 1,2,3,3,2,4,4,1,2,5,1,NA), 12, 4)
R> nominal

[,1] [,2] [,3] [,4]
[1,] 1 1 NA 1
[2,] 2 2 3 2
[3,] 3 3 3 3
[4,] 3 3 3 3
[5,] 2 2 2 2
[6,] 1 2 3 4
[7,] 4 4 4 4
[8,] 1 1 2 1
[9,] 2 2 2 2
[10,] NA 5 5 5
[11,] NA NA 1 1
[12,] NA 3 NA NA

Next, we apply Krippendorff’s α for the nominal level of measurement. If argument level is set
to "nominal", the discrete metric d2(x, y) = 1{x ̸= y} is used by default. We do a bootstrap with
sample size nb = 1,000 (argument confint defaults to TRUE, and control parameter bootit defaults to
1,000). We set control parameter parallel equal to FALSE because the dataset is too small to warrant
parallelization of the bootstrap computation. Finally, we set argument verbose equal to TRUE so that a
progress bar is shown during the bootstrap computation. The computation took less than one second.

R> set.seed(42)
R> fit.full = krippendorffs.alpha(nominal, level = "nominal", control = list(parallel = FALSE),
+ verbose = TRUE)

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=00s

As is customary in R, one can view a summary by passing the fit object to summary.krippendorffsalpha,
an S3 method. If krippendorffs.alpha was called with confint = TRUE, summary displays a 95% con-
fidence interval by default. The confidence level can be specified using argument conf.level. In any
case, the quantile method (Davison and Hinkley, 1997) is used to estimate the confidence limits. Any
arguments passed to summary.krippendorffsalpha via . . . are passed on to R’s quantile function.
This allows the user to control, for example, how the sample quantiles are computed.

R> summary(fit.full)

Krippendorff's Alpha

Data: 12 units x 4 coders

Call:
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krippendorffs.alpha(data = nominal, level = "nominal", verbose = TRUE,
control = list(parallel = FALSE))

Control parameters:

parallel FALSE
bootit 1000

Results:

Estimate Lower Upper
alpha 0.7429 0.4644 1

We see that α̂ = 0.74 and α ∈ (0.46, 1.00). This point estimate indicates only substantial agreement,
which is not what we expected. At least the interval is consistent with near-perfect agreement, but we
should not take this interval too seriously since the interval is rather wide (owing to the small size of
the dataset).

Perhaps the substantial disagreement for the sixth unit was influential enough to yield α̂ ≤ 0.8. We
can use influence.krippendorffsalpha, another S3 method, to investigate. This function, like other
R versions of influence (e.g., influence.lm, influence.glm), computes DFBETA statistics (Young,
2017), as illustrated below.

R> (inf.6 = influence(fit.full, units = 6))

$dfbeta.units
6

-0.1141961

Leaving out the sixth unit yields a DFBETA statistic of -0.11, which implies that α̂ would have been
0.86. This is consistent with our initial hypothesis.

R> fit.full$alpha.hat - inf.6$dfbeta.units

alpha
0.8571429

Let us call krippendorffs.alpha again to get a new interval.

R> fit.sub = krippendorffs.alpha(nominal[-6, ], level = "nominal",
+ control = list(parallel = FALSE))
confint(fit.sub)

0.025 0.975
0.6616541 1.0000000

We see that excluding the sixth unit leads to α ∈ (0.66, 1.00). The new 95% interval was returned by
S3 method confint.krippendorffsalpha, whose level argument defaults to 0.95, in keeping with R’s
other confint methods. Note that confint.krippendorffsalpha, like summary.krippendorffsalpha,
passes any . . . arguments on to the quantile function.

We conclude this example by producing a visual display of our results (Figure 3). The figure was
produced via a call to S3 method plot.krippendorffsalpha, which in turn calls hist and abline, and
does not show a kernel density estimate. Function plot.krippendorffsalpha is capable of producing
highly customized plots; see the package documentation for details. Since α̂ is close to 1 and the
dataset is small, the bootstrap distribution is substantially skewed to the left. Thus, these data provide
a textbook example of the importance of bootstrapping.

R> plot(fit.sub, xlim = c(0, 1), xlab = "Bootstrap Estimates", main = "Nominal Data",
+ density = FALSE)

Since the dataset used in this example has missing values, we take this opportunity to explain
how the package handles missingness. First, the scores for a given unit of analysis are included in
the computation only if two or more scores are present for that unit. Otherwise, the unit’s row of
the data matrix is simply ignored. Second, if two or more scores are present for a given unit, each NA
for that unit is ignored in the computations for that row. This is handled both by the loop (adjusted
denominator) and by the distance function, which should return 0 if either of its arguments is NA. In
the next example, we illustrate this by way of a user-defined distance function, and of course, the
package’s built-in distance functions take the same approach.
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Figure 3: A plot of the results from our analysis of the nominal data. The histogram shows the
bootstrap sample, the solid orange line marks the value of α̂, and the dashed blue lines mark the 95%
confidence limits.

Interval data from an imaging study of hip cartilage

The data for this example, some of which appear in Figure 4, are 323 pairs of T2* relaxation times (a
magnetic resonance quantity) for femoral cartilage (Nissi et al., 2015) in patients with femoroacetabular
impingement (Figure 5), a hip condition that can lead to osteoarthritis. One measurement was
taken when a contrast agent was present in the tissue, and the other measurement was taken in the
absence of the agent. The aim of the study was to determine whether raw and contrast-enhanced T2*
measurements agree closely enough to be interchangeable for the purpose of quantitatively assessing
cartilage health.

u1 u2 u3 u4 u5 . . . u319 u320 u321 u322 u323

c1 27.3 28.5 29.1 31.2 33.0 . . . 19.7 21.9 17.7 22.0 19.5

c2 27.8 25.9 19.5 27.8 26.6 . . . 18.3 23.1 18.0 25.7 21.7

Figure 4: Raw and contrast-enhanced T2* values for femoral cartilage.

First, we load the cartilage data, which are included in the package. The cartilage data are
stored in a data frame; we convert the data frame to a matrix, which is the format required by
krippendorffs.alpha.

R> data(cartilage)
R> cartilage = as.matrix(cartilage)

Now, we compute α̂ for the interval level of measurement, i.e., squared Euclidean distance. We
also produce a bootstrap sample of size 10,000. Since this dataset is much larger than the dataset
analyzed in the preceding section, we parallelize the bootstrap computation. We use three CPU cores
(of the four available on the author’s computer). Setting argument verbose to TRUE causes the fitting
function to display a progress bar once again. The computation took five seconds to complete.
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Figure 5: An illustration of femoroacetabular impingement (FAI). Top left: normal hip joint. Top right:
cam type FAI (deformed femoral head). Bottom left: pincer type FAI (deformed acetabulum). Bottom
right: mixed type (both deformities present).

R> set.seed(12)
R> fit.sed = krippendorffs.alpha(cartilage, level = "interval", verbose = TRUE,
+ control = list(bootit = 10000, parallel = TRUE,
+ nodes = 3))

Control parameter 'type' must be "SOCK", "PVM", "MPI", or "NWS". Setting it to "SOCK".

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=05s

A call of function summary.krippendorffsalpha produced the output shown below.

R> summary(fit.sed)

Krippendorff's Alpha

Data: 323 units x 2 coders

Call:

krippendorffs.alpha(data = cartilage, level = "interval", verbose = TRUE,
control = list(bootit = 10000, parallel = TRUE, nodes = 3))

Control parameters:

bootit 10000
parallel TRUE
nodes 3
type SOCK

Results:

Estimate Lower Upper
alpha 0.8369 0.808 0.8648

We see that α̂ = 0.84 and α ∈ (0.81, 0.86). Thus these data suggest that raw T2* measurements
agree almost perfectly with contrast-enhanced T2* measurements, perhaps rendering gadolinium-
based contrast agents (GBCAs) unnecessary in T2*-based cartilage assessment. This finding could
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have clinical significance since the use of GBCAs is not free of risk to patients, especially pregnant
women and patients with impaired kidney function. For much additional information regarding the
potential risks associated with the use of GBCAs, we refer the interested reader to the University
of California, San Francisco’s policy on MRI with contrast: https://radiology.ucsf.edu/patient-
care/patient-safety/contrast/mri-with-contrast-gadolinium-policy.

Figure 6 provides a visual display of the cartilage results. The histogram and kernel density
estimate show the expected large-sample behavior of α̂, i.e., the estimator is approximately Gaussian-
distributed and has a small variance.
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Figure 6: A plot of the results from our analysis of the cartilage data. The histogram and kernel density
estimate (dotted black curve) show the bootstrap sample, the solid orange line marks the value of α̂,
and the dashed blue lines mark the 95% confidence limits.

We mentioned above that attempting to robustify Krippendorff’s α by using absolute values in
place of squares may prove problematic. This is evident for the cartilage data, as we now demonstrate.

First, define a new distance function as follows. Note that any user-defined distance function must
deal explicitly with NAs if the data at hand exhibit missingness. There are no missing values in the
cartilage data, but we illustrate the handling of NA anyway.

R> L1.dist = function(x, y)
+ {
+ d = abs(x - y)
+ if (is.na(d))
+ d = 0
+ d
+ }

Now we call krippendorffs.alpha, supplying our new distance function via the level argument.

R> fit.L1 = krippendorffs.alpha(cartilage, level = L1.dist, verbose = TRUE,
+ control = list(bootit = 10000, parallel = TRUE,
+ nodes = 3))

Control parameter 'type' must be "SOCK", "PVM", "MPI", or "NWS". Setting it to "SOCK".
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|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=05s

The results are summarized below. These results strongly suggest that only moderate to substantial
agreement exists between raw T2* measurements and contrast-enhanced T2* measurements. This
contradicts not only our αSED analysis but also a Sklar’s ω analysis that assumed a non-central t
marginal distribution to accommodate slight asymmetry.

R> summary(fit.L1)

Krippendorff's Alpha

Data: 323 units x 2 coders

Call:

krippendorffs.alpha(data = cartilage, level = L1.dist, verbose = TRUE,
control = list(bootit = 10000, parallel = TRUE, nodes = 3))

Control parameters:

bootit 10000
parallel TRUE
nodes 3
type SOCK

Results:

Estimate Lower Upper
alpha 0.6125 0.5761 0.648

6 Summary and discussion

In this article, we described Krippendorff’s α methodology for measuring agreement and illustrated
the use of R package krippendorffsalpha. We first established α’s context among statistical procedures.
Specifically, the one-way mixed-effects ANOVA model provides a natural, intuitive genesis for α as
the intraclass correlation coefficient. This form of α can be generalized in a parametric fashion to arrive
at Sklar’s ω, or in a nonparametric fashion to arrive at the form of α presented by Krippendorff, which
is a special case of the multiresponse permutation procedure.

We demonstrated the use of krippendorffsalpha version 1.1 by analyzing two datasets: a nominal
dataset previously analyzed by Krippendorff, and a sample of raw and contrast-enhanced T2* values
from an MRI study of hip cartilage. These analyses highlighted the benefits of the package, which
include the use of S3 methods, parallel bootstrap computation, support for user-defined distance
functions, and a means of identifying influential units and/or coders.

Computational details

The results in this paper were obtained using R 4.0.3 for macOS and the pbapply 1.4-2 package.
R itself and all packages used (save kripp.boot) are available from the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org. Package krippendorffsalpha may be downloaded
from CRAN or from the author’s GitHub repository, which can be found at https://github.com/
drjphughesjr/krippendorffsalpha. Information about the author’s other R packages can be found
at http://www.johnhughes.org/software.html.

John Hughes
Department of Statistics
The Pennsylvania State University
University Park, PA
USA
drjphughesjr@gmail.com
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Working with CRSP/COMPUSTAT in R:
Reproducible Empirical Asset Pricing
by Majeed Simaan

Abstract It is common to come across SAS or Stata manuals while working on academic empirical
finance research. Nonetheless, given the popularity of open-source programming languages such as R,
there are fewer resources in R covering popular databases such as CRSP and COMPUSTAT. The aim
of this article is to bridge the gap and illustrate how to leverage R in working with both datasets. As
an application, we illustrate how to form size-value portfolios with respect to Fama and French (1993)
and study the sensitivity of the results with respect to different inputs. Ultimately, the purpose of the
article is to advocate reproducible finance research and contribute to the recent idea of “Open Source
Cross-Sectional Asset Pricing”, proposed by Chen and Zimmermann (2020).

1 Overview

Typically the CRSP and COMPUSTAT databases are viewed as the cornerstones of academic empirical
finance research. The former corresponds to security-related information for publicly listed companies,
such as closing prices and returns. The latter covers financial statements disclosed by public firms,
such as income statement, balance sheet, and cash-flow related items. We begin our discussion by
demonstrating how to clean, manipulate, and merge both datasets. After doing so, we conduct the
main analysis from the perspective of empirical asset pricing research based on Fama and French
(1993).

The undertaken analysis constitutes a typical portfolio formation procedure to investigate how
investors are compensated for taking certain types of risk/style. By grouping firms (stocks) with
respect to pre-specified attributes, the researcher can study the implications of these characteristics
(risks) in association with future returns. Such analysis is known as the cross-section of expected
return (see, e.g., Harvey et al. (2016)) since the relationship is investigated on the firm/portfolio level.
Consistent with Harvey et al. (2016), we find that the results of the cross-section of expected returns
are sensitive to the research design. In particular, the exclusion of small stocks in the sample has a
significant economic impact. Small stocks tend to trade less frequently and to be less liquid. Hence, in
order to better understand the cross-section of expected returns, one needs to take into consideration
the underlying limits of arbitrage facing investors (Li et al., 2014).

We hope this article would further contribute to reproducible finance research and to our un-
derstandings of the cross-sectional of expected returns. The article proceeds as follows. In Section
2.2, we discuss how to load each dataset along with the pre-analysis needed in order to merge the
data altogether. Section 2.3 is devoted to the replication of Fama and French (1993)’s size and value
premiums. The analysis is conducted using raw and risk-adjusted returns. Section 2.4 then proceeds
to investigate the sensitivity of the cross-section of returns with respect to the research design. Finally,
Section 2.6 concludes.

2 Data

The discussion assumes that the user has already downloaded the CRSP and the COMPUSTAT datasets
in two separate files, both in csv formats.1 The article will rely on different libraries to perform the
analysis. The core packages of interest are data.table (Dowle and Srinivasan, 2019) and lubridate
(Grolemund and Wickham, 2011). We also refer to ggplot2 (Wickham, 2016) to produce figures and
parallel (R Core Team, 2020) to perform parallel processing. In a few cases, we refer to plyr (Wickham,
2011) and dplyr (Wickham et al., 2020) for additional data manipulation. Nonetheless, the main
analysis is conducted in the data.table environment.

library(data.table)
library(lubridate)
library(ggplot2)
library(plyr)
library(parallel)
rm(list = ls())

1Note that users can work with the database directly using the WRDS API.
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CRSP

While there are a lot of pros to working data.table, one good functionality is the option that allows the
user to easily specify a subset of variables while reading the whole data. Mostly, after downloading
the full dataset, we focus on a subset of variables of interest. We refer to its main function fread, rather
than the base command read.csv. The fread is similar to the base command; however, it provides
faster and more convenient data manipulation. It is highly relevant when it comes to large data.
Additionally, it allows users to easily utilize multi-threads using the nThread argument.

file.i <- "CRSP_1960_2019.csv"
select.var <- c("PERMCO","date","COMNAM","SHROUT","SHRCD","DLRET",

"DLSTCD","DLPDT","EXCHCD","RET","PRC","CUSIP")
DT <- fread(file.i,select = select.var)

The above commands load the monthly CRSP dataset with pre-specified variables. Those are the
permanent identifier of the security (PERMCO), date, shares outstanding in thousands (SHROUT), share
code (SHRCD), exchange code (EXCHCD), security return RET, price PRC, and the CUSIP identifier. Note
that the CUSIP is the key link between the CRSP and COMPUSTAT data. Additionally, we consider
delisting-related variables denoted by DL, which are discussed later.

Filters and Cleaning

After loading the data, we perform a few filters and cleaning procedures. In particular, we keep
common shares, those with 10 or 11 codes. We drop missing values for prices. There are also certain
flags for prices denoted by -44, -55, -66, -77, -88, and -99. We drop these from the data as well.
Additionally, we keep securities listed on major exchanges (NYSE, AMEX, or NASDAQ). Given these
filters, we compute the market cap for each stock-month in the data.

DT <- DT[DT$SHRCD %in% 10:11,]
DT <- DT[!is.na(DT$PRC),]
DT <- DT[!DT$PRC %in% (-(4:9)*11),]
DT$RET <- as.numeric(DT$RET)
DT <- DT[!is.na(DT$RET),]
DT$PRC <- abs(DT$PRC)
DT$MKTCAP <- DT$PRC*DT$SHROUT
DT <- DT[DT$EXCHCD %in% 1:3,]

There may be duplicates in the data depending on the identifier of interest. To control for this,
consider the following commands:

DT <- unique(DT)
DT <- DT[order(DT$PERMCO,DT$date),]
DT[ , `:=`( duplicate_N = .N ) , by= list(PERMCO,date)]
table(DT$duplicate_N)/nrow(DT)*100

#> 1 2 3 4 6 7
#> 98.014830993 1.902150108 0.044272559 0.018337003 0.010738451 0.009670885

Note that the := command creates a new variable to the already existing data.table, where .N denotes
the data length. By grouping the data based on the stock identifier and month, we can count whether
there are multiple observations within each case. As we observe from the above table, about 2% of the
observations are duplicates, i.e., multiple observations for the same stock-month. For instance, the
table below illustrates the case in which we have 7 duplicates:

head(DT[DT$duplicate_N == 7,],7)

#> PERMCO date COMNAM SHROUT SHRCD DLRET DLSTCD DLPDT
#> 1: 54311 20160531 LIBERTY MEDIA CORP 3RD NEW 25569 11 NA NA
#> 2: 54311 20160531 LIBERTY MEDIA CORP 3RD NEW 55684 11 NA NA
#> 3: 54311 20160531 LIBERTY MEDIA CORP 3RD NEW 10228 11 NA NA
#> 4: 54311 20160531 LIBERTY MEDIA CORP 3RD NEW 22284 11 NA NA
#> 5: 54311 20160531 LIBERTY MEDIA CORP 3RD NEW 102277 11 NA NA
#> 6: 54311 20160531 LIBERTY MEDIA CORP 3RD NEW 9871 11 NA NA
#> 7: 54311 20160531 LIBERTY MEDIA CORP 3RD NEW 222735 11 NA NA
#> EXCHCD RET PRC CUSIP MKTCAP duplicate_N
#> 1: 3 0.064481 19.48 53122987 498084.1 7
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#> 2: 3 0.052778 18.95 53122985 1055211.8 7
#> 3: 3 0.081873 15.56 53122970 159147.7 7
#> 4: 3 0.095723 15.00 53122988 334260.0 7
#> 5: 3 -0.026854 31.89 53122940 3261613.5 7
#> 6: 3 -0.026292 32.59 53122950 321695.9 7
#> 7: 3 -0.017801 31.45 53122960 7005015.8 7

Note that the duplicates arise due to different CUSIP identifiers. Since we are planning to link the data
with the COMPUSTAT using CUSIP, we check whether there are duplicates for the same CUSIP-month:

DT[ , `:=`( duplicate_N = .N ) , by= list(CUSIP,date)]
table(DT$duplicate_N)/nrow(DT)*100

#> 1
#> 100

DT$duplicate_N <- NULL

In all cases, observe that there is a unique CUSIP-date observation. However, if one is working with
CRSP alone, it is common to aggregate duplicates by value-weighting the observations based on
market cap to yield a unique PERMCO-month observation. Additionally, note that the first 6 CUSIP
characters result in the same unique identifier.

In terms of date formatting, we utilize the lubridate library to manipulate dates:

DT$date <- ymd(DT$date)
DT$date <- ceiling_date(DT$date,"m") - 1

It is common to require a minimum history of each security in the data. For instance, a researcher may
need to estimate the market beta on a rolling window using an initial sample of 2 years. For the sake
of illustration, we require that each security should have at least two months of data (2 observations).
Nonetheless, dropping observations in the following manner could have major implications in terms
data-snooping and survivor-ship bias. In Section 2.4, we discuss the sensitivity of the portfolio results
to this input.

crsp_keep <- 2
DT[ , `:=`( N_obs = .N ) , by= list(CUSIP)]
DT <- DT[DT$N_obs >= crsp_keep,]
DT$N_obs <- NULL

Finally, we have 24,581 unique securities, 720 months, and a total of 3,184,762 security-month observa-
tions.

Delisted Returns

An important characteristic of the CRSP database is that it includes historical companies that were
delisted in the past. Not controlling for such delisting creates a survivor-ship bias, especially when
it comes to researching the cross-section of stock returns - see, e.g., Beaver et al. (2007) for further
information. To control for delisted returns, we follow the methodology recommended by Bali et al.
(2016). We demonstrate these steps below. Before we do so, we take a quick look at the summary
statistics of the current monthly returns:

summary(DT$RET)

#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.99360 -0.06667 0.00000 0.01155 0.07143 24.00000

DT$DLRET <- as.numeric(DT$DLRET)
DT <- DT[order(DT$CUSIP,DT$date),]
DT[,`:=` (last_date = date[.N]),by = list(CUSIP) ]
DT[DT$DLSTCD %in% 100,"DLSTCD"] <- NA
cusip_delist <- unique(DT[!is.na(DT$DLSTCD),])$CUSIP

DT_delist <- DT[DT$CUSIP %in% cusip_delist,]
DT_delist_last <- DT_delist[, .SD[.N], by= list(CUSIP)]
rm(DT_delist)
DT_delist_last$date <- ceiling_date(DT_delist_last$date + 1,"m")- 1
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DT_delist_last$RET <- DT_delist_last$DLRET

na_dlret_index <- is.na(DT_delist_last$RET)
DT_delist_last_na <- DT_delist_last[na_dlret_index,]
DT_delist_last <-DT_delist_last[!na_dlret_index,]

select_code <- c(500,520:551,573,574,580,584)
DT_delist_last_na[DT_delist_last_na$DLSTCD %in% select_code,"RET"] <- -0.3
DT_delist_last_na[!DT_delist_last_na$DLSTCD %in% select_code,"RET"] <- -1

DT_delist_last <- rbind(DT_delist_last,DT_delist_last_na)
DT_delist_last$MKTCAP <- DT_delist_last$MKTCAP*(1 + DT_delist_last$RET)
DT_delist_last$PRC <- DT_delist_last$PRC*(1 + DT_delist_last$RET)

DT <- rbind(DT,DT_delist_last)
DT <- DT[order(DT$CUSIP,DT$date),]
summary(DT$RET) %$

#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -1.00000 -0.06667 0.00000 0.01151 0.07143 24.00000

The above steps adjust for delisted returns. When available, it takes into consideration the delisting
returns provided by CRSP. Otherwise, we use an arbitrary return according to the suggestion by Bali
et al. (2016). We can see that the minimum return becomes -100%. However, at the same time, we
observe that the mean return stays roughly the same due to the large sample size. It is also worth
mentioning that dropping stocks below a certain price level potentially eliminates outliers and penny
stocks that are more likely to get delisted.

Simple Portfolio Formation

Before we merge CRSP with COMPUSTAT, let us perform some basic analysis. For instance, we can
easily aggregate the security return on the monthly level to create either a value-weighted or equally
weighted portfolios. To do so, consider the following commands:

PORT_RET <- DT[,list(EW_RET = lapply(.SD,mean,na.rm = TRUE)),
by = list(date), .SDcols = "RET"]

PORT_RET2 <- DT[,list(VW_RET = lapply(.SD,
function(x) sum(x*MKTCAP/sum(MKTCAP,na.rm = TRUE),na.rm = TRUE))),

by = list(date), .SDcols = "RET"]
PORT_RET <- merge(PORT_RET,PORT_RET2)
rm(PORT_RET2)
PORT_RET <- PORT_RET[order(PORT_RET$date),]

To summarize the returns over time, consider the time series of cumulative returns for each
portfolio. We refer to the ggplot2 library and the National Bureau of Economic Research (NBER)
recession periods to do so:

bar.col <- "gray"
ggplot_recession0 <- geom_rect(fill = bar.col,col = bar.col,

aes(xmin=date("1973-11-30"),
xmax=date("1975-03-31"),
ymin=-Inf, ymax=Inf))

ggplot_recession1 <- geom_rect(fill = bar.col,col = bar.col,
aes(xmin=date("1980-01-31"),

xmax=date("1980-07-31"),
ymin=-Inf, ymax=Inf))

ggplot_recession2 <- geom_rect(fill = bar.col,col = bar.col,
aes(xmin=date("1981-07-31"),

xmax=date("1982-11-30"),
ymin=-Inf, ymax=Inf))

ggplot_recession3 <- geom_rect(fill = bar.col,col = bar.col,
aes(xmin=date("1990-07-31"),

xmax=date("1991-03-31"),
ymin=-Inf, ymax=Inf))

ggplot_recession4 <- geom_rect(fill = bar.col,col = bar.col,
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Figure 1: This figure demonstrates the cumulative return of equally-weighted (red line) and value-
weighted (blue line) portfolios over time. The gray bar denote the recession periods according to the
National Bureau of Economic Research (NBER).
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aes(xmin=date("2001-03-31"),
xmax=date("2001-11-30"),
ymin=-Inf, ymax=Inf))

ggplot_recession5 <- geom_rect(fill = bar.col,col = bar.col,
aes(xmin=date("2007-12-31"),

xmax=date("2009-06-30"),
ymin=-Inf, ymax=Inf))

ds.plot1 <- data.frame(date = PORT_RET$date, CumRet = cumsum(PORT_RET$EW_RET),
Type = "Equally-Weighted" )

ds.plot2 <- data.frame(date = PORT_RET$date, CumRet = cumsum(PORT_RET$VW_RET),
Type = "Value-Weighted" )

ds.plot <- rbind(ds.plot1,ds.plot2)
ds.plot$Type <- as.factor(ds.plot$Type)

p <- ggplot(ds.plot, aes(date, CumRet,colour = Type))
p <- p + ggplot_recession0 + ggplot_recession1 +
ggplot_recession2 + ggplot_recession3 +
ggplot_recession4 + ggplot_recession5

p <- p + geom_line(alpha = 0.4)
p <- p + xlab("Date") + ylab("Cumulative Return")
p <- p + geom_abline(intercept = 0, slope = 0, color="black", linetype="dashed", size=0.2)
p

We note that, overall, the equally-weighted portfolio under-performs the value-weighted one.
The equally-weighted portfolio attributes greater weight to small-cap stocks. Contrary to Fama and
French (1993), interestingly, we observe that the value-weighted stocks outperform the small-cap
stocks. Nonetheless, the pattern became evident beginning in the late 80s. To take a closer look at
the above, we group securities into size portfolios. At each month, we group securities into 5 groups
based on the market cap cut-off.2 To perform the cut-off, we refer to the ntile function from the dplyr
library. In the following analysis, we proceed with equal-weighting for the sake of brevity.

library(dplyr)
cut.n <- 5
DT <- DT[,`:=` (Group_Size = ntile(MKTCAP,cut.n)), by = list(date)]

2Note that in empirical asset pricing studies, when forming portfolios based on a single characteristic (i.e.,
single-sort), the common practice is to choose G = 10. On the other hand, for double-sorting it is common to
choose G = 5. This, however, depends on data availability. In our case, we choose G = 5 for both brevity and
consistency (see, e.g., Fama and French (1993)).
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N_G <- DT[,.N, by = list(date,Group_Size) ]
N_G[,mean(N), by = list(Group_Size)]

#> Group_Size V1
#> 1: 2 885.3694
#> 2: 1 885.7667
#> 3: 3 885.3875
#> 4: 4 885.3694
#> 5: 5 884.9500

We observe that, on average, each group contains 885 firms over the sample period. In addition to
the group size, we consider the next one month return on each security. We use the shift function
from data.table and apply it to each security as follows:

DT <- DT[order(DT$CUSIP,DT$date),]
DT <- DT[,`:=` (RET_1 = shift(RET,-1)), by = list(CUSIP)]

Given the above, we report summary statistics on the size group level:

DT_size <- DT[,lapply(.SD,mean,na.rm = TRUE),by = list(Group_Size),
.SDcols = c("RET","RET_1","PRC","SHROUT","MKTCAP","EXCHCD")]

DT_size <- DT_size[order(DT_size$Group_Size),]
DT_size$RET_1 <- DT_size$RET_1*12
DT_size$RET <- DT_size$RET*12
DT_size

#> Group_Size RET RET_1 PRC SHROUT MKTCAP EXCHCD
#> 1: 1 -0.1047989 0.2177438 4.265575 7569.757 13946.99 2.704329
#> 2: 2 0.1463509 0.1069973 9.280118 11101.177 56211.45 2.592039
#> 3: 3 0.2047528 0.1200868 15.410881 15797.729 168506.54 2.396027
#> 4: 4 0.2313902 0.1266713 25.020412 26814.684 538252.87 2.039177
#> 5: 5 0.2132456 0.1225963 105.854839 167534.402 7505924.35 1.457429

Clearly, securities ranked in the 5th largest size group have a higher market-cap, which is associated
with higher prices and shares outstanding. Additionally, note that the large stocks are more likely to
be listed on NYSE (EXCHCD = 1), whereas the small-cap stocks are listed on NASDAQ (EXCHCD = 3).
In terms of returns, the results are sensitive with respect to whether we consider an in-sample return or
next month’s return. In the in-sample, we observe that large-cap outperform small-cap. Nonetheless,
the more relevant case in practice is the out-of-sample return. In the latter case, we observe that
small-cap stocks outperform large-cap stocks. In annual terms, the small-cap stocks return 10% higher
mean return than large-cap stocks. Ignoring transaction cost and assuming that investors rebalance
their portfolios on a monthly basis, this evidence is consistent with Fama and French (1993)’s size
premium. That is, investors expect a higher return for investing in small-cap stocks.

COMPUSTAT

The above discussion relates to the CRSP data alone. In the following, we focus on the COMPUSTAT
data, which contains accounting-related information for public firms. Similar to the above, we focus
on a subset of variables. For identification, we look into the CUSIP and the CIK number. The latter is
relevant to identify firms via the SEC EDGAR system - for those interested in merging the data with
SEC filings and perform textual analysis. The FYEARQ and FQTR are the fiscal year and quarter of the
data point. For accounting variables, we consider total assets (atq), net income (niq), and common
equity ceqq.

file.j <- "COMPUSTAT_1960_2020.csv"
select.var2 <- tolower(c("FYEARQ","FQTR","cusip","cik","sic","niq","atq","ceqq"))
DT2 <- unique(fread(file.j,select = select.var2))

Filters and Cleaning

To link between COMPUSTAT and CRSP, we need to make a small adjustment for the CUSIP identifiers.
In CRSP, the number of characters is 8, whereas in COMPUSTAT, it is 9.

table(nchar(DT$CUSIP))
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#>
#> 8
#> 3187327

table(nchar(DT2$cusip))

#>
#> 0 9
#> 130 1806228

Note that there a few cases in which the CUSIP is unavailable in COMPUSTAT. The adjustments are
described below:

DT2 <- DT2[!nchar(DT2$cusip) == 0,]
DT2$CUSIP <- substr(DT2$cusip,0,8)
DT2$cusip <- NULL
DT2 <- unique(DT2[DT2$CUSIP %in% DT$CUSIP,])

In order to merge with the CRSP data, which corresponds to calendar dates, we adjust the fiscal
dates in COMPUSTAST. It is common to use 6 months lags to allow the financial disclosures to become
publicly available. To do so, we perform the following adjustments:

DT2$date <- ymd(DT2$fyearq*10000 + DT2$fqtr*3*100 + 1)
DT2$date <- DT2$date + months(6)
DT2$date <- ceiling_date(DT2$date,"q") - 1
DT2 <- DT2[month(DT2$date) == 6,]
DT2$fyearq <- DT2$fqtr <- NULL

Additionally, we keep the annual data rather than the quarterly one and consider portfolio formation
on an annual basis.3 In particular, we keep the June data for the portfolio formation process.

Same as before, let us check for duplicates:

DT2 <- unique(DT2)
DT2[ , `:=`( duplicate_N = .N ) , by= list(CUSIP,date)]
table(DT2$duplicate_N)

#>
#> 1
#> 247903

DT2$duplicate_N <- NULL

The COMPUSTAT dataset have unique CUSIP-date observations.

Summary Statistics

Given the final COMPUSTAT data, we consider a few summary statistics for each industry, which is
defined using the 4th digit of the SIC code.

DT2 <- na.omit(DT2)
DT2$ROA <- DT2$niq/DT2$atq
DT2$ROE <- DT2$niq/DT2$ceqq
DT2$BL <- DT2$atq/DT2$ceqq
DT2$Industry <- floor(DT2$sic/1000)

DT2_sum <- DT2[,lapply(.SD,median,na.rm = TRUE), by = list(Industry),
.SDcols = c("atq","ROA","ROE","BL")]

DT2_sum <- DT2_sum[order(DT2_sum$Industry),]
DT2_sum

#> Industry atq ROA ROE BL
#> 1: 0 97.9455 -0.005973224 -0.007163557 2.005072
#> 2: 1 152.8265 0.003908058 0.015030814 2.031069
#> 3: 2 112.5905 0.006157001 0.023091766 1.761200
#> 4: 3 85.0685 0.010216054 0.024022369 1.736357

3Clearly, it all depends on the purpose of the investigation.
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Figure 2: This figure below demonstrates the concentration in the financial industry. It illustrates
the book value of assets held by the top 10% banks relative to the total assets held by the financial
industry.
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#> 5: 4 540.3000 0.006908974 0.024877318 2.914309
#> 6: 5 148.0990 0.011941449 0.030180501 2.155898
#> 7: 6 893.6370 0.002491525 0.026317412 8.965721
#> 8: 7 88.5455 0.004830920 0.018396345 1.736342
#> 9: 8 73.5180 0.006937877 0.020926220 1.904278
#> 10: 9 37.3550 -0.003438435 0.006888589 1.562943

We observe that financial firms are associated with the highest book leverage, given the business
nature of financial institutions. Also, we note that the financial industry is associated with the largest
total assets. This is not surprising given the concentration of the financial industry over time, in which
a few entities hold the majority of assets. To relate to the last point, consider the total assets of the top
10% firms with respect to the total assets in the industry as a whole.

DT2_Fin <- DT2[DT2$Industry == 6,]
DT2_Fin <- DT2_Fin[,`:=` (Group_Size = ntile(atq,10)), by = list(date)]
DT2_Fin <- DT2_Fin[,`:=` (Total_Assets = sum(atq)), by = list(date)]
DT2_Fin <- DT2_Fin[,lapply(.SD, function(x) sum(x/Total_Assets)),

by = list(date,Group_Size), .SDcols = "atq"]
DT2_Fin_Top <- DT2_Fin[DT2_Fin$Group_Size == 10,]
DT2_Fin_Top <- DT2_Fin_Top[order(DT2_Fin_Top$date),]
plot(atq~date,data = DT2_Fin_Top,type = "l",

main = "Proportion of Assets held by Top 10% in Financial Industry",
ylab = "", xlab = "Date")

grid(10)

According to Figure 2, we discern that the top 10% increased their share of total assets from 34% in
the late 60s up to 90% more recently.

CRSP-COMPUSTAT

Note that the COMPUSTAT dataset is annual, while the CRSP is monthly. If we seek to form portfolios
based on book-to-market (BM) ratio, such as the case for Fama-French, we need to create an annual
BM variable in the COMPUSTAT dataset. Before we merge the data altogether, let us add the market
value of equity (ME) to the COMPUSTAT dataset. Additionally, we add the stock prices which would
be useful for small-cap stocks from the portfolio formation later on.

BM <- DT[,c("date","CUSIP","MKTCAP","PRC")]
DT2 <- merge(DT2,BM, by = c("CUSIP","date"), all = F)
DT2$BM_ratio <- DT2$ceqq/(DT2$MKTCAP/1000)
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DT2$ME <- DT2$MKTCAP
DT2$PRC_LAST <- DT2$PRC
DT2$MKTCAP <- DT2$PRC <- NULL
DT2 <- DT2[order(DT2$CUSIP,DT2$date),]
DT2[,`:=` (N_years = 1:.N), by = list(CUSIP)]
rm(BM); gc()

#> used (Mb) gc trigger (Mb) max used (Mb)
#> Ncells 1024743 54.8 2730065 145.9 2730065 145.9
#> Vcells 63598437 485.3 149041274 1137.1 148737297 1134.8

The above commands link the COMPUSTAT and the CRSP datasets to determine the market equity of
the firms and, hence, the book-to-market ratio. Also, we denote the stock price as PRC_LAST to refer to
the recent stock price in the annual data.

Before we finally merge the data altogether, we need to do one small trick with the CRSP data.
The ultimate goal of this illustration to attribute the next 12 months’ returns with respect to the BM
ratio from the previous June. To do so, consider the following:

prev_june_f <- function(x) floor_date(floor_date(x,"m") + months(6),"y") - months(6) - 1
DT$date_june <- prev_june_f(DT$date)
DT2$date_june <- DT2$date
DT2$date <- NULL

While the prev_june_f seems obscure, one should break the function into different components in
order to understand how it works. Consider the special case where we have:

x <- DT$date[1:13]
x

#> [1] "1970-12-31" "1971-01-31" "1971-02-28" "1971-03-31" "1971-04-30"
#> [6] "1971-05-31" "1971-06-30" "1971-07-31" "1971-08-31" "1971-09-30"
#> [11] "1971-10-31" "1971-11-30" "1971-12-31"

The first command of the function shifts the dates six months ahead:

floor_date(x,"m") + months(6)

#> [1] "1971-06-01" "1971-07-01" "1971-08-01" "1971-09-01" "1971-10-01"
#> [6] "1971-11-01" "1971-12-01" "1972-01-01" "1972-02-01" "1972-03-01"
#> [11] "1972-04-01" "1972-05-01" "1972-06-01"

The second step identifies the floor of each date on the annual level:

floor_date(floor_date(x,"m") + months(6),"y")

#> [1] "1971-01-01" "1971-01-01" "1971-01-01" "1971-01-01" "1971-01-01"
#> [6] "1971-01-01" "1971-01-01" "1972-01-01" "1972-01-01" "1972-01-01"
#> [11] "1972-01-01" "1972-01-01" "1972-01-01"

The final step subtracts 6 months to identify the June of the previous year. The minus one is added to
retrieve June 30th rather than July 1st, such that:

floor_date(floor_date(x,"m") + months(6),"y") - months(6) - 1

#> [1] "1970-06-30" "1970-06-30" "1970-06-30" "1970-06-30" "1970-06-30"
#> [6] "1970-06-30" "1970-06-30" "1971-06-30" "1971-06-30" "1971-06-30"
#> [11] "1971-06-30" "1971-06-30" "1971-06-30"

Looking at returns between Dec 1970 and Mar 1971, the function traces these observations back to
June 1970 for the first 7 returns. When the next June data shows up, the date_june variable adjusts
accordingly. Finally, the merged dataset is given by:

DT12 <- merge(DT,DT2,by = c("CUSIP","date_june"))

Note: The above steps provide details on how to merge between the two data sets. In Figure 3, we
provide a flow chart summarizing the steps/processes undertaken to develop the final merged data
set DT12.
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Figure 3: The figure below illustrates a flow chart of the data merging process. It demonstrates the
steps taken altogether to come up with the final CRSP-COMPUSTAT merged data set.

3 Forming Size and BM Portfolios

The DT12 object contains the final CRSP-COMPUSTAT data. The merging is conducted to allow
for portfolio formation at the end of June each year, as mentioned above. Such a setting allows a
convenient way to form portfolios without relying on loops. Nonetheless, it would also impose that
portfolio managers balance their portfolios on a monthly basis according to the market cap from the
previous June.

Given the merged dataset, we form groups at the end of June-year based on market equity (size)
and book-to-market ratio (value):

DT12 <- DT12[,`:=` (Group_ME = ntile(ME,5)), by = list(date_june)]
DT12 <- DT12[,`:=` (Group_BM = ntile(BM_ratio,5)), by = list(date_june,Group_ME)]

The above two commands perform dependent portfolio sorting, in which firms are first sorted based
on size and then on BM ratio. We consider value-weighting to compute the future returns on each
size-value portfolio. This results in 25 value-weighted portfolios.

PORT_RET <- DT12[,list(VW_RET = sum(RET*ME/sum(ME)) ),
by = list(date,Group_ME,Group_BM)]

PORT_RET <- PORT_RET[order(PORT_RET$date,PORT_RET$Group_BM,PORT_RET$Group_ME),]
PORT_RET$VW_RET <- as.numeric(PORT_RET$VW_RET)*100

ret_matrix <- PORT_RET[,lapply(.SD,mean,na.rm = TRUE),
by = list(Group_ME,Group_BM), .SDcols = "VW_RET"]

ret_matrix <- ret_matrix[order(ret_matrix$Group_BM,ret_matrix$Group_ME),]
ret_matrix <- matrix(as.numeric(ret_matrix$VW_RET),5)
rownames(ret_matrix) <- 1:5
colnames(ret_matrix) <- paste("BM",1:5,sep = "_")
rownames(ret_matrix)[1] <- "Small"
rownames(ret_matrix)[5] <- "Big"
colnames(ret_matrix)[1] <- "Low"
colnames(ret_matrix)[5] <- "High"
round(data.frame(ret_matrix*12),2)
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#> Low BM_2 BM_3 BM_4 High
#> Small 12.93 14.73 18.05 20.14 23.40
#> 2 8.45 12.55 14.37 16.72 16.17
#> 3 8.04 11.79 14.30 14.24 15.99
#> 4 9.89 11.53 11.92 14.47 14.77
#> Big 9.84 11.70 10.41 13.13 12.78

For each column above, we observe the stock returns (raw) decrease, on average, with size. This is
commonly known as the size effect. At the same time, we observe that within each size group, the
mean return increases with the BM ratio. The latter denotes what is known as the value effect. In other
words, investors expect higher returns from small enterprises and undervalued stocks (trading below
book value). Nonetheless, recent discussions debate whether this is the case. For further information
on this, see this article.

Risk-Adjusted Returns using Fama-French’s Risk Factors

The above portfolio results compute the raw returns. In order to price these portfolios, we decompose
the returns into (1) systematic components (risk-premiums) and (2) non-systematic. The latter denotes
the risk-adjusted returns. Additionally, we consider the excess return on each portfolio, i.e., the
portfolio return minus the 1-month Treasury yield.

The Fama-French’s risk factors are obtained easily using the Kenneth French public library accord-
ing to the commands below. Note that we focus on the three factors: market, size, and value:

FF_file <-
"https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F_Research_Data_Factors_CSV.zip"

temp <- tempfile()
download.file(FF_file,temp)
unz_files <- unzip(temp)
ds <- read.csv(unz_files,skip = 3)
flag_obs <- grep("Annual",ds[,1],ignore.case = TRUE)
ds <- ds[1:(flag_obs-1),]
names(ds)[1] <- "date"
ds <- data.frame(apply(ds, 2, as.numeric))
ds$date <- ceiling_date(ymd(ds$date*100+ 01),"m")-1
tail(ds)

#> date Mkt.RF SMB HML RF
#> 1123 2020-01-31 -0.11 -3.11 -6.27 0.13
#> 1124 2020-02-29 -8.13 0.96 -4.01 0.12
#> 1125 2020-03-31 -13.39 -5.16 -14.12 0.12
#> 1126 2020-04-30 13.65 2.78 -1.27 0.00
#> 1127 2020-05-31 5.58 2.47 -4.95 0.01
#> 1128 2020-06-30 2.45 2.56 -2.03 0.01

We merge the risk factors data with the portfolios time series and regress the excess returns of each
of the 25 portfolios on the three factors. To do so, we leverage some functional programming using the
lapply base function along with the dlply function from the plyr library as follows:

PORT_RET_RA <- merge(PORT_RET,ds)
PORT_RET_RA$RAR <- PORT_RET_RA$VW_RET - PORT_RET_RA$RF

lm_list <- dlply(PORT_RET_RA,c("Group_ME","Group_BM"),
function(x) lm( RAR ~ Mkt.RF + SMB + HML, data = x ) )

rar_matrix <- lapply(lm_list, coef)
rar_matrix <- sapply(rar_matrix,function(x) x[[1]])
rar_matrix <- matrix(rar_matrix,5,5,byrow = TRUE)

rownames(rar_matrix) <- 1:5
colnames(rar_matrix) <- paste("BM",1:5,sep = "_")
rownames(rar_matrix)[1] <- "Small"
rownames(rar_matrix)[5] <- "Big"
colnames(rar_matrix)[1] <- "Low"
colnames(rar_matrix)[5] <- "High"
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rar_matrix <- round(data.frame(rar_matrix*12),2)
rar_matrix

#> Low BM_2 BM_3 BM_4 High
#> Small -1.08 2.03 5.55 6.49 8.90
#> 2 -5.77 -0.33 0.78 2.47 1.01
#> 3 -6.51 -1.66 0.96 -0.15 -0.18
#> 4 -2.90 -1.41 -0.90 0.08 -0.10
#> Big 0.35 1.47 -0.47 0.32 -1.29

Note that after controlling for the three risk factors, the high-small portfolio still yields an annual
return of 9%. A potential argument may be that such alpha is attributed to other risk factors that the
three-factor model does not fully price. More recently, Fama-French suggest five factors model to
better representation of systematic components (Fama and French, 2015).

4 Rendering Results

The above results are subjected to certain filtering, the time period, and the number of months each
stock should include in the data. One major challenge is whether the securities in the analysis are
tradable. For instance, it is common to consider stocks with a price larger than $5. The major issue
with doing so is that such a filter could cause a forward-looking bias. By the time the decision maker
allocates his/her portfolio, he/she cannot ascertain whether the stocks would be above or less than $5
in the future - this is less of an issue for large-cap stocks. Hence, to keep stocks that satisfy a minimum
price level, it should be done on a recurring basis. Specifically, rather than dropping all observations in
which the price is less than $5, one should consider only the stocks that were qualified by the time of
the portfolio formation. The same issue applies to the window length for which the data is available
and other filters one may be interested in controlling for.

The following is a generalized portfolio formation function that takes four arguments. The
first two correspond to the minimum price and number of years that the stock should have to be
considered investable in June each year. The other two arguments set the time period during which
the researcher is interested in computed the mean returns. The function returns a list containing the
raw and risk-adjusted returns of the 25 portfolios along with the average number of stocks within
each portfolio.

FF3_anomaly <- function(min_price,year_keep = 1,year1 = 1965,year2 = 2019) {
DT12_sub <- DT12
keep_cusip_date <- unique(DT12_sub[,list(CUSIP,date_june,N_years,PRC_LAST)])
keep_cusip_date <- keep_cusip_date[keep_cusip_date$N_years >= year_keep,]
keep_cusip_date <- keep_cusip_date[keep_cusip_date$PRC_LAST >= min_price ,]

keep_cusip_date <- unique(keep_cusip_date[,list(CUSIP,date_june)])
DT12_sub <- merge(DT12_sub,keep_cusip_date)

DT12_sub <- DT12_sub[,`:=` (Group_ME = ntile(ME,5)), by = list(date_june)]
DT12_sub <- DT12_sub[,`:=` (Group_BM = ntile(BM_ratio,5)), by = list(date_june,Group_ME)]
N_G <- DT12_sub[,.N, by = list(date,Group_ME,Group_BM) ]
N_G <- (N_G[,mean(N), by = list(Group_ME,Group_BM) ])
N_G <- N_G[order(N_G$Group_ME,N_G$Group_BM),]
N_G <- matrix(N_G$V1,5,5,byrow = TRUE)
rownames(N_G) <- 1:5
colnames(N_G) <- paste("BM",1:5,sep = "_")
rownames(N_G)[1] <- "Small"
rownames(N_G)[5] <- "Big"
colnames(N_G)[1] <- "Low"
colnames(N_G)[5] <- "High"
N_G <- round((N_G))

PORT_RET <- DT12_sub[,list(VW_RET = sum(RET*ME/sum(ME)) ),
by = list(date,Group_ME,Group_BM)]

PORT_RET <- PORT_RET[order(PORT_RET$date,PORT_RET$Group_BM,PORT_RET$Group_ME),]
PORT_RET$VW_RET <- as.numeric(PORT_RET$VW_RET)*100

PORT_RET_RA <- merge(PORT_RET,ds)
PORT_RET_RA$RAR <- PORT_RET_RA$VW_RET - PORT_RET_RA$RF
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PORT_RET_RA_sub <- PORT_RET_RA
PORT_RET_RA_sub <- PORT_RET_RA_sub[year(PORT_RET_RA_sub$date) >= year1,]
PORT_RET_RA_sub <- PORT_RET_RA_sub[year(PORT_RET_RA_sub$date) <= year2 ,]

ret_matrix <- PORT_RET_RA_sub[,lapply(.SD,mean,na.rm = TRUE),
by = list(Group_ME,Group_BM), .SDcols = "VW_RET"]

ret_matrix <- ret_matrix[order(ret_matrix$Group_BM,ret_matrix$Group_ME),]
ret_matrix <- matrix(as.numeric(ret_matrix$VW_RET),5)
rownames(ret_matrix) <- 1:5
colnames(ret_matrix) <- paste("BM",1:5,sep = "_")
rownames(ret_matrix)[1] <- "Small"
rownames(ret_matrix)[5] <- "Big"
colnames(ret_matrix)[1] <- "Low"
colnames(ret_matrix)[5] <- "High"
ret_matrix <- round(data.frame(ret_matrix*12),2)

lm_list <- dlply(PORT_RET_RA_sub,c("Group_ME","Group_BM"),
function(x) lm( RAR ~ Mkt.RF + SMB + HML, data = x ) )

rar_matrix <- lapply(lm_list, coef)
rar_matrix <- sapply(rar_matrix,function(x) x[[1]])
rar_matrix <- matrix(rar_matrix,5,5,byrow = TRUE)
rownames(rar_matrix) <- 1:5
colnames(rar_matrix) <- paste("BM",1:5,sep = "_")
rownames(rar_matrix)[1] <- "Small"
rownames(rar_matrix)[5] <- "Big"
colnames(rar_matrix)[1] <- "Low"
colnames(rar_matrix)[5] <- "High"
rar_matrix <- round(data.frame(rar_matrix*12),2)

list(N_G,ret_matrix,rar_matrix)

}

Control for Minimum Price

Given the above function, we test the sensitivity of the size/value premiums by including stocks with
pre-specified minimum price. In particular, we run this for a sequence of prices ranging between 0
and $50. With the parallel library, we can easily perform parallel computing on four cores. It takes a
few seconds to run the following commands4:

p_seq <- 0:50
list_port_price <- mclapply(p_seq, function(p) FF3_anomaly(p),mc.cores = 4)

Given the list list_port_price, we extract the result of interest. In this case, we focus on the raw
returns. For instance, the first item of this list corresponds to the same results from Section 2.3.

list_port_price[[1]][[2]]

#> Low BM_2 BM_3 BM_4 High
#> Small 12.93 14.73 18.05 20.14 23.40
#> 2 8.45 12.55 14.37 16.72 16.17
#> 3 8.04 11.79 14.30 14.24 15.99
#> 4 9.89 11.53 11.92 14.47 14.77
#> Big 9.84 11.70 10.41 13.13 12.78

On the other hand, if we consider $5 minimum price, we see that the results are tentative depending
on the level of entry:

list_port_price[[6]][[2]]

#> Low BM_2 BM_3 BM_4 High
#> Small 8.86 12.19 14.64 15.31 17.86

4Note that the mclapply can be easily leveraged on Linux machines.
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Figure 4: This figure summarizes the results of the double-sorting portfolio based on the book-to-
market (BM) ratio and size. Stocks are first sorted into five quintiles with respect to the BM ratio.
Then, within each BM quintile, stocks are sorted based on size. The double-sorting results in 25
value-weighted portfolios. The y-axis corresponds to the value premium, which is the difference
between the top and the bottom BM quintiles within a given size group. The x-axis controls for the
stock’s minimum price to be included within each one of the 25 sorted portfolios. The red, green,
and blue lines correspond to the size groups of small-cap (1), medium-cap (2), and large-cap (5),
respectively. Overall, the plot demonstrates the sensitivity of the value premium as a function of the
minimum price.
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#> 2 10.35 11.94 13.51 16.18 15.08
#> 3 8.54 12.39 13.52 14.41 15.07
#> 4 10.16 11.09 11.95 14.20 15.17
#> Big 9.79 11.66 10.62 12.95 12.42

To capture this for each matrix of raw returns, we compute the high-minus-low (HML), i.e.,
column 5 minus column 1 for each size level. This results in 5 HML premiums for each size level. We
summarize the results in Figure 4.

RAR_list <- lapply(list_port_price,function(x) x[[2]])
RAR_list_Value <- t(sapply(RAR_list, function(x) x[,5] - x[,1] ))
colnames(RAR_list_Value) <- rownames(RAR_list[[1]])
RAR_list_Size <- t(sapply(RAR_list, function(x) x[1,] - x[5,] ))

ds.plot <- lapply(1:5, function(i) data.frame(HML = RAR_list_Value[,i],
Min_Price = p_seq, Size = i))

ds.plot <- Reduce(rbind,ds.plot)
ds.plot <- ds.plot[order(ds.plot$Size,ds.plot$Min_Price),]
ds.plot <- ds.plot[ds.plot$Size %in% c(1,3,5),]
ds.plot$Size <- as.factor(ds.plot$Size)
p <- ggplot(ds.plot,aes(x = Min_Price, y = HML, colour = Size, shape = Size))
p <- p + geom_point() + geom_line()
p <- p + geom_abline(intercept = 0, slope = 0, color="black", linetype="dashed")
p

We observe that the HML is more evident for small-cap stocks. However, at the same time, we note
that the premium declines as we increase the minimum price entry. One argument is the following.
As we increase the minimum price, the size effect is mitigated and, hence, the value premium. On the
other hand, this could also be attributed to whether investors can utilize such alphas for small-cap
that tend to be less liquid.

We repeat the same plot for the size premium. In particular, we compute the small-minus-big
(SMB), i.e., row 1 minus row 5 for each BM level. This results in 5 SMB premiums for each BM group.
Similar to Figure 4, Figure 5 demonstrates the sensitivity of the results with respect to the minimum
price:

ds.plot <- lapply(1:5, function(i) data.frame(SMB = unlist(RAR_list_Size[,i]),
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Figure 5: This figure summarizes the results of the double-sorting portfolio based on the book-to-
market (BM) ratio and size. Stocks are first sorted into five quintiles with respect to the BM ratio.
Then, within each BM quintile, stocks are sorted based on size. The double-sorting results in 25 value-
weighted portfolios. The y-axis corresponds to the size premium, which is the difference between
the top and the bottom size quintiles withing a given BM group. The x-axis controls for the stock’s
minimum price to be included within each one of the 25 sorted portfolios. The red, green, and blue
lines correspond to different BM groups of low (1), medium (2), and high (5), respectively. Overall, the
plot demonstrates the sensitivity of the size premium as a function of the minimum price.
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Min_Price = p_seq, BM = i))
ds.plot <- Reduce(rbind,ds.plot)
ds.plot <- ds.plot[order(ds.plot$BM,ds.plot$Min_Price),]
ds.plot <- ds.plot[ds.plot$BM %in% c(1,3,5),]
ds.plot$BM <- as.factor(ds.plot$BM)
p <- ggplot(ds.plot,aes(x = Min_Price, y = SMB, colour = BM, shape = BM))
p <- p + geom_point() + geom_line()
p <- p + geom_abline(intercept = 0, slope = 0, color="black", linetype="dashed")
p

Consistent with the case for the HML premium, the SMB premium seems to shrink as we increase
the minimum price entry. While different forces could be attributed to this, it is of great relevance for
researchers/investors to understand the mechanisms behind which. Interested readers may find the
work by Li et al. (2014) very relevant concerning the impact of liquidity and limits of arbitrage when it
comes to the inclusion/exclusion of small-cap stocks.

5 Additional Results

We conduct one additional test related to the capital asset pricing model (CAPM) by Sharpe (1964) and
Lintner (1965). The following analysis depends only on the CRSP database rather than the merged
CRSP-COMPUSTAT data. Hence, the code is executed based on the DT data object only.

The CAPM postulates a positive linear relationship between the market beta (systematic risk) and
the asset’s mean return. Empirically, a large body of research shows that the relationship is flatter
than the one predicted by the model (Jensen et al., 1972) or even negative (Frazzini and Pedersen,
2014). Consistent with the literature (Bali et al., 2016), we sort stocks into 10 portfolios based on their
monthly beta. In particular, we use M months to estimate the market beta on a rolling window using
the rollRegres (Christoffersen, 2019) library. We set M to be either 36, 60, or 120 months. For each
sample size M, we estimate the market beta on a rolling basis. At the end of month t, we sort stocks
into 10 groups based on their market beta and compute the value-weighted return over the next month
at t + 1. For the next month, we repeat the same procedure until the last month of our data sample.

BETA <- DT[,c("date","CUSIP","RET")]
BETA <- merge(BETA,ds[,c("date","Mkt.RF","RF")], by = "date")
BETA$E_RET <- (BETA$RET - BETA$RF/100)*100
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BETA$RF <- NULL
# keep stocks with at least M months
BETA[, count := (.N), by = CUSIP]
BETA <- BETA[order(BETA$CUSIP,BETA$date),]
BETA <- BETA[BETA$count > est_window,]

BETA <- BETA %>%
group_by(CUSIP) %>%
do(.,mutate(.,Beta = roll_regres(E_RET ~ Mkt.RF,data = .,est_window)$coef[,2]))

BETA <- data.table(BETA)
BETA <- na.omit(BETA[,list(date,CUSIP,Beta)])

DT_capm <- merge(DT,BETA, by = c("CUSIP","date"), all = F)
DT_capm <- DT_capm[order(DT_capm$CUSIP,DT_capm$date),]
DT_capm <- DT_capm[,`:=` (Group_Beta = ntile(Beta,10)), by = list(date)]

Note that we execute the roll_regres command using the do command in the tidy environment.
This approach is the fastest solution to execute a rolling regression for panel data to the best of our
knowledge. For instance, when M = 120, the DT_capm data object contains 1,287,611 observations
with 9,149 unique securities. The execution takes about 10 seconds. Given the data object DT_capm, we
compute the next month’s portfolio value-weighted return as follows:

PORT_RET <- DT_capm[,list(VW_RET = 12*100*sum(RET_1*MKTCAP/sum(MKTCAP),na.rm = T),
VW_BETA = sum(Beta*MKTCAP/sum(MKTCAP),na.rm = T)),

by = list(date,Group_Beta)]
PORT_RET <- PORT_RET[order(PORT_RET$Group_Beta,PORT_RET$date),]

Finally, we summarize the results using ggplot2 in Figure 6. Note that the dashed line denotes the
relationship implied by the CAPM. Figure 6 is consistent with Figure 2 from Fama and French (2004),
where the slope (intercept) denotes the average annual market excess (risk-free) return. We compute
the slope and intercept of the CAPM line based on the sub-sample of the Fama-French data set ds that
corresponds to the same dates of the portfolio returns.

CAPM_result <- PORT_RET[,lapply(.SD,mean,na.rm = T),
by = list(Group_Beta),
.SDcols = c("EW_RET","VW_RET","EW_BETA","VW_BETA")]

CAPM_result <- CAPM_result[order(CAPM_result$Group_Beta),]
CAPM_result

ds_sub <- ds[ds$date %in% PORT_RET$date,]

p2 <- ggplot(CAPM_result, aes(VW_BETA, VW_RET)) +
geom_point()

p2 <- p2 + geom_smooth(method = "lm")
p2 <- p2 +ylim(c(5,15)) + xlim(c(0,2.5))
p2 <- p2 + geom_abline(intercept = mean(ds_sub$RF)*12,

slope = mean(ds_sub$Mkt.RF)*12,
color="red", linetype="dotted", size=1)

Consistent with Fama and French (2004), we note that the portfolio results denote a flatter line than
the one suggested by the CAPM. At the same time, we note that the results are noisy and sensitive
to the sample size choice. In unreported results, we find that the negative relationship suggested by
Frazzini and Pedersen (2014) is only evident when the betas are estimated using daily returns and
portfolios are equally weighted.

6 Concluding Remarks

This article provides a brief illustration of merging the CRSP (security prices/returns) data with
the COMPUSTAT (financial) data. The illustration is conducted for portfolio formation using book
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Figure 6: Capital Asset Pricing Model
The dots below report the average annualized monthly return (y-axis) versus market beta (x-axis)
for the value-weighted portfolios. The solid line is smoothed using linear regression. The dashed
line corresponds to the one predicted by the CAPM over the same sample period, where the slope
(intercept) denotes the average annual market excess (risk-free) return. Each panel corresponds to a
different estimation window needed to estimate the market beta and form beta portfolios on a rolling
basis.
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data. The final result is combining monthly market data with annual accounting data. However,
researchers interested in performing panel analysis or applying predictive models using machine
learning may prefer merging the data altogether using the same frequency. We leave this for future
research. Nonetheless, we hope this article would encourage further reproducible empirical asset
pricing research while also helping bridge the gap between the data science community and the
empirical finance literature.

7 Notes

An html vignette is found on https://rpubs.com/simaan84/CRSP_COMP. The Rmd source code can be
retrieved using the link.
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Analyzing Dependence between Point
Processes in Time Using IndTestPP
by Ana C. Cebrián and Jesús Asín

Abstract The need to analyze the dependence between two or more point processes in time appears in
many modeling problems related to the occurrence of events, such as the occurrence of climate events
at different spatial locations or synchrony detection in spike train analysis. The package IndTestPP
provides a general framework for all the steps in this type of analysis, and one of its main features is the
implementation of three families of tests to study independence given the intensities of the processes,
which are not only useful to assess independence but also to identify factors causing dependence.
The package also includes functions for generating different types of dependent point processes,
and implements computational statistical inference tools using them. An application to characterize
the dependence between the occurrence of extreme heat events in three Spanish locations using the
package is shown.

1 Introduction

A point process in time (PP in short) is a random collection of points in a space in R+ where each
point usually represents the time of an event. Examples of events that can be modeled as point
processes in time include the occurrence of earthquakes, heat waves, or the arrivals of insurance
claims. Many real problems involve not one but two or more PPs, and they should be studied in a
multivariate framework where a description of the independence or dependence structure between
them is required. Examples of these situations are the timing of the trades and mid-quote changes in
the stock exchange, the occurrence of temperature extremes or other climate events at different spatial
locations, or the synchrony detection in spike train analysis.

In those situations, statistical tests are required to assess the independence between two or more
PPs. If we can assume that the processes are independent, their modeling is much simpler, since it can
be carried out separately for each process without any loss of information. The tests are also useful to
identify the type of dependence and select the type of vector of point processes used to model them.
The need of testing independence between PPs appears in climate and environmental sciences (Cronie
and van Lieshout, 2016; Abaurrea et al., 2015), in neuroscience (Tuleau-Malot et al., 2014; Albert et al.,
2015), in biology (Myllymäki et al., 2017), and many other fields.

Two types of independence between PPs may be of interest, general independence (Rubin-
Delanchy and Heard, 2014a) and independence, given the intensities of the processes. The election
of the type of independence as null hypothesis depends on the aim of the study, but the second type
is more useful in modeling problems based on PPs. In effect, the most frequent approach to model
systematic dependence structures caused by common factors is the use of nonhomogeneous processes
with intensities, which are functions of the same or dependent covariates. To analyze if the dependence
is well represented by those covariates, the null hypothesis of independence given the intensities has
to be checked. When the existing dependence cannot be explained by the available covariates, models
taking into account that dependence should be considered to model the vectors of PPs.

The R package IndTestPP (Cebrián, 2020) provides a general framework for all the steps to analyze
the dependence in a vector of point processes in time: from data processing and tests of independence
to inference tools for parameters of interest. That makes it a useful tool for applications based on
the modeling of a vector of point processes. As far as we know, there is not other software for
this type of analysis. One of the main features of the package is the implementation of the three
families of independence tests by Cebrián et al. (2020), which cover a wide variety of homogeneous
and nonhomogeneous processes appearing in real problems: Poisson processes, processes with a
parametric marginal model, point processes with known marginal intensities, etc. The package also
provides functions to generate four different models of dependent PPs, and two types of independent
PPs, which are useful to develop inference tools based on computational statistical methods.

The outline of the paper is as follows. The two first sections Vector of point processes in time and Point
processes in R introduce some properties for vectors of point processes and some R packages related to
this topic. The three following sections describe the implementation in R of the tests of independence,
the measures of dependence, and the tools for generating PPs. The final section shows an illustrative
example of an analysis to characterize the dependence between the occurrence of extreme heat events
in three Spanish locations using IndTestPP.
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Figure 1: Vector of three point processes (left), and multivariate point process in a tridimensional
space (right).

2 Vectors of point processes in time

A point process in time, N, is defined in R+ and can be described in different equivalent ways. Here,
we will mainly use the sequence of occurrence times, T1, T2, ..., Tn, and also the set of random variables
N(A) representing the number of points in A, for each A ∈ R+. The notation for A = (0, t] is
N(t) = N((0, t]). The intensity measure of the process Λ gives the expected number of points in a set,
so that Λ((0, t]) = E(N((0, t])). Its derivative function, provided it exists, is the intensity function,

λ (t) =
∂Λ ((0, t])

∂t
.

If the intensity is constant, the process is homogeneous and nonhomogeneous otherwise. The most
known PP is the Poisson process, where N(A) has a Poisson(µA) distribution, with µA =

∫
A λ(t)dt,

and N(A1), . . . N(Ak) are independent variables provided that Ai ∩ Aj = ∅, ∀i ̸= j.
Herein, we will consider vectors of point processes N = (N1, . . . , Nd) observed in the same space

Ω = (0, T] ⊂ R+. This definition must not be mixed up with a multivariate point processes defined
as a process of random points Xi = (Xi1, . . . , Xid) in a d-dimensional space V ∈ Rd, whose simplest
example with d = 2 is a spatial point processes. Figure 1 shows the differences between the two
concepts with d = 3. A vector of PPs can be seen as a marked point process with discrete marks, and
can be represented by a countable collection of pairs (Ti, Di) where Ti ∈ R+ are the occurrence times
and Di ∈ {1, . . . , d} are the component indexes.

Most of the results in this work are developed for vectors of d = 2 processes, denoted by (Nx, Ny)
with intensities λx(t) and λy(t). If the results can be extended to higher values of d, it is specified. The
nx and ny points in each observed process are denoted t1, . . . , tnx and s1, . . . , sny , respectively.

Many types of dependence structures can appear between the marginal processes of a vector. The
most direct way of modeling it is to use models to represent the dependence between the occurrence
times of the processes, such as the common Poisson shock processes, the queue processes, the Poisson
processes with dependent marks, or the multivariate Neyman-Scott processes, described later.

3 Point processes in R

There exist many packages in R devoted to the analysis of spatial point processes: the extensive
spatstat (Baddeley et al., 2015), whose main functionalities include exploratory data analysis, model-
fitting, and simulation, stpp (Gabriel et al., 2020), splancs (Rowlingson and Diggle, 2017), and many
others. IDSpatialStats (Giles et al., 2019) provides spatial dependence measures, and future directions
include the extension to the spatio-temporal case. However, the number of packages dealing with
the analysis of point processes in time is not so high, and most of them deal with univariate analysis
of the processes. NHPoisson (Cebrián et al., 2015) provides a global framework for the modeling
and diagnosis of Poisson processes in time, PtProcess (Harte, 2010) fits and analyses time-dependent
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marked point processes with an emphasis on earthquake modeling, and mmpp (Hino et al., 2017)
offers various similarity and distance metrics for marked point processes.

The aim of IndTestPP is the analysis of vectors of point processes in time, in particular of its
dependence, and it provides a general framework for all the steps involved in this type of analysis:
data processing, estimation of the marginal intensities of the processes, analysis of independence given
the intensity, identification of factors causing dependence, and inference tools based on computational
statistics. mppa (Rubin-Delanchy and Heard, 2014b) provides a test for dependence between point
processes on the real line, but with a different aim since it tests general independence. The three families
of tests implemented in IndTestPP are more general since they are not restricted to Poisson processes,
and they test independence given the marginal intensities. This type of conditional independence is
more useful in statistical modeling of vectors of point processes since it helps to identify the factors
that cause the dependence. An example of how all the steps of the modeling of a vector of point
processes can be carried out using IndTestPP is shown in the application section.

4 Testing independence between point processes in time

Most of the analysis of independence between point processes in the literature involve spatial processes,
but few works deal with the study of independence between processes in time. IndTestPP includes
the three families of tests to assess independence between PPs in time by Cebrián et al. (2020), i.e., the
POISSON, the CLOSE, and the CROSS families, and a graphical tool, the Dutilleul plot. In all of them,
the null hypothesis is the independence between the point processes, given their marginal intensities,
and the alternative the existence of any type of random dependence between them. All the tests in
these families are constructed by keeping fixed the first observed process, a common approach to test
independence given the marginal structure. However, each test is based on different assumptions, and
all together they cover a wide range of types of processes appearing in real problems.

POISSON family

The family of tests POISSON is implemented in the function CondTest, and it includes two tests to
assess the independence between two homogeneous or nonhomogeneous processes, based on the
conditional distribution of Ny|Nx. The assumptions of the tests are that Ny is a Poisson process with
intensity function λy(t), specified in the vector argument lambday.

This family is based on the following property. If Nx and Ny are independent, and a point ti occurs
in Nx, the distribution of Ny does not change. Then, Yi, the number of points in Ny in intervals li of
length 2r around ti, follows a Poisson(µi) distribution with µi =

∫
li

λy(t)dt.

Two options are available to perform a test. The test implemented with the argument type='Poisson'
is based on the fact that under the independence between Nx and Ny and if not overlapping intervals
are used, the statistic Y = ∑nx

i=1 Yi has a Poisson(µ) distribution with µ = ∑nx
i=1 µi. A test based on a

Normal approximation is implemented with the argument type='Normal'. Again, under the null and
with not overlapping intervals, the variables (Yi − µi)/

√
µi are zero mean independent variables with

standard deviation equal to 1, and the asymptotic distribution of the statistic

Onx =
1√
nx

nx

∑
j=1

Yj − µj
√

µj

is N(0, 1). If the argument is type='All', both tests are calculated.

The intervals where the number of points is counted, li , are centered intervals around points ti
of radius r specified by the argument r. If changer=TRUE, when two intervals overlap, their lengths
are shortened by half of the intersection period; in this way the resulting intervals are disjoint and,
consequently, the corresponding variables Yi are independent.

The power study by Cebrián et al. (2020) shows that the Normal test performs better provided that
conditions to guarantee the normal approximation are fulfilled. These conditions are quite weak, even
with a complex intensity, mean values of µi around 0.6 points per interval lead to a valid approximation
with nx = 50, and around 0.3 with nx = 100.

CLOSE family

The CLOSE family includes two tests, the parametric bootstrap (PaB) and the Lotwick-Silverman (LoS)
tests, implemented in the functions TestIndNH and TestIndLS, respectively. The LoS test can only be
applied to homogeneous processes, but the PaB test also to nonhomogeneous ones. On the other

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=mmpp
https://CRAN.R-project.org/package=mppa


CONTRIBUTED RESEARCH ARTICLE 447

hand, the LoS does not require any assumption to be applied, while PaB requires that Ny follows a
parametric model with a generation algorithm, such as a Poisson or a Neyman-Scott cluster process.
Although both tests allow checking the independence between d processes in general, the calculation
of the statistic is only implemented for d = 2 and d = 3.

These tests are based on the close point distance, and they aim to compare the behavior of the sets
of close points in a vector of observed processes and in vectors with the same marginal distributions
but independent components (Abaurrea et al., 2015). A point sj in Ny is a close point of ti in Nx if the
intervals to their previous points, sj−1 and ti−1, overlap. The set behavior is summarized by d̄xi, the
mean of the distances between ti and its close points, |sj − ti|. The set of close points and the mean
distance for each point ti are calculated by the functions uniogentri and DistObs, respectively.

Given the complexity of the test statistic, its distribution has to be obtained by computational
statistical methods. These methods require approaches to generate a sample of r processes N∗

j =

(Nx, N∗
y,j), where the observed process Nx is fixed, N∗

y,j has the same distribution as Ny, and Nx and
N∗

y,j are independent. The PaB and LoS tests result from two different generation approaches.

Parametric bootstrap test. In this test, the N∗
y,j processes are generated independently from Nx

using a parametric model. Two types of marginal models are implemented in TestIndNH: Pois-
son processes (type="Poisson") and Neyman-Scott cluster processes (type="PoissonCluster").The
generation of Poisson processes in a given period uses the function simNHPc, based on a two-step
algorithm which generates homogeneous occurrence times, and transform them into the points of
a NH process with intensity λ(t) (Ross, 2006). Neyman-Scott cluster processes are obtained by the
function IndNHNeyScot. Details about these processes are explained later.

Lotwick-Silverman test (LoS). TestIndLS generates processes using a Monte Carlo method condi-
tional on the observed marginal structure (Lotwick and Silverman, 1982). The steps are the following:

1. The observed processes (Nx, Ny) are wrapped onto a circumference by identifying the opposite
sides of the time interval where they are observed.

2. Fixing Nx, a new N∗
y is generated by translating Ny a random uniform amount on the circumfer-

ence. This breaks any dependence between the processes and keeps the marginal distributions,
provided they do not change over time.

The mean distances of the close point sets in the generated vectors of processes in the PaB and
the LoS tests are calculated by the functions DistSim and DistShift, respectively. The calculation
of the p-value requires the generation of processes in two steps of the algorithm, to calculate the
expectation of the mean distances d̄xij and to estimate the distribution of the statistic in a correlated
sample. This calculation is implemented so that the same generated processes are used in the two steps
and the computing time is kept low; otherwise, it would be multiplied by the number of simulations.
Moreover, parallel computation is implemented.

According to the power study by Cebrián et al. (2020), both LoS and PaB tests have high power, but
LoS performs slightly better in the homogeneous processes with small samples and low dependence.

CROSS family

The CROSS family includes two tests based on the cross K and the cross J spatial functions adapted to
the case of PPs in time, implemented in the functions NHK and NHJ, respectively. These functions also
provide estimators of the cross functions. They do not require any assumption about the distribution
of the marginal processes, only to know their intensities, and the p-values are calculated using a
LoS approach. The tests can be applied to two homogeneous or nonhomogeneous processes, and
more generally to two sets of processes, C = (Nx1, Nx2, . . . , NxlC ) and D = (Ny1, Ny2, . . . , NylD ). The
information about the processes is provided by arguments posC, a vector containing all the occurrence
times in the processes in C, and typeC, a vector containing the code j of the process Nxj where each
point in posC occurs; D is specified analogously by posD and typeD. For the sake of simplicity, the
results are expressed for the case, C = (Nx) and D = (Ny) with intensities λx(t) and λy(t).

K-function. Kxy(r) is the expected value of the number of points in Ny within a distance r of a
randomly chosen point in Nx, adjusted for the possible time-varying intensity. NHK calculates two
different estimators of Kxy(r) at a given grid of r distances, and the corresponding test statistics based
on them, K = 1

R ∑rR
r=r1 K̂xy(r)/2r. The estimator calculated by default (typeEst = 2) performs better

in terms of size and power (Cebrián et al., 2020).

J-function. It compares the functions Dxy(r) (distribution function of the distances from a point in
Nx to the nearest point in Ny) and Fy(r) (distribution function of the distances from a point in the
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space to the nearest point in Ny), in terms of the ratio Jxy(r) = (1 − Dxy(r))/(1 − Fy(r)), if Fy(r) < 1.

The estimators of Dxy(r) and Fy(r), calculated by NHD and NHF, are used in NHJ to estimate Jxy(r). To
estimate Fy(r), a grid of L values is required. It can be provided in argument L or an automatic selection
is calculated otherwise. In the homogeneous PPs, the previous estimators are equal to the empirical
distribution functions, and the calculation algorithms are changed to reduce the computational cost.
The test statistic, which summarizes the deviations of the function from 1, is J = 1

R ∑rR
r=r1 | Ĵxy(r)− 1|.

In both functions, NHK and NHJ, the grid of r distances where the estimators are evaluated are
provided in argument r. If it is NULL, an automatic selection based on length T is carried out. The
test statistics are also evaluated at that grid, and since dependence often appears between close
observations, the addends with high r can make it more difficult to discriminate between dependent
and independent processes. To avoid that effect, the statistic can be calculated using only the addends
with r < r0 by using the argument rTest=r0. To identify an adequate value of r0, values K̂xy(r) or
K̂xy(r)/2r can be optionally plotted.

Computation of the p-values. The calculation of the p-value in CROSS tests is based on a LoS
approach for nonhomogenous processes. First, the observed processes (Nx, Ny) are wrapped onto
a circumference. Then, fixing Nx, a new N∗

y is generated by translating Ny and its intensity λy(t),
a random uniform amount. This breaks any dependence, but in nonhomogeneous PPs, it changes
the distribution of the marginal processes. However, since the cross functions are adjusted for the
time-varying intensity, which is also translated, valid samples of Kxy(r) (or Jxy(r)) under independence
are obtained. Using the empirical distribution of those samples, the p-value and confidence envelopes
for Kxy(r) (or Jxy(r)) are obtained. Parallel computation is implemented for these calculations.

Dutilleul plot

The function DutilleulPlot carries out Diggle’s randomization testing procedure extended by Du-
tilleul (2011), which graphically assesses the independence between two homogeneous or nonhomo-
geneous Poisson processes, given their marginal structure. The idea is to plot the cumulative relative
frequency of the nearest neighbor distances between the points in the two observed processes and to
analyze the independence using a confidence band calculated from simulated independent Poisson
processes with the observed marginal intensities.

5 Dependence measures

Unfortunately, there does not exist a general definition to quantify the dependence between two PPs.
However, we suggest some measures implemented in IndtestPP which can be useful to describe the
level of dependence between many types of processes.

Correlation between the counting variables of two PPs. CountingCor calculates a sample es-
timator of ρL

xy = Cor(Xi, Yi), the correlation coefficient between Xi and Yi the number of points in
processes Nx and Ny, in an interval li of length L, using a partition of the observed period. Given the
discrete character of Xi and Yi, and since the usual aim is to quantify any type of dependence, not
only linear correlation, Spearman or Kendall coefficients are often more adequate. Kendall should be
preferred with short intervals since there will be a high number of 0 or 1 occurrences per interval, and
the Kendall Tau-b coefficient implemented in the function makes an adjustment for the ties.

In nonhomogenous processes, variables Xi (and Yi) in intervals measured at different times are
not i.d. In the case of Poisson processes, CountingCor can calculate a standardized version of the
measure, so that all the variables have the same mean and variance, and if Λx,i = ∑t∈li

λx(t) and
Λy,i = ∑t∈li

λy(t) are high enough, they are also i.d.,

ρL
xy = Cor

Xi − Λx,i√
Λx,i

,
Yi − Λy,i√

Λy,i

 .

This coefficient measures the correlation given the marginal intensities. That means that the coefficient
measures the correlation once that dependence captured by the intensities (through common covariates,
for example) has been removed.

Percentage of concordant intervals. A simpler descriptive measure is the percentage of concordant
intervals, that is, the percentage of intervals with occurrences in both processes. It is calculated by
BinPer as nx,y/(nx,y + nx,0 + n0,y), where nx,y is the number of intervals with at least one point in
both processes, and n0,y and nx,0 are the number of intervals with at least one point in one process and
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0 in the other. This percentage will tend to be zero in short intervals of independent processes, while
positive values will suggest positive dependence. An adequate length of interval that depends on the
marginal intensities has to be selected to obtain useful interpretations.

Extremal dependence coefficients. In the case of PPs resulting from a Peak over threshold (POT)
approach, another interesting measure is the extremal dependence between the variables X and Y
where the POT approach is applied. The extremal dependence is the tendency for one variable to be
large, given that the other one is large. The extremal dependence coefficient χ of X given Y is defined
as χx|y = limu→1 χx|y(u), where

χx|y(u) = P (U > u|V > u) ,

and (U, V) are the transformed uniform marginals of X and Y. Another extremal coefficient is
χ̄x|y = limu→1 χ̄x|y(u), where

χ̄x|y(u) = 2
log P (U > u)

log P (U > u, V > u)
− 1.

χx|y is on the scale [0, 1], with the set (0, 1] corresponding to asymptotic dependence, and the
measure χ̄x|y falls within the range [−1, 1], with [−1, 1) corresponding to asymptotic independence.
Thus, (χx|y > 0, χ̄x|y = 1) signifies asymptotic dependence, and the value of χ determines the strength
of dependence within that class; (χx|y = 0, χ̄x|y < 1) signifies asymptotic independence, and χ̄x|y
determines the strength of dependence within that class. Full details can be found in Coles et al. (1999).

The function depchi estimates the functions χx|y(u) and χ̄x|y(u) in a given grid of values u. Both
χx|y(u) and χy|x(u) (or χ̄x|y(u) and χ̄y|x(u)) are calculated and optionally plotted. These graphs are
useful to estimate the limit of the function and obtain χ̂x|y (and ̂̄χx|y). In the plot of χx|y(u), the
expected behavior under independence is also plotted.

6 Generating point processes with different dependence structures

The generation of vectors of PPs with a given dependence structure is necessary to implement Monte
Carlo, parametric bootstrap, or other inference methods based on simulation, such as those described
in section Inference based on computational statistical methods. There are different approaches to model
the dependence between the marginal processes in a vector of PPs, but the most direct way is to model
the dependence between the occurrence times of the processes. IndTestPP includes functions for the
generation of four types of vectors of homogeneous or nonhomogeneous PPs, which will be described
later in this section: common Poisson shock processes, multivariate Neyman-Scott processes, queue
processes, and marked Poisson processes. These types of vectors allow modeling three dependence
structures frequently observed in real problems.

• Dependence between two or more PPs provoked by the same shock triggering event. This is the most
common dependence structure and can be modeled by a common Poisson shock process (CPSP)
or a multivariate Neyman-Scott process (MNSP). Both models show a short-term and positive
dependence, generated by common shocks, but in each one, the shocks yield points in the
processes in a different way. This dependence appears in the spike trains of two neurons, in
climate and environmental processes, or in financial problems, for example, when a political
crisis provokes the occurrence of large decreases in different economical indexes.

• Dependence between shifted processes. This is a point-to-point dependence, where the occurrence of
an event in a process triggers an event in the other so that the points in Nx are shifted a positive
random amount in Ny. It can be modeled by a queue or a network of queues (QUE). Examples
of this type of dependence are the processes of the reporting and resolution times of insurance
claims or the occurrence times of floods provoked by an event of intense rainfall.

• Dependence between neighbour points in different processes. It appears when the occurrence of an
event in one process boots or blocks the occurrence of an event in the others. It can be modeled
by a marked Poisson process with dependent marks generated, for example, by a Markov chain
(MPP). This model yields medium or long-term dependence, since given that the process of
all the points is a Poisson process, a model of rare events, the distance between consecutive
points tends to be large. An example of this type of dependence is the process of the growth of a
species of plant, which favors or avoids the growth of another plant during a period of time.
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Common Poisson shock processes

The function DepNHCPSP generates d dependent Poisson processes, which are the marginal processes
of a CPSP. A CPSP, see Abaurrea et al. (2015) for full details, is a multivariate PP with an underlying
Poisson process of shocks, N0, which may yield a point in one or more of d marginal processes Nj.
These marginal processes are dependent Poisson processes, where the dependence between Ni and Nj
only comes from the occurrence of simultaneous points in those processes.

Generation algorithm. The CPSPs show a property which straightforwardly leads to a generation
algorithm: they can be decomposed into m independent Poisson processes, with m = ∑d

k=1 (
d
k). The m

indicator processes are the processes of the points occurring only in N1, ..., only in Nd, simultaneously
only in N1 and N2, ..., simultaneously only in N1, N2, and N3,..., and finally, simultaneously in N1,
N2,... and Nd. For example, a CPSP with d = 2 is decomposed into three independent indicator
processes, N(1), N(2), and N(12), with intensities λ(1), λ(2), and λ(12). Each marginal process Nj can be
expressed as the sum of all the indicator processes including the index j, and its intensity is the sum of
the indicator intensities. In the case d = 2, N1 = N(1) + N(12), N2 = N(2) + N(12), λ1 = λ(1) + λ(12),
and λ2 = λ(2) + λ(12). Then, d dependent Poisson processes can be generated in two steps.

1. Generation of m independent Poisson processes N(1), N(2),..., N(12),... and N(12...d), with the
adequate intensities, using the function simNHPc.

2. Each Nj is obtained as the union of the points in the indicator processes with index j, N(.j.).

The intensity of the processes to be generated with DepNHCPSP is specified in argument lambdaiM,
a matrix whose columns are the intensity vectors of the indicator processes. Independent Poisson
processes in the same period of time cannot be generated using DepNHCPSP but with IndNHPP.

Estimation. It is simple since it reduces to the identification of the indicator processes and the
estimation of m independent Poisson processes. In the case d = 2, CPSPpoints identifies the three
indicator processes, using as input the points in the two marginal processes. The related function
CPSPPOTevents calculates the occurrence times, length, maximum, and mean intensity of the extreme
events of the indicator processes of the CPSP resulting from a POT approach. The marginal and
indicator processes of a CPSP are plotted by the functions PlotMCPSP and PlotICPSP, respectively.
Poisson processes can be fitted to the indicator processes using the package NHPoisson.

Multivariate Neyman-Scott processes

The function DepNHNeyScot generates d dependent PPs, which are the marginal processes of an MNSP.
A Neyman-Scott process (NSP) is a process of clusters of points such that the cluster centers Ci are a
Poisson process, the number of points in each cluster, Zi, are independent Poisson variables possibly
with different means µi, and the distances of each point tj in a cluster to its cluster center, Dij, are i.i.d.
variables. We call a multivariate NSP to a vector of NSP with the same cluster centers. The marginal
processes are dependent processes, but they are not Poisson.

Generation algorithm. The previous definition leads to the following generation algorithm.

1. A Poisson process with a given intensity is generated to obtain the cluster centers Ci.

2. Given the number of generated cluster centers J, independent series of the number of points in
each cluster, (Zl

i ) for i = 1, . . . , J, for each marginal process l with l = 1, . . . , d, are generated
using Poisson distributions.

3. Given the series (Zl
i ), independent distances Dl

ij to the cluster center Ci for j = 1, . . . , Zl
i ,

i = 1, . . . , J are generated for each marginal process l. The points in each marginal process are
obtained as Ci + Dl

ij.

DepNHNeyScot implements two common distributions to model the distances from the points to
the cluster center, N(0, σ) or U(min, max). High values of σ or the range (max − min) lead to a high
variability around the center and to a lower dependence between the processes. Independent NSP in
the same period of time cannot be generated using DepNHNeyScot, but with IndNHNeyScot.

This is the only model whose estimation is not easy, since the cluster centers are usually unobserved,
and they are required to estimate both the underlying Poisson process and the distances of the points
in each cluster to its cluster center.

Queue processes

DepNHPPqueue generates d dependent Poisson processes using d − 1 queues in a tandem. A queue
models the input and output times of a customer in a waiting line. In a tandem of queues, the servers
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are lined up one behind the other so that an arriving customer undergoes each server before leaving
the system. DepNHPPqueue generates all the intermediate processes in a tandem where the first queue
can be M(t) \ G \ 1 or M(t) \ G \ ∞, that is, a queue where the input is a nonhomogeneous Poisson
process, service times have a general distribution G, and there are one or infinity servers.

Generation algorithm. The generation of homogeneous PPs is based on Burke’s theorem stating
that if the input of a queue is a homogeneous Poisson process, the output is a dependent Poisson
process with the same intensity λ. Keilson and Servi (1994) stated that if the input is a nonhomogeneous
Poisson process, the output is a Poisson process whose intensity is the convolution λout(t) = λ(t) ∗ g(t),
where g(t) is the density function of G. Then, the generation algorithm is:

1. Generation of the input process using a Poisson process with intensity λ(t).

2. Generation of independent time services sk with distribution G for each point ik in the input
process.

3. Generation of the output process using the generated input points and time services. If there is
only one server, the output times ok depend on the state of the queue: it is ok = ok−1 + sk if the
queue is not empty (that is if ok−1 > ik), and ok = ik + sk otherwise. If there are infinity servers,
there are no queues, and ok = ik + sk.

4. The resulting output process is the input process of the following queue.

Steps 2 to 4 are repeated up to obtain d dependent Poisson processes.

The distribution G may be any distribution in stats; see Distributions. The length of the argument
lambda fixes T, the length of the observed period, although in the homogeneous processes, we can
fix the number of points to be generated instead (argument nEv). The vector of the output intensities
λout(t) is part of the output of the function. It is expected that low λ(t) values and mean serving times
lead to short queues and, consequently, high dependence between processes.

Estimation. Since the marginal processes are Poisson, they can be fitted and modeled using the
package NHPoisson. Additionally, if the connection between the input and output points is known,
the service times are the difference between them, and their distribution can be also easily estimated.

Marked Poisson processes with dependent marks

DepNHPPMarked generates d dependent processes, which are the marginal processes of an MPP with
marks generated by a d-state Markov chain. An MPP is a Poisson process in which a variable, called a
mark, is attached to each point. In this case, the marks are discrete variables taking values in {1, . . . , d},
which determine in which of the d marginal processes Nj, a point occurs. Given the Markov chain
structure, defined by a transition matrix P = (pij), only adjacent marks are dependent. The marginal
processes are Poisson if and only if the marks are independent.

Generation algorithm. Applying the previous definition, the generation of algorithm is simple.

1. Generation of the points in a Poisson process with a given intensity λ(t).

2. Generation of marks by a Markov chain. It implies an iterative generation of values in 1, . . . , d,
given the previous mark, using a multinomial distribution with probabilities given by P.

3. Each marginal process Nj includes the points in the Poisson process with marks j.

SpecGap calculates the spectral gap, a measure of the dependence generated by a Markov chain,
which assesses the convergence speed of the transition matrix to a matrix with the same stationary
distribution and equal rows (that is, with independent marks). Processes with a lower spectral gap
yield more dependent marginal processes. Independent Poisson processes can be generated using
IndNHPP or a transition matrix with equal rows in DepNHPPMarked.

Estimation. Given that the process of all the points in the marginal processes is Poisson, λ(t) can
be estimated using NHPoisson. TranM estimates the transition matrix of the Markov chain using the
MLE based on count data. Then, the estimators of the marginal intensities are λ̂j(t) = λ̂(t)∑d

i=1 p̂ij.

7 Inference based on computational statistical methods

There are many parameters of potential interest in a vector of point processes, where inference tools
based on exact or asymptotic distributions are not available. Inference based on computational
statistical methods such as Monte Carlo (MC) or parametric bootstrap is a useful alternative in those
cases. IntMPP uses these methods to implement point estimation and calculation of confidence intervals
and envelopes of a parameter, or vector of parameters, related to a vector of PPs. The only requirement
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for the parameters of interest is that it must be possible to estimate them from the observed processes.
Some examples are the vector of the number of points in each process in a given time period or the
time of occurrence of the k-th point in the vector.

The idea to construct confidence intervals or envelopes using computational statistical methods is
simple when the distribution of the vector of processes is completely known (Monte Carlo approach).
In real problems, the parameters of the distribution of the vector of processes are rarely known, and
parametric bootstrap methods, where the parameters are estimated from the sample, have to be used.
The basic idea is to generate a sample of ns vectors of processes with the distribution. A value of the
statistic of interest is calculated from each generated vector so that a sample of size ns of values of the
statistic is obtained. The lower and upper bounds of an interval with a (1 − α)% confidence level are
the α/2 and 1 − α/2 quantiles of the generated sample, and the point estimator is the sample mean.
Standard tests of hypothesis can be implemented using those intervals in the usual way.

The two main arguments of IntMPP are fun.name, a function to define the estimator of the parame-
ter, and funMPP.name, a model to generate the vectors of processes. The estimator in fun.name must
be a function of the points in the vector of PPs (defined as a list which must be the first argument
of the function) and any number of additional arguments provided by argument fun.args. The
models in funMPP.name can be DepNHCPSP, DepNHPNeyScot, DepNHqueue, and DepNHPPMarked, or any
other implemented by the user. The only requirement of those models is that the first element in the
output has to be a list with d elements defining the vector of PPs. Additional arguments for the models
are given in funMPP.args. Parallel computation is implemented in this function.

8 Analysis of the occurrence of extreme heat events in three locations
using IndTestPP

This section illustrates how the package IndTestPP can be used to carry out all the steps in the analysis
of the occurrence of the extreme heat events (EHEs) in three Spanish locations, Barcelona (B), Zaragoza
(Z), and Huesca (H) using a vector of point processes.

Data

The series TxB, TxH, and TxZ are the daily maximum temperature, in Celsius degrees, during the
warm season (May to September) from 1951 to 2016 at Barcelona, Huesca, and Zaragoza, respectively.
The series were provided by the Spanish Meteorological Office (AEMET), and they are stored in
the data frame TxBHZ in the data set TxBHZ, available in the package. The days which are not
observed in the three series are considered as missing observations so that three series with 8262
complete observations are available. The date (day, month, and year), day within year (dayyear) of the
observations, and some variables representing the general temperature evolution are also available in
the data set. The three locations are sited in a triangle where Barcelona is in the East, around 250km
away from the others, and Huesca is 67 km to the North of Zaragoza.

Using the peak over threshold (POT) approach, an EHE is defined as a run of consecutive days
where the temperature is over an extreme threshold, and its occurrence point is the day of maximum
temperature in the run. The threshold is the 95th percentile of the series in a reference period (months
of June, July, and August in 1981-2010), being 31.3, 36.4, and 37.8◦ C in Barcelona, Huesca, and
Zaragoza, respectively. The series are recorded at a discrete time scale, but given that the time unit
is short compared with the length of the observed period and that the occurrence intensity of EHEs
is quite low, the use of the continuous point processes to model the occurrence of EHEs in a series is
justified. The EHEs may affect the three locations depending on the type of atmospheric situations that
caused them. Then, our aim is to model the occurrence of the EHEs in the three series using a vector
of point processes which take into account the dependence between them and identify the factors
causing that dependence.

Processing data and preliminary analysis

To identify the occurrence times of the EHEs in a series using the POT approach, the function
POTevents.fun in NHPoisson is used. The case of Zaragoza is shown as an example, and their
104 occurrence times are stored in posZ. Analogously, the 106 and 121 occurrences in Barcelona and
Huesca are stored in posB and posH.

R> library(NHPoisson)
R> library(IndTestPP)
R> data(TxBHZ)
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R> attach(TxBHZ)

R> auxZ<-POTevents.fun(TxZ, thres=37.8)

Number of events: 104
Number of excesses over threshold 37.8 : 176

R> posZ<-auxZ$Px

Then, PlotMargP is used to plot the points in the three processes:

R> T<-length(TxZ)
R> PlotMargP(list(posB, posH, posZ), T=T, cex.axis=0.6,cex=0.6,

cex.main=0.7, cex.lab=0.7)

0 2000 4000 6000 8000

Marginal processes

Time index

N1
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N3

Figure 2: Plot from PlotMargP: Point processes of the occurrences times of the EHEs in Barcelona (N1),
Huesca (N2), and Zaragoza (N3).

The temperature series are highly correlated, with Pearson coefficients ρBH = 0.76, ρBZ = 0.73,
and ρHZ = 0.94, but to measure their extremal dependence, a more specific measure, such as the
extremal dependence coefficients are used. The functions for the analysis between TxZ and TxB are
shown as an example, but the pairwise dependence between the three locations is analyzed.

R> aux<-depchi(TxB,TxZ,indgraph=FALSE,xlegend='topright',
thresval=c(9000:9975)/10000)
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Figure 3: Plots from depchi of χ̂x|y(u) and ˆ̄χx|y(u) to estimate the extremal dependence coefficients.

The estimators χ̂B|Z = χ̂Z|B = 0 and ˆ̄χB|Z = ˆ̄χZ|B = 0.5 suggest an asymptotic independence
between TxB and TxZ. However, ˆ̄χZ|B > 0 suggests dependence at extreme levels, in particular in the
threshold χ̂Z|B(0.95) ≈ 0.38. Similar conclusions are obtained for TxB and TxH, while TxH and TxZ
are asymptotically dependent, with χ̂H|Z = χ̂Z|H = 0.5, ˆ̄χZ|H = ˆ̄χH|H = 1, and χ̂Z|H(0.95) ≈ 0.7.

The functions CountingCor and BinPer calculate another extremal dependence measures, the
correlation coefficient between the number of EHEs in intervals of a given length ll, and the percentage
of concordant intervals,
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R> aux<-CountingCor(posB,posZ, ll=10, T=T, method='kendall')
R> aux

tau
0.3554213

R> aux<-BinPer(posB,posZ, ll=10, T=T)

Percentage of concordant intervals: 0.272

with ll = 10 days, to measure short-term dependence. All the correlations, ϱ10
BZ = 0.36, ϱ10

BH = 0.33, and
ϱ10

ZH = 0.68 are significantly different from zero. Similar conclusions are provided by the percentage of
concordant intervals, BP10

BZ = 0.27, BP10
BH = 0.25, and BP10

ZH = 0.55.

The dependence given the empirical intensity of one process (obtained by function emplambda.fun
in NHPoisson) can be graphically analyzed using the Dutilleul plot. Figure 4 shows the plot for
Zaragoza-Barcelona, resulting from the following commands, and the plots for Barcelona-Huesca and
Zaragoza-Huesca. All the previous results and the plots show that there exists a pairwise dependence
between the three locations and that it is stronger between Zaragoza and Huesca.

R> lambdaEB<-emplambda.fun(posE=posB, t=c(1:T), lint=100, plot=F)$emplambda
R> aux<-DutilleulPlot(posZ, posB, lambdaEB, main="Zaragoza-Barcelona")
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Figure 4: Dutilleul plot between the pairs of the EHE processes in the three locations, given the
empirical intensities.

Testing independence and analyzing dependence factors

Our next aim is to identify the factors which cause the dependence. To that end, the independence tests
given the marginal intensities are applied. The first step is to model each process individually. This has
a twofold objective: first, to identify the factors that influence the occurrence of EHEs in each series,
which may cause the dependence, and second to estimate the marginal intensities of the processes.
The second step is to check if the occurrence processes are independent given the fitted intensities. If
the tests do not reject the null hypothesis, it can be concluded that the dependence between the EHE
processes is explained by the considered covariates since once its effect is removed, the processes are
independent. The rejection of independence gives evidence that there are other non-identified factors
causing dependence, which have not been included as predictors in the intensities. In those cases, a
multivariate model allowing dependence should be used.

Step 1. To model the occurrence of the EHEs in each series, we consider a nonhomogeneous
Poisson process with an intensity that is a function of a harmonic term (to model the seasonal behavior)
and the available covariate, which represents the local atmospheric situation (Abaurrea et al., 2015).
After the modeling process, based on a likelihood ratio test, the harmonic term, the covariate, and the
squared covariate are selected in Zaragoza. The same terms are included in Huesca, and the same
plus interaction between the covariate and the harmonic in Barcelona. These models are fitted using
fitPP.fun in NHPoisson. The fit of Zaragoza is shown as an example, and the others are carried
analogously to obtain lambdaH and lambdaB.

R> ss<-sin(2*pi*dayyear/366)
R> cc<-cos(2*pi*dayyear/366)
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R> covZ<-cbind(ss,cc, Txm15Z, Txm15Z**2 )
R> dimnames(covZ)<-list(NULL, c("Sin", "Cos", "Txm15", "Txm152"))
R> ModZ<-fitPP.fun(covariates = covZ, posE = posZ, inddat = auxZ$inddat,

dplot=F, tit = "Sin+Cos+Txm15+Txm152",
start = list(b0 = 1, b1=-1,b2=1, b3=0, b4=0))

Number of observations not used in the estimation process: 72
Total number of time observations: 8262
Number of events: 104
Convergence code: 0
Convergence attained
Loglikelihood: -430.087

Estimated coefficients:
b0 b1 b2 b3 b4

-54.209 0.190 -2.496 2.434 -0.029
Full coefficients:

b0 b1 b2 b3 b4
-54.209 0.190 -2.496 2.434 -0.029

attr(,"TypeCoeff")
[1] "Fixed: No fixed parameters"

R> lambdaZ<-ModZ@lambdafit

The three fitted models are satisfactorily validated using globalval.fun in NHPoisson.

Step 2. The independence tests are used to study the pairwise independence given the fitted
intensities. Since it can be assumed that the marginal processes are Poisson, the three families of tests
POISSON, CLOSE, and CROSS can be applied. In the CLOSE family, only the PaB test is applied since
the processes are nonhomogeneous; in the others, the most powerful test, according to Cebrián et al.
(2020), is selected, that is the Normal test and the K test. Only the functions for the analysis between
TxZ and TxB are shown, but all the pairwise comparisons are summarized in Table 1.

POISSON family. The Normal test is applied using an interval length r = 15 that guarantees the
Normal approximation of the statistic.

R> aux<-CondTest(posZ, posB, lambday=lambdaB, r=15)

WARNING: there are overlapping intervals. The independence hypothesis
is not guaranteed.

The intervals have been shortened to obtain disjoint intervals.
The length of the intersection priods are:
[1] 23 21 28 19 11 12 27 26 20 22 15 27 22 18 18 22 28 16 26 25 17 26 12 26 6
[26] 8 24 17 28 20 27 20 17 13 17 27 24 23 23 18 27 5 28 10 7 22 27 27 28 23
[51] 27 26 24 21 19 26 14 14
The shortest length of the considered intervals is: 3
The median of the mui values is: 0.5

R> aux$pvN

Normal p-value
0.6859921

CLOSE family. In the PaB test, the parametric marginal model of the second process, the Poisson
process fitted to Barcelona in this case, has to be specified.

R> PBZB<-TestIndNH(posZ, posB, nsim = 5000, type = "Poisson",
lambdaMarg =cbind(lambdaB), fixed.seed=35)

R> PBZB$pv

p-value
0.2107578

CROSS family. The K test is implemented using an r-grid with values from 1 to 15, the value
selected with the help of the plot of the estimated K(r). Both the p-value and Figure 5 suggest the
independence between Z-B given the intensities, since all the values K̂(r) lie inside the confidence
band. On the other hand, the plot for Z-H, also shown in Figure 5, rejects independence for short-term
dependence.
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Z-B B-H Z-H
Normal PaB K Normal PaB K Normal PaB K

pv .69 .21 .0.16 .44 .25 .00 (0.29) .03 .00 .03

Table 1: P-values of the tests to assess pairwise independence between the occurrence of EHEs in
Zaragoza, Barcelona, and Huesca.

R> auxZB<-NHK(lambdaZ, lambdaB, posC=posZ, posD=posB, r=c(1:15),
typePlot='Kfun', cores=2,fixed.seed=36)

R> auxZB$pv

p-value
0.1558442
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Figure 5: Plot from NHK: Estimation of the K function and confidence band under independence for
Zaragoza-Barcelona (left) and Zaragoza-Huesca (right).

Table 1 summarizes the three pairwise comparisons. The three tests lead to the non-rejection of
independence between the occurrences in B-Z, and to the rejection between Z-H. On the other hand,
in pair B-H, the K test rejects the null while all the other tests do not. It is found that the high value of
the K statistic is only due to the occurrence of a point in Huesca in t = 901 and in Barcelona in t = 902
when the intensity in both locations is low. In order to analyze the influence of this event, the point
in Barcelona is removed, and the resulting p-value, 0.29, does not reject the independence anymore.
This suggests that the K test is more sensitive than the others to the existence of an influential point.
Given that all the tests are built by conditioning on the occurrences of the first process, the tests are
also applied, changing the order of the locations, and the same conclusions are obtained.

These results are graphically confirmed by the Dutilleul plots given the fitted intensities, where
only the plot between Zaragoza and Huesca gives evidence of dependence.

R< aux<-DutilleulPlot(posZ, posB, ModB@lambdafit,main="Barcelona-Zaragoza",
cex.main=0.9)
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Figure 6: Dutilleul plot for the pairs of EHE processes given the fitted intensities.

The PaB test can also be used to test independence between the three processes simultaneously:
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R> PBBHZ<-TestIndNH(posB, posH, posZ, nsim = 1000, type = "Poisson",
lambdaMarg =cbind(lambdaH, lambdaZ), fixed.seed=65, cores=2)

R< PBBHZ$pv

p-value
0.002997003

Then, we conclude that, given the fitted intensities, the occurrence of the EHEs in Zaragoza-
Barcelona and Barcelona-Huesca are independent, while there is dependence not explained by the
covariates in Zaragoza-Huesca, which are the closest locations. Given these results, the best model
for Barcelona is the previously fitted model, while the occurrence processes of Huesca and Zaragoza
should be modeled by a vector of PPs taking into account the dependence between them. A model
that allows us to include that dependence is a CPSP. The occurrences of the three indicator processes,
the process of the events only in Huesca, only in Zaragoza, and the simultaneous events, are obtained
by the function CPSPPOTevents. Then, the CPSP can be estimated by fitting a Poisson process to each
of the three indicator processes using fitPP.fun; see Cebrián et al. (2015) for some examples.

Inference based on computational statistical methods

This section shows two examples of inference based on computational statistical tools using the
function IntMPP. The first example uses the CPSP, which models the occurrence of EHEs in Huesca
and Zaragoza, taking into account the dependence between them. It is fitted using NHPoisson, and
the estimated intensities of the three indicator processes are the three last elements of the data.frame
TxBHZ, lambdaOZ, lambdaOH, and lambdaZH.

In the first example, we calculate the point estimate and a confidence interval of the time of the first
EHE in Zaragoza or Huesca. We need the function firstt, whose output is the minimum occurrence
time in a vector of processes.

R> firstt<-function(posNH){minpos<-min(unlist(posNH))}
R> lambdaiZH<-cbind(lambdaOZ,lambdaOH,lambdaZH)
R> aux<-IntMPP(funMPP.name="DepNHCPSP",

funMPP.args=list(lambdaiM=lambdaiZH, d=2, dplot=F),
fun.name="firstt", fun.args=NULL, clevel=0.95, cores=2, fixed.seed=125)

Lower bound of CI: 50.4648
Point estimator: 116.7493
Upper bound of CI: 233.4015

This type of inference also allows us to obtain confidence bands for two or more values, for
example, the number of EHEs in Huesca and in Zaragoza in a given time interval I. To that end, we
use the function NumI, included in the package, whose output is a vector containing the number of
points in an interval I in each marginal process of a vector of processes. To see the evolution of the
number of extremes, we consider two intervals, the three first and the three last years of the period. A
clear increase in the number of EHEs is observed in the two locations.

R> aux<-IntMPP(funMPP.name="DepNHCPSP",
funMPP.args=list(lambdaiM=lambdaiZH, d=2, dplot=F),
fun.name="NumI", fun.args=list(I=c(1,459)), fixed.seed=125)

Lower bound of CI: 1 1
Point estimator: 3.058 3.765
Upper bound of CI: 6 7

R> aux<-IntMPP(funMPP.name="DepNHCPSP",
funMPP.args=list(lambdaiM=lambdaiZH, d=2, dplot=FALSE),
fun.name="NumI", fun.args=list(I=c(7803,8262)), fixed.seed=125)

Lower bound of CI: 9 10
Point estimator: 15.269 16.952
Upper bound of CI: 22 24

Simulating and characterizing vectors of processes

In this section, some of the tools to generate vectors of processes in IndTestPP are used to characterize
the effect of the dependence in the distribution of the nearest distances between two-point processes.
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To that end, two dependent processes with a given dependence structure and two independent
processes with the same marginal distribution that the previous ones are generated. The distributions
of the samples of nearest distances are compared using histograms and qqplots.

We generate two dependent Neyman-Scott processes using DepNHNeyScot, with mean cluster size
equal to 3 and 4, respectively, and N(0, 3) and N(0, 2) distributions for the distances to the center.
The independent processes with the same marginal distribution are generated using IndNHNeyScot.
The distribution of the nearest distances is very different in the two cases, as the qqplot shows. In
the dependent processes, it is concentrated in low values, while in the independent ones the density
decreases more smoothly.

R> set.seed(123)
R> lambdaParent<-runif(2000)/10

R> aux<-DepNHNeyScot(lambdaParent=lambdaParent, d=2, lambdaNumP=c(3,4),
dist="normal", sigmaC=c(3,2),fixed.seed=123, dplot=F)

R> posxd<- aux$posNH$N1
R> posyd<- aux$posNH$N2

R> aux<-IndNHNeyScot(lambdaParent=lambdaParent, d=2, lambdaNumP=c(3,4),
dist = "normal", sigmaC=c(3,2), fixed.seed=123, dplot=F)

R> posxi<- aux$N1
R> posyi<- aux$N2

R> par(mfrow=c(1,3))
R> distxyd<-nearestdist(posxd , posyd)
R> hist(distxyd , main='Dependent processes', xlab='Nearest dist',

xlim=c(0,60), ylim=c(0,270),breaks=seq(0,60, by=4) )
R> distxyi<-nearestdist(posxi , posyi)
R> hist(distxyi , main='Independent processes', xlab='Nearest dist',

xlim=c(0,60), ylim=c(0,270),breaks=seq(0,60, by=4) )
R> qqplot(distxyi, distxyd, xlab='Independent processes',

ylab='Dependent processes')
R> lines(distxyd, distxyd, col="red")
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Figure 7: Histograms of nearest distance in two dependent and independent MNS processes and
qqplot of the previous nearest distances.

9 Conclusions

Many modeling problems related to the occurrence of events require to analyze the dependence
between two or more point processes in time. However, not many tools to carry out this type of
analysis are available. IndTestPP provides a useful general framework for applications based on
the modeling of a vector of point processes in time since it includes functions for processing data,
estimating the marginal intensities of the processes, testing independence, identifying factors causing
dependence, and making an inference. In particular, the three families of independence tests by
Cebrián et al. (2020) are implemented. They are useful in different types of modeling problems
since they cover a wide variety of processes, homogeneous and nonhomogeneous, Poisson processes,
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processes with a parametric marginal model, point processes with known marginal intensities, etc.
The package also provides functions to generate four different types of vectors of point processes,
Common Poisson Shock processes, multivariate Neyman-Scott cluster processes, Poisson processes
from queues in a tandem, and vectors of processes resulting from a marked Poisson process with
discrete marks from a Markov chain. These generation functions are used to carry out inference based
on computational statistical methods. The applicability of the package in real modeling problems is
shown by analyzing the dependence between the occurrence of extreme temperature events in three
Spanish locations, Zaragoza, Barcelona, and Huesca.
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Conversations in Time: Interactive
Visualization to Explore Structured
Temporal Data
by Earo Wang and Dianne Cook

Abstract Temporal data often has a hierarchical structure, defined by categorical variables describing
different levels, such as political regions or sales products. The nesting of categorical variables
produces a hierarchical structure. The tsibbletalk package is developed to allow a user to interactively
explore temporal data, relative to the nested or crossed structures. It can help to discover differences
between category levels, and uncover interesting periodic or aperiodic slices. The package implements
a shared tsibble object that allows for linked brushing between coordinated views, and a shiny
module that aids in wrapping timelines for seasonal patterns. The tools are demonstrated using two
data examples: domestic tourism in Australia and pedestrian traffic in Melbourne.

1 Introduction

Temporal data typically arrives as a set of many observational units measured over time. Some
variables may be categorical, containing a hierarchy in the collection process, that may be measure-
ments taken in different geographic regions, or types of products sold by one company. Exploring
these multiple features can be daunting. Ensemble graphics (Unwin and Valero-Mora, 2018) bundle
multiple views of a data set together into one composite figure. These provide an effective approach
for exploring and digesting many different aspects of temporal data. Adding interactivity to the
ensemble can greatly enhance the exploration process.

This paper describes new software, the tsibbletalk package, for exploring temporal data using
linked views and time wrapping. We first provide some background to the approach based on
setting up data structures and workflow, and give an overview of interactive systems in R. The
section following introduces the tsibbletalk package. We explain the mechanism for constructing
interactivity, to link between multiple hierarchical data objects and hence plots, and describe the set
up for interactively slicing and dicing time to wrap a series on itself to investigate periodicities.

2 Background: tidy temporal data and workflow

The tsibble package (Wang et al., 2020) introduced a unified temporal data structure, referred to as a
tsibble, to represent time series and longitudinal data in a tidy format (Wickham, 2014). A tsibble
extends the data.frame and tibble classes with the temporal contextual metadata: index and key.
The index declares a data column that holds time-related indices. The key identifies a collection
of related series or panels observed over the index-defined period, which can comprise multiple
columns. An example of a tsibble can be found in the monthly Australian retail trade turnover data
(aus_retail), available in the tsibbledata package (O’Hara-Wild et al., 2020c), shown below. The
Month column holds year-months as the index. State and Industry are the identifiers for these 152
series, which form the key. Note that the column Series ID could be an alternative option for setting
up the key, but State and Industry are more readable and informative. The index and key are “sticky”
columns to a tsibble, forming critical pieces for fluent downstream temporal data analysis.

#> # A tsibble: 64,532 x 5 [1M]
#> # Key: State, Industry [152]
#> State Industry `Series ID` Month Turnover
#> <chr> <chr> <chr> <mth> <dbl>
#> 1 Australian Capital ~ Cafes, restaurants and cat~ A3349849A 1982 Apr 4.4
#> 2 Australian Capital ~ Cafes, restaurants and cat~ A3349849A 1982 May 3.4
#> 3 Australian Capital ~ Cafes, restaurants and cat~ A3349849A 1982 Jun 3.6
#> 4 Australian Capital ~ Cafes, restaurants and cat~ A3349849A 1982 Jul 4
#> 5 Australian Capital ~ Cafes, restaurants and cat~ A3349849A 1982 Aug 3.6
#> # ... with 64,527 more rows

In the spirit of tidy data from the tidyverse (Wickham et al., 2019), the tidyverts suite features
tsibble as the foundational data structure, and helps to build a fluid and fluent pipeline for time
series analysis. Besides tsibble, the feasts (O’Hara-Wild et al., 2020b) and fable (O’Hara-Wild et al.,
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Figure 1: Plots for the aus_retail data, with the series of strongest seasonal strength highlighted. (a)
An overlaid time series plot. (b) A scatter plot drawn from their time series features, where each dot
represents a time series from (a).

2020a) packages fill the role of statistical analysis and forecasting in the tidyverts ecosystem. During
all the steps of a time series analysis, the series of interest, denoted by the key variable, typically
persist, through the trend modeling and also forecasting. We would typically want to examine the
series across all of the keys.

Figure 1 illustrates examining temporal data with many keys. The data has 152 series correspond-
ing to different industries in retail data. The multiple series are displayed using an overlaid time
series plot, along with a scatterplot of two variables (trend versus seasonal strength) from feature
space, where each series is represented by a dot. The feature space is computed using the features()
function from feasts, which summarises the original data for each series using various statistical
features. This function along with other tidyverts functions is tsibble-aware, and outputs a table in a
reduced form where each row corresponds to a series, which can be graphically displayed as in Figure
1b.

Figure 1 has also been highlighted to focus on the one series with the strongest seasonality. To
create this highlighting, one needs to first filter the interesting series from the features table, and join
back to the original tsibble in order to examine its trend in relation to others. This procedure can
soon grow cumbersome if many series are to be explored. It illustrates a need to query interesting
series on the fly. Although these two plots are static, we can consider them as linked views because the
common key variables link between the two data tables producing the two plots. This motivates the
work in this package, described in this paper, to enable interactivity of tsibble and tsibble-derived
objects for rapid exploratory data analysis.

3 Overview of interactivity

There is a long history of interactive data visualization research and corresponding systems. Within R,
the systems can be roughly divided into systems utilizing web technology and those that do not.

R shiny (Chang et al., 2020) and htmlwidgets (Vaidyanathan et al., 2019) provide infrastructure
connecting R with HTML elements and JavaScript that support the interactivity. The htmlwidgets
package makes it possible to embed JavaScript libraries into R so that users are able to write only R
code to generate web-based plots. Many JavaScript charting libraries have been ported to R as HTML
widgets, including plotly (Sievert, 2020), rbokeh (Hafen and Continuum Analytics, Inc., 2020), and
leaflet (Cheng et al., 2019) for maps. Interactions between different widgets can be achieved with
shiny or crosstalk (Cheng, 2020). The crosstalk extends htmlwidgets with shared R6 instances to
support linked brushing and filtering across widgets, without relying on shiny.

Systems without the web technology include grDevices, loon (Waddell and Oldford, 2020), based
on Tcl/Tk, and cranvas (Xie et al., 2014) based on Qt. They offer a wide array of pre-defined interactions,
such as selecting and zooming, to manipulate plots via mouse action, keyboard strokes, and menus.
The cranvastime package (Cheng et al., 2016) is an add-on to cranvas, which provides specialized
interactions for temporal data, such as wrapping and mirroring.
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The techniques implemented in the work described in this paper utilize web technology, including
crosstalk, plotly, and R shiny.

4 Using a shared temporal data object for interactivity

The tsibbletalk package introduces a shared tsibble instance built on a tsibble. This allows for
seamless communication between different plots of temporal data. The as_shared_tsibble() function
turns a tsibble into a shared instance, SharedTsibbleData, which is a subclass of SharedData from
crosstalk. This is an R6 object driving data transmission across multiple views, due to its mutable and
lightweight properties. The tsibbletalk package aims to streamline interactive exploration of temporal
data, with the focus of temporal elements and structured linking.

Linking between plots

As opposed to one-to-one linking, tsibbletalk defaults to categorical variable linking, where selecting
one or more observations in one category will broadcast to all other observations in this category. That
is, linking is by key variables: within the time series plot, click on any data point, and the whole line
will be highlighted in response. The as_shared_tsibble() uses tsibble’s key variables to achieve
these types of linking.

The approach can also accommodate temporal data of nesting and crossing structures. These
time series are referred to as hierarchical and grouped time series in the literature (Hyndman and
Athanasopoulos, 2017). The aus_retail above is an example of grouped time series. Each series in
the data corresponds to all possible combinations of the State and Industry variables, which means
they are intrinsically crossed with each other. When one key variable is nested within another, such as
regional areas within a state, this is considered to be a hierarchical structure.

The spec argument in as_shared_tsibble() provides a means to construct hybrid linking, that
incorporates hierarchical and categorical linking. A symbolic formula can be passed to the spec
argument, to define the crossing and/or nesting relationships among the key variables. Adopting
Wilkinson and Rogers (1973)’s notation for factorial models, the spec follows the / and * operator
conventions to declare nesting and crossing variables, respectively. The spec for the aus_retail data is
therefore specified as State * Industry or Industry * State, which is the default for the presence of
multiple key variables. If there is a hierarchy in the data, using / is required to indicate the parent-child
relation, for a strictly one directional parent/child.

To illustrate nesting and crossing we use the tourism_monthly dataset (Tourism Research Australia,
2020) packaged in tsibbletalk. It contains monthly domestic overnight trips across Australia. The
key is comprised of three identifying variables: State, Region, and Purpose (of the trip), in particular
State nesting of Region, crossed together with Purpose. This specification can be translated as follows:

library(tsibble)
library(tsibbletalk)
tourism_shared <- tourism_monthly %>%
as_shared_tsibble(spec = (State / Region) * Purpose)

There is a three-level hierarchy: the root node is implicitly Australia, geographically disaggregated
to states, and lower-level tourism regions. A new handy function plotly_key_tree() has been
implemented to help explore the hierarchy. It interprets hierarchies in the shared tsibble’s spec as a
tree view, built with plotly. The following code line produces the linked tree diagram (left panel of
Figure 2). The visual for the tree hierarchy detangles a group of related series and provides a bird’s
eye view of the data organization.

p_l <- plotly_key_tree(tourism_shared, height = 1100, width = 800)

The tree plot provides the graphics skeleton, upon which the rest of the data plots can be attached.
In this example, small multiples of line plots are placed at the top right of Figure 2 to explore the
temporal trend across regions by the trip purpose. The shared tsibble data can be directly piped into
ggplot2 code to create this.

library(ggplot2)
p_tr <- tourism_shared %>%
ggplot(aes(x = Month, y = Trips)) +
geom_line(aes(group = Region), alpha = .5, size = .4) +
facet_wrap(~ Purpose, scales = "free_y") +
scale_x_yearmonth(date_breaks = "5 years", date_labels = "%Y")
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Figure 2: Snapshot of exploring an ensemble of linked plots of the Australian tourism data, built on a
tourism_shared object. It also illustrates persistent linked brushing to compare two groups.
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These line plots are heavily overplotted. To tease apart structure in the multiple time series,
the features() function computes interesting characteristics, including the measures of trend and
seasonality. These are displayed in the scatterplot at the bottom right, where one dot represents one
series.

library(feasts)
tourism_feat <- tourism_shared %>%
features(Trips, feat_stl)

p_br <- tourism_feat %>%
ggplot(aes(x = trend_strength, y = seasonal_strength_year)) +
geom_point(aes(group = Region), alpha = .8, size = 2)

There is one final step, to compose the three plots into an ensemble of coordinated views for
exploration, shown in Figure 2. (This is the interactive realization of Figure 1).

library(plotly)
subplot(p_l,
subplot(
ggplotly(p_tr, tooltip = "Region", width = 1100),
ggplotly(p_br, tooltip = "Region", width = 1100),
nrows = 2),

widths = c(.4, .6)) %>%
highlight(dynamic = TRUE)

Since all plots are created from one shared tsibble data source, they are self-linking views. Nodes,
lines, and points are hoverable and clickable. Given the spec, clicking either one element in any plot
highlights all points that match the Region category, that is, categorical linking. Figure 2 is a static
view of an interactive exploration. The steps in getting to this point were:

1. A branch of the tree corresponding to Western Australia was first selected. (The names of the
regions are a little odd, which is a quirk of the data set, but all four areas, Australia’s South
West, . . . ., correspond to tourist destinations in Western Australia. Hovering over the node on
the branch brings up the state name.) This generated the response in the line plots and the
scatterplot that colored corresponding time series and points as blue.

2. To enable persistent selection, in oder to compare regions or states, “Shift” and click on the tree
was done, after switching the color to red. This generated the response that points and time
series corresponding to Sydney were highlighted in red.

3. Hovering over the points brings up the label for Sydney.

Domestic tourism sees Sydney as one of the most popular destinations in the realm of business
and friends visiting over the years. Despite the relatively weaker performance in Western Australia,
Australia’s North West region sees a strongest upward trend in business, bypassing Sydney in some
years.

In summary, shared tsibble data nicely bridges between the crosstalk and tidyverts ecosystems for
temporal data using the common “key”. The as_shared_tsibble() provides a symbolic user interface
for the effortless construction of a hybrid of hierarchical and categorical linking between plots. The
plotly_key_tree() function, in turn, decodes the hierarchical specification to plot a tree for data
overview and navigation, when accompanied by more detailed plots.

Slicing and dicing time

An important aspect of temporal data is the time context. Time has a cyclical structure, that may
correspond to seasonal patterns to be discovered. The index component of the (shared) tsibble data
forms the basis for exploring seasonality. To investigate for periodic or aperiodic patterns, series
should be wrapped on themselves, where the index is broken into temporal components like quarter
or day. We shall explore this with pedestrian traffic in Melbourne, Australia.

The city of Melbourne has sensors installed at various locations, to record hourly counts of
pedestrians, in order to capture the daily rhythms of the downtown (City of Melbourne, 2020). Figure
3 shows the first five months of 2020 foot traffic at four different locations, for three different time
slices, daily, weekly and full five months. Plot 3a shows hourly counts from January to May on an
absolute timeline, facetted by locations. The stage 3 COVID-19 lockdown, on March 16, is marked by a
change of color. (The pre-lockdown period is colored with dark green and lockdown with orange.) We
can see a significant decline in foot traffic at all four locations. QV Market is less affected probably
because this is a major produce market, an essential service that continued to operate. Bourke St, a
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(a) Initial overview state

(b) 1-day state

(c) 7-day state, anchoring to Monday

Figure 3: Snapshots wrapping after slicing the pedestrian20 data at different intervals, (a) none, (b)
daily and (c) weekly. This type of interaction is made possible with Shiny elements.
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major shopping center, sees a gradual uptick in the last weeks of the period indicating that people
were getting back into the shops.

Figure 3b and 3c show the slicing and wrapping of the series into daily and weekly sections,
respectively. Multiple seasonalities pop out. There tends to be a daily pattern, especially visible at the
main train station, Southern Cross Station. There is also a weekday vs weekend pattern, also most
visible at Southern Cross Station. These seasonal patterns are still present during the lockdown, but
the magnitude is greatly reduced. Numbers are also down at the produce market and the shopping
center. Birrarung Marr is the most affected. This is the location of special events, and it is clear that
these have completely disappeared during the lockdown.

The wrapping procedure involves slicing the time index into seasonal periods of interest, and the
result is diced time. For example, hourly pedestrian data can be decomposed into 24-hour blocks,
which then overlays the counts for all respective days, as done in plot 3b. For exploration, this slice
position should be controlled interactively, so that many different slices can be examined rapidly. This
can be achieved using shiny, with the functions provided in the tsibbletalk.

This shiny module, decoupled to tsibbleWrapUI() and tsibbleWrapServer(), presents a clean
interface and forms a reusable component that could be embedded in any shiny application. In
general, a shiny module provides a vehicle for modularising shiny applications, relevant for both
users and developers. As with all shiny modules, the first argument in both functions in tsibbletalk
requires a user-supplied id string that must be unique. The UI function tsibbleWrapUI() simply
shows a slider that animates or controls the number of periods to be diced. The workhorse is the server
function tsibbleWrapServer(), encapsulating the algorithm that transforms data and sends messages
to update the plot accordingly. The plot argument expects a ggplot or plotly object, where one can
plot data using either lines or other graphical elements (such as boxplots). As the function name
suggests, a (shared) tsibble is needed to start the engine, so that the time index can be retrieved for
dissection. The period option semantically takes a desired number of seasonal periods to be shifted,
for example data shifted by “1 day”, “2 days”, or “1 week”, etc. In other words, the period defines the
grind level. For date-times (represented by POSIXt), the granularity ranges from fine “day” to a much
coarser “year”. The following code snippet generates Figure 3. The creation of the pedestrian20 data
is available in supplementary R files.

library(shiny)
p_line <- pedestrian20 %>%
ggplot(aes(x = Date_Time, y = Count, colour = Lockdown)) +
geom_line(size = .3) +
facet_wrap(~ Sensor, scales = "free_y") +
labs(x = "Date Time") +
scale_colour_brewer(palette = "Dark2") +
theme(legend.position = "none")

ui <- fluidPage(
tsibbleWrapUI("dice")

)
server <- function(input, output, session) {
tsibbleWrapServer("dice", ggplotly(p_line, height = 700), period = "1 day")

}
shinyApp(ui, server)

Figure 3a corresponds to the initial state, with the slider incremented by 1-day units. The “play”
button near the end of the slider can automatically animate the slicing and dicing process, walking
the viewer through all 24 hours of the 152 days. Alternatively, users can drag the slider to examine
selected slices.

In response to the slider input, the plot will be updated and loaded with newly transformed data.
At its core, keeping the application as performant as possible is the top priority. Without completely
redrawing the plot, the plotlyProxy() react method is invoked internally for talking to shiny. The
underlying tsibble data is being called back and processed in R. Only transformed data gets fed
back to the shiny server, for updating with resetting the x-axis ranges and breaks. The other plot
configurations, such as marks, y-axes, and layouts, are cached and used as is.

The new shiny module exploits the temporal aspect for a tsibble object, available through the
index attribute. It allows users to slide through relative periods to digest seasonal behaviors, with a
nimble user experience.
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5 Summary

At the heart of the tsibbletalk package is a blending of the best bits from tsibble, crosstalk, plotly,
and shiny.

The as_shared_tsibble() turns a tsibble object to a shared data class, with an option to express
any nesting and crossing structures from the key attribute. If nesting is found in the data, the
plotly_key_tree() creates an interactive hierarchical tree to help with the data overview. This sets
the stage for hierarchical and categorical linking between multiple views from one shared tsibble.

A new shiny module, tsibbleWrapUI() and tsibbleWrapServer(), provides a lens for looking at
temporal aspects of a tsibble, in particular seasonal or cyclical variations. The slicing and dicing
technique efficiently wrap time lines for user-defined plots. The plotlyProxy() react method makes it
possible to send wrapped data to the server and amend the plot straight way.
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distr6: R6 Object-Oriented Probability
Distributions Interface in R
by Raphael Sonabend and Franz J. Király

Abstract distr6 is an object-oriented (OO) probability distributions interface leveraging the extensibil-
ity and scalability of R6 and the speed and efficiency of Rcpp. Over 50 probability distributions are
currently implemented in the package with ‘core’ methods, including density, distribution, and gener-
ating functions, and more ‘exotic’ ones, including hazards and distribution function anti-derivatives.
In addition to simple distributions, distr6 supports compositions such as truncation, mixtures, and
product distributions. This paper presents the core functionality of the package and demonstrates
examples for key use-cases. In addition, this paper provides a critical review of the object-oriented
programming paradigms in R and describes some novel implementations for design patterns and core
object-oriented features introduced by the package for supporting distr6 components.

1 Introduction

Probability distributions are an essential part of data science, underpinning models, simulations,
and inference. Hence, they are central to computational data science. With the advent of modern
machine learning and AI, it has become increasingly common to adopt a conceptual model where
distributions are considered objects in their own right, as opposed to primarily represented through
distribution-defining functions (e.g., cdf, pdf) or random samples.

An important distinction to keep in mind is between random variables (that can be sampled
from) and probability distributions. distr6 is an interface for probability distributions and supports
construction, manipulation, composition, and querying of parameterized simple and composite
distributions. distr6 is not an interface for random variables, and therefore, procedures such as
sampling and inference are out of scope.

The conceptual model: probability distributions and random variables

We continue by explaining our conceptual model of probability distributions underpinning the design
of distr6 and delineate it from the common conceptualization of random variables. A full mathematical
definition of the conceptual model is given in the next section. This section contains an intuitive
introduction.

First, we invite the reader to recall some common mathematical objects and recognize that these
are related but conceptually distinct:

• a random variable, distributed according to a certain distribution, e.g., X ∼ Normal(0, 1)
• the cdf of that random variable X, usually denoted by FX , a function FX : R → [0, 1]
• the pdf of that random variable X, often denoted by fX , a function fX : R → [0, ∞)
• the distribution according to which X is distributed - often called ‘the law of’ X. This can be

represented by multiple mathematical objects, such as the cdf FX or the pdf fX . We will call this
distribution d. Note that d is not identical to either these representation functions.

Critically, we highlight that random variables and distributions are neither identical objects nor
concepts. A random variable X has distribution d, and multiple random variables may be distributed
according to d. Further, random variables are sampled from, while the distribution is only a description
of probabilities for X. Thus, X and d are not identical objects. Figure 1 visually summarizes these
differences.

As a possible logical consequence of the above, we adopt the conceptual model that distribution is
an abstract object, which:

• Has multiple defining representations, for example, through cdf and possibly through pdf, but
is not identical with any of these representations

• Possesses traits, such as being absolutely continuous over the Reals, and properties, such as
skewness and symmetry.

• Can be used to define sampling laws of random variables but is not conceptually identical with
a random variable.

Abstracting distributions as objects from multiple, non-identical, representations (random vari-
ables), introduces major consequences for the conceptual model:
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(i) It lends itself naturally to a class-object representation in the computer scientific sense of object-
oriented programming. Abstract distributions become classes, concrete distributions are objects,
and distribution defining functions are methods of these classes. Random variables are a
separate type of object.

(ii) It strongly suggests adoption of mathematical conceptualization and notation which cleanly
separates distributions from random variables and distribution defining functions - in contrast
to common convention, where random variables or random sampling takes conceptual primacy
above all.

(iii) It allows clean formulation of algorithmic manipulations involving distributions, especially
higher-order constructs (truncation, huberization, etc.), as well as clean mathematical definitions.

(a) Discrete Uniform Random Variable

(b) Discrete Uniform Probability Distribution

Figure 1: Schematic representation of concepts “probability distribution” and “random variable”. (a)
Example of a random variable following a Discrete Uniform distribution. A random variable is an
object in its own right, modeling the process of a random experiment. It has a probability distribution
describing the nature of the experiment (in the case of uniform: the masses on the 6 outcomes) and can
be sampled from, to obtain realizations. (b) Example of a probability distribution, the Discrete Uniform
distribution. A probability distribution is an object in its own right and can serve as a template for
random experiments, represented as random variables. Properties and traits such as value support,
mean, variance, and functions such as pmf, cdf, are properties and traits of the probability distribution,
not (direct) properties of random variables, even if random variables can follow a given distribution.

Distributions as software objects and mathematical objects

In distr6, distributions are first-class objects subject to an object-oriented class-object representation.
For example, a discrete uniform distribution (fig. 1b) is a ‘class’ with traits such as type (Naturals)
and variate form (univariate). With a given parameterization, this becomes an ‘object’ with properties
including symmetry and support. An alternative definition to the conceptual model of distributions is
now provided.

On the mathematical level, we again consider distributions as objects in their own right, not be-
ing identical with a cdf, pdf, or measure, but instead ‘having’ these as properties.

For a set Y (endowed with suitable topology), we define Distr(Y) as a set containing formal objects
d which are in bijection to (but not identical with) probability measures over Y . Elements of Distr(Y)
are called distributions over Y . We further define formal symbols which, in case of existence, denote
‘aspects’ that such elements have, in the following way: the symbol d.F, for example, denotes the cdf of
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d, which is to be read as the ‘F’ of d, with F, in this case, to be read as a modifier to a standard symbol
d, rather than a fixed, bound, or variable symbol. In this way, we can define:

(i) d.F for the cdf of d. This typically exists if Y ⊆ Rn for some n, in which case d.F is a function of
type d.F : Rn → [0, 1].

(ii) d. f for the pdf of d. This exists if Y ⊆ Rn, and the distribution d is absolutely continuous over
Y . In this case, d. f is a function of type d. f : Rn → [0, ∞).

(iii) d.P for the probability measure that is in bijection with d. This is a function d.P : F → [0, 1],
where F is the set of measurable sub-sets of Y .

We would like to point out that the above is indeed a full formal mathematical definition of
our notion of distribution. While distributions, defined this way, are not identical with any of
the conventional mathematical objects that define them (cdf, pdf, measures), they are conceptually,
formally, and notationally well-defined. Similarly, the aspects (d.F, d. f , etc.) are also well-defined since
they refer to one of the conventional mathematical objects which are well-specified in the dependence
of the distribution (in case of existence).

This notation provides a more natural and clearer separation of distribution and random variables
and allows us to talk about and denote concepts such as ‘the cdf of any random variable following
the distribution d’ with ease (d.F), unlike classical notation that would see one define X ∼ d and then
write FX . Our notation more clearly follows the software implementation of distributions.

For example, in distr6, the code counterpart to defining a distribution d which is Gaussian with
mean 1 and variance 2 is

> d <- Normal$new(1, 2)

The pdf and cdf of this Gaussian distribution evaluated at 2 are obtained in code as

> d$pdf(2)
> d$cdf(2)

which evaluates to ‘numerics’ that represent the real numbers d. f (2) and d.F(2).

The consideration of distributions as objects, and their conceptual distinction from random vari-
ables as objects, notably differs from conceptualization in R stats, which implements both distribution
and random variable methods by the ‘dpqr’ functions. Whilst this may allow a very fast generation of
probabilities and values, there is no support for querying and inspection of distributions as objects. By
instead treating the dpqr functions as methods that belong to a distribution object, distr6 encapsulates
all the information in R stats as well as distribution properties, traits, and other important mathemati-
cal methods. The object orientation principle that defines the architecture of distr6 is further discussed
throughout this manuscript.

Treating distributions as objects is not unique to this package. Possibly the first instance of the
object-oriented conceptualization is the distr (Ruckdeschel et al., 2006) family of packages. distr6 was
designed alongside the authors of distr in order to port some of their functionality from S4 to R6.

distr6 is the first such package to use the ‘class’ object-oriented paradigm R6 (Chang, 2018), with
other distribution related packages using S3 or S4. The choice of R6 over S3 and S4 is discussed in
detail in section 2.5.1. This choice allows distr6 to fully leverage the conceptual model and make use
of core R6 functionality. As well as introducing fundamental object-oriented programming (OOP)
principles such as abstract classes and tried and tested design patterns (Gamma et al., 1996) including
decorators, wrappers, and compositors (see section 2.5.3).

Besides an overview of distr6’s novel approach to probability distributions in R, this paper also
presents a formal comparison of the different OOP paradigms while detailing the use of design
patterns relevant to the package.

Motivating example: Higher-order distribution constructs

The strength of the object-oriented approach, both on the algorithmic and mathematical side, lies in its
ability to efficiently express higher-order constructs and operations: actions between distributions,
resulting in new distributions. One such example is mixture distributions (also known as spliced
distributions). In the distr6 software interface, a MixtureDistribution is a higher-order distribu-
tion depending on two or more other distributions. For example, take a uniform mixture of two
distributions distr1 and distr2:

> my_mixt <- MixtureDistribution$new(list(distr1, distr2))
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Internally, the dependency of the constructs on the components is remembered so that my_mixt is
not only evaluable for cdf (and other methods), but also carries a symbolic representation of its
construction and definition history in terms of distr1 and distr2.

On the mathematical side, the object-oriented formalism allows clean definitions of otherwise more
obscure concepts. For example, the mixture distribution is now defined as follows:

For distributions d1, . . . , dm over Rn and weights w1, . . . , wm, we define the mixture of d1, . . . , dm
with weights w1, . . . , wm to be the unique distribution d̃ such that d̃.F(x) = ∑m

i=1 wi · di.F(x) for any
x ∈ Rn. Note the added clarity by defining the mixture on the distribution di, i.e., a first-order concept
in terms of distributions.

2 Related software

This section provides a review of other related software that implement probability distributions. This
is focused on, but not limited to, software in R.

R stats, actuar, and extraDistr The core R programming language consists of packages for basic
coding and maths as well as the stats package for statistical functions. stats contains 17 common
probability distributions and four lesser-known distributions. Each distribution consists of (at most)
four functions: dX,pX,qX,rX where X represents the distribution name. These correspond to the
probability density/mass, cumulative distribution, quantile (inverse cumulative distribution), and
simulation functions, respectively. Each is implemented as a separate function, written in C, with
both inputs and outputs as numerics. The strength of these functions lies in their speed and efficiency.
There is no quicker way to find, say, the pdf of a Normal distribution than to run the dnorm function
from stats. However, this is the limit of the package in terms of probability distributions. As there is
no designated distribution object, there is no way to query results from the distributions outside of the
‘dpqr’ functions.

Several R packages implement dpqr functions for extra probability distributions. Of particular note
are the extraDistr (Wolodzko, 2019) and actuar (Dutang et al., 2008) packages that add over 60 distri-
butions between them. Both of these packages are limited to dpqr functions and therefore have the
same limits as R stats.

distr The distr package was the first package in R to implement an object-oriented interface for
distributions, using the S4 object-oriented paradigm. distr tackles the two fundamental problems of
stats by introducing distributions as objects that can be stored and queried. These objects include
important statistical results, for example, the expectation, variance, and moment generating functions
of a distribution. The distr family of packages includes a total of five packages for object-oriented
distributions in R. distr has two weaknesses that were caused by using the S4 paradigm. Firstly, the
package relies on inheritance, which means that large class trees exist for every object, and extensibility
is therefore non-trivial. The second weakness is that S4 objects are not referred to by ‘pointers’ but
instead copies. This means that a simple mixture of two distributions is just under 0.5Mb in size
(relatively quite large).

distributions3 and distributional The distributions3 package (Hayes and Moller-Trane, 2019) de-
fines distributions as objects using the S3 paradigm. However, whilst distributions3 treats probability
distributions as S3 objects, it does not add any properties, traits, or methods and instead uses the
objects solely for dpqr dispatch. In comparison to distr, the distributions3 package provides fewer
features for inspection or composition. More recently, distributional (O’Hara-Wild and Hayes, 2020)
builds on the distributions3 framework (common authors exist between the two) to focus on the
vectorization of probability distributions coded as S3 objects. Similarly to distr6, the primary use-case
of this package is for predictive modeling of distributions as objects.

mistr The mistr package (Sablica and Hornik, 2020) is another recent distributions package, which is
also influenced by distr. The sole focus of mistr is to add a comprehensive and flexible framework for
composite models and mixed distributions. Similarly, to the previous two packages, mistr implements
distributions as S3 objects.
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Distributions.jl Despite not being a package written in R, the Julia Distributions.jl (Lin et al., 2019)
package provided inspiration for distr6. Distributions.jl implements distributions as objects with
statistical properties including expectation, variance, moment generating and characteristic functions,
and many more. This package uses multiple inheritance for ‘valueSupport’ (discrete/continuous) and
‘variateForm’ (univariate/multivariate/matrixvariate). Every distribution inherits from both of these,
e.g., a distribution can be ‘discrete-univariate’, ‘continuous-multivariate’, ‘continuous-matrixvariate’,
etc. The package provides a unified and user-friendly interface, which was a helpful starting point for
distr6.

3 Design principles

distr6 was designed and built around the following principles.

D1) Unified interface The package is designed such that all distributions, no matter how complex,
have an identical user-facing interface. This helps make the package easy to navigate and the
documentation simple to read. Moreover, it minimizes any confusion resulting from using
multiple distributions. A clear inheritance structure also allows wrappers and decorators to
have the same methods as distributions, which means even complex composite distributions
should be intuitive to use. Whether a user constructs a simple Uniform distribution or a mixture
of 100 Normal distributions, the same methods and fields are seen in both objects.

D2) Separation of core/exotic and numerical/analytic Via abstraction and encapsulation, core statis-
tical results (common methods such as mean and variance) are separated from ‘exotic’ ones (less
common methods such as anti-derivatives and p-norms). Similarly, implemented distributions
only contain analytic results; users can impute numerical results using decorators. This separa-
tion has several benefits, including: 1) for predictive modeling with/of distributions, numerical
results can take longer to compute than analytical results, and the difference between precision
of analytical and numerical results can be substantial in the context of automated modeling,
separation allows these differences to be highlighted and controlled; 2) separating numerical
results allows an expanded interface for users to fine-tune and set their own parameters for how
numerical results are computed; 3) a less-technical user can guarantee the precision of results
as they are unlikely to use numerical decorators; 4) a user has access to the most important
distribution methods immediately after construction but is not overwhelmed by many ‘exotic’
methods that they may never use. Use of decorators and wrappers allows the user to manually
expand the interface at any time. For example, a user can choose between an undecorated
Binomial distribution, with common methods such as mean and variance, or they can decorate
the distribution to additionally gain access to survival and hazard functions.

D3) Inheritance without over-inheritance The class structure stems from a series of a few abstract
classes with concrete child classes, which allows for a sensible, but not over-complicated, in-
heritance structure. For example, all implemented distributions inherit from a single parent
class, so common methods can be unified and only coded once; note there is no separation
of distributions into ‘continuous’ and ‘discrete’ classes. By allowing the extension of classes
by decorators and wrappers, and not solely inheritance, the interface is highly scalable and
extensible. By ‘scalability’, we refer to the interface’s ability to grow to a large scale without
additional overheads. The decorator and wrapper patterns on top of the R6 paradigm allow an
(theoretically) unlimited number of distributions, wrappers, and methods without computa-
tional difficulty. By ‘extensibility’, we refer to the ability to extend the interface. Again this is
made possible by clean abstraction of distributions, wrappers, core methods, and extra methods
in decorators. All decorators and wrappers in distr6 stem from abstract classes, which in turn
inherit from the Distribution super-class. In doing so, any method of expanding an object’s
interface in distr6 (i.e., via decorators, wrappers, or inheritance) will automatically lead to an
interface that inherits from the top-level class, maintaining the principle of a unified interface
(D1).

D4) Inspection and manipulation of multiple parameterizations The design process identified that
use of distributions in R stats is inflexible in that in the majority of cases, only one parameteriza-
tion of each distribution is allowed. This can lead to isolating users who may be very familiar
with one parameterization but completely unaware of another. For example, the use of the
precision parameter in the Normal distribution is typically more common in Bayesian statistics,
whereas using the variance or standard deviation parameters is more common in frequentist statis-
tics. distr6 allows the user to choose from multiple parameterizations for all distributions (where
more than one parameterization is possible/known). Furthermore, querying and updating of
any parameter in the distribution is allowed, even if it was not specified in construction (section
2.4). This allows for a flexible parameter interface that can be fully queried and modified at any
time.
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D5) Flexible interfacing for technical and non-technical users Throughout the design process,
it was required that distr6 be accessible to all R users. This was a challenge as R6 is a very
different paradigm from S3 and S4. To reduce the learning curve, the interface is designed to be
as user-friendly and flexible as possible. This includes: 1) a ‘sensible default principle’ such that
all distributions have justified default values; 2) an ‘inspection principle’ with functions to list
all distributions, wrappers, and decorators. As discussed in (D2), abstraction and encapsulation
allow technical users to expand any distribution’s interface to be as arbitrarily complex as
they like, whilst maintaining a minimal representation by default. Where possible defaults are
‘standard’ distributions, i.e. with location 0 and scale 1, otherwise sensible defaults are identified
as realistic scenarios, for example Binomial(n = 10,p = 0.5).

D6) Flexible OO paradigms Following from (D5), we identified that R6 is still relatively new in
R with only 314 out of 16, 050 packages depending on it (as of July 2020). Therefore this was
acknowledged and taken into account when building the package. R6 is also the first paradigm
in R with the dollar-sign notation (though S4 uses ‘@’ notation) and with a proper construction
method. Whilst new users are advised to learn the basics of R6, S3 compatibility is available
for all common methods via R62S3 (Sonabend, 2019). Users can therefore decide on calling a
method via dollar-sign notation or dispatch. The example below demonstrates ‘piping’ and S3.
As the core package is built on R6, the thin-wrappers provided by R62S3 do not compromise
the above design principles.

> library(magrittr)
> N <- Normal$new(mean = 2)
> N %>%
+ setParameterValue(mean = 1) %>%
+ getParameterValue("mean")
[1] 1
> pdf(N, 1:4)
[1] 0.398942280 0.241970725 0.053990967 0.004431848

4 Overview to functionality and API

distr6 1.4.3 implements 56 probability distributions, including 11 probability kernels. Individual
distributions are modeled via classes that inherit from a common interface, implemented in the
abstract Distribution parent class. The Distribution class specifies the abstract distribution interface
for parameter access, properties, traits, and methods, such as a distribution’s pdf or cdf. The most
important interface points are described in Section 2.4.1

Figure 2: The Distribution class.

Concrete distributions, kernels, and wrappers are the grandchildren of Distribution, and children
of one of the mid-layer abstract classes:

• SDistribution, which models abstract, generic distributions. Concrete distributions, such as
Normal, which models the normal distribution, inherit from SDistribution.

• Kernel, which models probability kernels, such as Triangular and Epanechnikov. Probability
kernels are absolutely continuous distributions over the Reals, with assumed mean 0 and
variance 1.

• DistributionWrapper, which is an abstract parent for higher-order operations on distributions,
including compositions, that is, operations that create distributions from other distributions,
such as truncation or mixture.
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Method Description/Definition

pdf/cdf/quantile/rand dpqr functions.
mean d.µ = E[X]
variance d.σ2 = E[(X − d.µ)2]
traits List including value support (discrete/continuous/mixed);

variate form (uni-/multi-/matrixvariate); type (mathemati-
cal domain).

properties List including skewness (E[((X − d.µ)/d.σ)3]) and symme-
try (boolean).

get/setParameterValue Getters and setters for parameter values.
parameters Returns the internal parameterization set.
print/summary Representation functions, summary includes distribution

properties and traits.

Table 1: Common methods available to all classes inheriting from Distribution. Columns are method
names and either, mathematical definition or a description of the method. For mean and variance,
d.µ, d.σ, and d.σ2 represent the methods mean, standard deviation, and variance associated with
distribution d. The symbol X denotes a random variable with distribution d. Horizontal lines separate
mathematical, property, parameter, and representation methods.

• DistributionDecorator, whose purpose is supplementing methods to distributions in the form
of a decorator design pattern. This includes methods such as integrated cdf or squared integrals
of distribution defining functions.

Figure 3: Simplified distr6 class structure.

Figure 3 visualizes the key class structure of distr6, including the concrete Distribution parent
class, from which all other classes in the package inherit from (with the exception of the ParameterSet).
These abstract classes allow simple extensibility for concrete sub-classes.

The Distribution interface

The base, or top-level, class in distr6 is the Distribution class. Its primary function is to act as a parent
class for the implemented probability distributions and higher-order compositions. It is also utilized
for the creation of custom distributions. By design, any distribution already implemented in distr6
will have the same interface as a user-specified custom distribution, ensuring (D1) is upheld. The most
important methods for a distribution are shown in Table 1 alongside their meaning and definitions
(mathematical if possible). The two use-cases for the Distribution class are discussed separately.

Distribution for inheritance It is anticipated that the majority of distr6 users will be using the
package for the implemented distributions and kernels. With this in mind, the Distribution class
defines all variables and methods common to all child classes. The most important of these are
the common analytical expressions and the dpqr public methods. Every concrete implemented
distribution/kernel has identical public dpqr methods that internally call private dpqr methods. This
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accounts for inconsistencies occurring from packages returning functions in different formats and
handling errors differently, a problem most prominent in multivariate distributions. Another example
is the handling of non-integer values for discrete distributions. In some packages, this returns 0, or the
value is rounded down, or an error is returned. The dpqr functions for all distributions have unified
validation checks and return types (numeric or data.table). In line with base R and other distribution
packages, distr6 implements a single pdf function to cover both probability mass and probability
density functions.

> Normal$new()$pdf(1:2)
[1] 0.24197072 0.05399097
> Binomial$new()$cdf(1:2, lower.tail = FALSE, log.p = TRUE, simplify = FALSE)

Binom
1: -0.01080030
2: -0.05623972

A key design principle in the package is the separation of analytical and numerical results (D2),
which is ensured by only including analytical results in implemented distributions. Missing methods
in a distribution, therefore, signify that no closed-form expression for the method is available. How-
ever, all can be numerically estimated with the CoreStatistics decorator (see section 2.4.2). Ideally,
all distributions will include analytical methods for the following: probability density/mass function
(pdf), cumulative distribution function (cdf), inverse cumulative distribution function/quantile func-
tion (quantile), simulation function (rand), mean, variance, skewness, (excess) kurtosis, and entropy
of the distribution (mean,variance,skewness,kurtosis,entropy), as well as the moment generating
function (mgf), characteristic function (cf), and probability generating function (pgf). Speed is cur-
rently a limitation in distr6, but the use of Rcpp (Eddelbuettel and Francois, 2011) in all dpqr functions
helps mitigate against this.

The fourth design principle of distr6 ensures that multiple parameterizations of a given distribution
can be both provided and inspected at all times. For example, the Normal distribution can be
parameterized in terms of variance, standard deviation, or precision. Any of which can be called in
construction with other parameters updated accordingly. If conflicting parameterizations are provided,
then an error is returned. By example,

# set precision, others updated automatically
> Normal$new(prec = 4)
Norm(mean = 0, var = 0.25, sd = 0.5, prec = 4)
# try and set both precision and variance, results in error
> Normal$new(var = 1, prec = 2)
Error in FUN(X[[i]], ...) :
Conflicting parametrisations detected. Only one of {var, sd, prec} should be given.

The same principle is used for parameter setting. The methods getParameterValue and
setParameterValue are utilized for getting and setting parameter values, respectively. The former
takes a single argument, the parameter name, and the second a named list of arguments corresponding
to the parameter name and the value to set. The example below demonstrates this for a Gamma
distribution. Here, the distribution is constructed, the shape parameter is queried, both shape and rate
parameters are updated, and the latter queried, finally, the scale parameter is set, which auto-updates
the rate parameter.

> G <- Gamma$new(shape = 1, rate = 1)
> G$getParameterValue("shape")
[1] 1
> G$setParameterValue(shape = 1, rate = 2)
> G$getParameterValue("rate")
[1] 2
> G$setParameterValue(scale = 2)
> G$getParameterValue("rate")
[1] 0.5

Distribution and parameter domains and types are represented by mathematical sets implemented
in set6 (Sonabend and Kiraly, 2020). This allows for a clear representation of infinite sets and,
most importantly, for internal containedness checks. For example, all public dpqr methods first
call the $contains method in their respective type and return an error if any points are outside the
distribution’s domain. As set6 uses Rcpp for this method, these come at minimal cost to speed.
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> B <- Binomial$new()
> B$pdf(-1)
Error in B$pdf(-1) :
Not all points in {-1} lie in the distribution domain (N0).

These domains and types are returned along with other important properties and traits in a call to
properties and traits, respectively. This is demonstrated below for the Arcsine distribution.

> A <- Arcsine$new()
> A$properties
$support
[0,1]

$symmetry
[1] "symmetric"

> A$traits
$valueSupport
[1] "continuous"

$variateForm
[1] "univariate"

$type
R

Extending distr6 with custom distributions Users of distr6 can create temporary custom distribu-
tions using the constructor of the Distribution class directly. Permanent extensions, e.g., as part of an
R package, should create a new concrete distribution as a child of the SDistribution class.

The Distribution constructor is given by

Distribution$new(name = NULL, short_name = NULL, type = NULL, support = NULL,
+ symmetric = FALSE, pdf = NULL, cdf = NULL, quantile = NULL, rand = NULL,
+ parameters = NULL, decorators = NULL, valueSupport = NULL, variateForm = NULL,
+ description = NULL)

The name and short_name arguments are identification for the custom distribution used for printing.
type is a trait corresponding to scientific type (e.g., Reals, Integers,...), and support is the property
of the distribution support. Distribution parameters are passed as a ParameterSet object. This
defines each parameter in the distribution, including the parameter default value and support. The
pdf/cdf/quantile/rand arguments define the corresponding methods and are passed to the private
.pdf/.cdf/.quantile/.rand methods. As above, the public methods are already defined and ensure
consistency in each function. At a minimum, users have to supply the distribution name, type, and
either pdf or cdf. All other information can be numerically estimated with decorators (see section
2.4.2).

> d <- Distribution$new(name = "Custom Distribution", type = Integers$new(),
+ support = Set$new(1:10),
+ pdf = function(x) rep(1/10, length(x)))
> d$pdf(1:3)
[1] 0.1 0.1 0.1

DistributionDecorator

Decorators add functionality to classes in object-oriented programming. These are not natively imple-
mented in R6, and this novel implementation is therefore discussed further in section 2.5.3. Decorators
in distr6 are only ‘allowed’ if they have at least three methods and cover a clear use case. This prevents
too many decorators from bloating the interface. However, by their nature, they are lightweight classes
that will only increase the methods in a distribution if explicitly requested by a user. Decorators can
be applied to a distribution in one of three ways.

In construction:
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> N <- Normal$new(decorators = c("CoreStatistics", "ExoticStatistics"))

Using the decorate() function:

> N <- Normal$new()
> decorate(N, c("CoreStatistics", "ExoticStatistics"))

Using the $decorate method inherited from the DistributionDecorator super-class:

> N <- Normal$new()
> ExoticStatistics$new()$decorate(N)

The first option is the quickest if decorators are required immediately. The second is the most
efficient once a distribution is already constructed. The third is the closest method to true OOP but
does not allow adding multiple decorators simultaneously.

Three decorators are currently implemented in distr6. These are briefly described.

CoreStatistics This decorator imputes numerical functions for common statistical results that could
be considered core to a distribution, e.g., the mean or variance. The decorator additionally adds
generalized expectation (genExp) and moments (kthmoment) functions, which allow numerical results
for functions of the form E[ f (X)] and for crude/raw/central K moments. The example below
demonstrates how the decorate function exposes methods from the CoreStatistics decorator to the
Normal distribution object.

> n <- Normal$new(mean = 2, var = 4)
> n$kthmoment(3, type = "raw")
Error: attempt to apply non-function
> decorate(n, CoreStatistics)
> n$kthmoment(3, type = "raw")
[1] 32

ExoticStatistics This decorator adds more ‘exotic’ methods to distributions, i.e., those that are
unlikely to be called by the majority of users. For example, this includes methods for the p-norm of
survival and cdf functions, as well as anti-derivatives for these functions. Where possible, analytic
results are exploited. For example, this decorator can implement the survival function in one of two
ways: either as i) 1 minus the distribution cdf if an analytic expression for the cdf is available, or ii) via
numerical integration of the distribution.

FunctionImputation This decorator imputes numerical expressions for the dpqr methods. This is the
most useful for custom distributions in which only the pdf or cdf is provided. Numerical imputation
is implemented via Rcpp.

Composite distributions

Composite distributions - that is, distributions created from other distributions - are common in
advanced usage. Examples for composites are truncation, mixture, or transformation of domain. In
distr6, a number of such composites are supported. Implementation-wise, this uses the wrapper OOP
pattern, which is not native to R6 but part of our extensions to R6, discussed in section 2.5.3.

As discussed above, wrapped distributions inherit from Distribution thus have an identical
interface to any child of SDistribution, with the following minor differences:

• The wrappedModels method provides a unified interface to access any component distribution.
• Parameters are still accessed via the same method but stored in a ParameterSetCollection

object instead of a ParameterSet, thus allowing efficient representation of composite and nested
parameter sets.

The composition can be iterated and nested any number of times, consider the following example
where a mixture distribution is created from two distributions that are in turn composites - a truncated
Student T, and a Huberized exponential - note the parameter inspection and automatic prefixing of
distribution ‘short names’ to the parameters for identification.
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> M <- MixtureDistribution$new(list(
+ truncate(StudentT$new(), lower = -1, upper = 1),
+ huberize(Exponential$new(), upper = 4)
+ ))
> M$parameters()

id value support description
1: mix_T_df 1 R+ Degrees of Freedom
2: mix_trunc_lower -1 R U {-Inf, +Inf} Lower limit of truncation
3: mix_trunc_upper 1 R U {-Inf +Inf} Upper limit of truncation
4: mix_Exp_rate 1 R+ Arrival Rate
5: mix_Exp_scale 1 R+ Scale
6: mix_hub_lower 0 R U {-Inf, +Inf} Lower limit of huberization
7: mix_hub_upper 4 R U {-Inf, +Inf} Upper limit of huberization
8: mix_weights uniform {uniform} U [0,1] Mixture weights

Implemented compositors We summarize some important implemented compositors (tables 2 and
3) to illustrate the way composition is handled and implemented.

Class Parameters Type of d Components of d
TruncatedDistribution a, b ∈ R R d′, type R

HuberizedDistribution a, b ∈ R R, mixed d′, type R

MixtureDistribution wi ∈ R, ∑n
i=1 wi = 1 Rn d′i, type Rn

ProductDistribution - RN , N = ∑n
i=1 ni d′i type Rni

Table 2: Examples of common compositors implemented in distr6 - parameters and type. Column
2 (parameters) lists the parameters that the composite has. Column 3 (type) states the type of the
resultant distribution d that is created when the class is constructed; this states the formal domain.
Column 4 (components) states the number, names, and assumptions on the components, if any.

Class d.F(x) d. f (x)

TruncatedDistribution d′ .F(x)−d′ .F(a)
d′ .F(b)−d′ .F(a)

d′ . f (x)
d′ .P([a,b])

HuberizedDistribution d′.F(x) + 1[x = b] · d′.P(b) (no pdf, since mixed)
MixtureDistribution ∑N

i=1 wi · d′i.F(x) ∑N
i=1 wi · d′i. f (x) (if exists)

ProductDistribution ∏N
i=1 d′i.F(x) ∏N

i=1 d′i. f (x) (if exists)

Table 3: Common compositors implemented in distr6 with mathematical definitions. Column 2
defines the resultant cdf, d.F, in terms of the component cdf, as implemented in the cdf method of the
compositor in the same row. Column 3 defines the resultant pdf, d. f , in terms of the component pdf,
as implemented in the pdf method of the compositor in the same row. Truncation (row 1) is currently
implemented for the left-open interval (a, b] only. For Huberization (row 2), the resultant distribution
is in general, not absolutely, continuous and hence the pdf does not exist. d′ resp. d′i are the component
distributions, as defined in table 2.

Example code to obtain a truncated or Huberized distribution is below. Here, we construct a
truncated normal with truncation parameters -1 and 1, and a Huberized Binomial with bounding
parameters 2 and 5.

> TN <- truncate(Normal$new(), lower = -1, upper = 1)
> TN$cdf(-2:2)
[1] 0.0 0.0 0.5 1.0 1.0
> class(TN)
[1] "TruncatedDistribution" "DistributionWrapper" "Distribution" "R6"

> HB <- huberize(Binomial$new(), lower = 2, upper = 5)
> HB$cdf(1:6)
[1] 0.0000000 0.0546875 0.1718750 0.3769531 1.0000000 1.0000000
> HB$median()
[1] 5
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Vectorization of distributions A special feature of distr6 is that it allows vectorization of distri-
butions, i.e., vectorized representation of multiple distributions in an array-like structure. This is
primarily done for computational efficiency with the general best R practice of vectorization. Vector-
ization of distr6 distributions is implemented via the VectorDistribution, which is logically treated
as a compositor.

Mathematically, a VectorDistribution is simply a vector of component distributions d1, . . . , dN
that allows vectorized evaluation. Two kinds of vectorized evaluation are supported paired and
product-wise vectorization, which we illustrate in the case of cdfs.

• Paired vectorized evaluation of the cdfs d1.F, . . . , dN .F at numbers x1, . . . , xN , yields a real vector
(d1.F(x1), . . . , dN .F(xN) via the cdf method.

• Product vectorized evaluation of the cdfs d1.F, . . . , dN .F at numbers x1, . . . , xM, yields a real
(N × M) matrix, with (i, j)-th entry di.F(xj).

In practical terms, paired evaluation is the evaluation of N distributions at N points (which may be
unique or different). So, by example, for three distributions d1, d2, d3, paired evaluation of their cdfs at
(x1, x2, x3) = (4, 5, 6) respectively results in (d1.F(x1), d2.F(x2), d3.F(x3)) = (d1.F(4), d2.F(5), d3.F(6)).
In distr6:

> V <- VectorDistribution$new(distribution = "Normal", params = data.frame(mean = 1:3))
> V$cdf(4, 5, 6)

Norm1 Norm2 Norm3
1: 0.9986501 0.9986501 0.9986501

In contrast, product-wise evaluation evaluates N distributions at the same M points. Product-wise
evaluation of the cdfs of d1, d2, d3 at (x1, x2, x3) = (4, 5, 6) results ind1.F(x1) d1.F(x2) d1.F(x3)

d2.F(x1) d2.F(x2) d2.F(x3)
d3.F(x1) d3.F(x2) d3.F(x3)

 =

d1.F(4) d1.F(5) d1.F(6)
d2.F(4) d2.F(5) d2.F(6)
d3.F(4) d3.F(5) d3.F(6)


In distr6:

> V <- VectorDistribution$new(distribution = "Normal", params = data.frame(mean = 1:3))
> V$cdf(4:6)

Norm1 Norm2 Norm3
1: 0.9986501 0.9772499 0.8413447
2: 0.9999683 0.9986501 0.9772499
3: 0.9999997 0.9999683 0.9986501

The VectorDistribution wrapper allows for efficient vectorization across both the distributions
and points to evaluate, which we believe is a feature unique to distr6 among distribution frameworks
in R. By combing product and paired modes, users can evaluate any distribution in the vector at any
point. In the following example, Normal(1, 1) is evaluated at (1,2), and Normal(2, 1) is evaluated at
(3,4):

> V <- VectorDistribution$new(distribution = "Normal", params = data.frame(mean = 1:2))
> V$pdf(1:2, 3:4)

Norm1 Norm2
1: 0.3989423 0.24197072
2: 0.2419707 0.05399097

Further, common composites such as ProductDistribution and MixtureDistribution inherit
from VectorDistribution, allowing for efficient vector dispatch of pdf and cdf methods. Inheriting
from VectorDistribution results in identical constructors and methods. Thus, a minor caveat is that
users could evaluate a product or mixture at different points for each distribution, which is not a usual
use case in practice.

Two different choices of constructors are provided. The first ‘distlist’ constructor passes dis-
tribution objects into the constructor, whereas the second passes a reference to the distribution class
along with the parameterizations. Therefore, the first allows different types of distributions but is
vastly slow as the various methods have to be calculated individually, whereas the second only allows
a single class of distribution at a time but is much quicker in evaluation. In the example below, the
mixture uses the second constructor, and the product uses the first.
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> M <- MixtureDistribution$new(distribution = "Degenerate",
+ params = data.frame(mean = 1:10))
> M$cdf(1:5)
[1] 0.1 0.2 0.3 0.4 0.5
> class(M)
[1] "MixtureDistribution" "VectorDistribution" "DistributionWrapper" "Distribution"
[5] "R6"

> P <- ProductDistribution$new(list(Normal$new(), Exponential$new(), Gamma$new()))
> P$cdf(1:5)
[1] 0.3361815 0.7306360 0.9016858 0.9636737 0.9865692

5 Design patterns and object-oriented programming

This paper has so far discussed the API and functionality in distr6. This section discusses object-
oriented programming (OOP). Firstly, a brief introduction to OOP and OOP in R and then the package’s
contributions to the field.

S3, S4, and R6

R has four major paradigms for object-oriented programming: S3, S4, reference classes (R5), and most
recently, R6. S3 and S4 are known as functional object-oriented programming (FOOP) paradigms,
whereas R5 and R6 move towards class object-oriented programming (COOP) paradigms (R6) (Cham-
bers, 2014). One of the main differences (from a user perspective) is that methods in COOP are
associated with a class, whereas in FOOP, methods are associated with generic functions. In the first
case, methods are called by first specifying the object, and in the second, a dispatch registry is utilized
to find the correct method to associate with a given object.

S3 introduces objects as named structures, which in other languages are often referred to as ‘typed
lists’. These can hold objects of any type and can include meta-information about the object itself. S3 is
the dominant paradigm in R for its flexibility, speed, and efficiency. As such, it is embedded deep in
the infrastructure of R, and single dispatch is behind a vast majority of the base functionality, which
is a key part of making R easily readable. S3 is a FOOP paradigm in which functions are part of a
dispatch system and consist of a generic function that is external to any object and a specific method
registered to a ‘class’. However, the term ‘class’ is slightly misleading as no formal class structure
exists (and by consequence, no formal construction or inheritance) and as such, S3 is not a formal OOP
language1.

S4 formalizes S3 by introducing: class-object separation, a clear notion of construction, and multiple
inheritances (Chambers, 2014). S4 has more syntax for the user to learn and a few more steps in class
and method definitions. As a result, S4 syntax is not overly user-friendly, and S3 is used vastly more
than S4 (Chambers, 2014).

There is a big jump from S3 and S4 to R6 as they transition from functional- to class-object-oriented
programming. This means new notation, semantics, syntax, and conventions. The key changes are:
1) introducing methods and fields that are associated with classes not, functions; 2) mutable objects
with copy-on-modify semantics; and 3) new dollar-sign notation. In the first case, this means that
when a class is defined, all the methods are defined as existing within the class, and these can be
accessed at any time after construction. Methods are further split into public and private, as well as
active bindings, which incorporate the abstraction part of OOP. The mutability of objects and change to
copy-on-modify means that to create an independent copy of an object, the new method clone(deep
= TRUE) has to be used, which would be familiar to users who know more classical OOP but very
different from most R users. Finally, methods are accessed via the dollar-sign, and not by calling a
function on an object.

Below, the three paradigms are contrasted semantically with a toy example to create a ‘duck’ class
with a method ‘quack’.

S3

> quack <- function(x) UseMethod("quack", x)
> duck <- function(name) return(structure(list(name = name), class = "duck"))
> quack.duck <- function(x) cat(x$name, "QUACK!")

1http://adv-r.had.co.nz/OO-essentials.html
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> quack(duck("Arthur"))
Arthur QUACK!

S4

> setClass("duck", slots = c(name = "character"))
> setGeneric("quack", function(x) {
+ standardGeneric("quack")
+ })
> setGeneric("duck", function(name) {
+ standardGeneric("duck")
+ })
> setMethod("duck", signature(name = "character"),
+ definition = function(name){
+ new("duck", name = name)
+ })
> setMethod("quack",
+ definition = function(x) {
+ cat(x@name, "QUACK!")
+ })
> quack(duck("Ford"))
Ford QUACK!

R6

> duck <- R6::R6Class("duck", public = list(
+ initialize = function(name) private$.name = name,
+ quack = function() cat(private$.name, "QUACK!")),
+ private = list(.name = character(0)))
> duck$new("Zaphod")$quack()
Zaphod QUACK!

The example clearly highlights the extra code introduced by S4 and the difference between the S3
dispatch and R6 method system.

Comparing the paradigms There is no doubt that R6 is the furthest paradigm from conventional R
usage, and as such, there is a steep learning curve for the majority of R users. However, R6 will be
most natural for users coming to R from more traditional OOP languages. In contrast, S3 is a natural
FOOP paradigm that will be familiar to all R users (even if they are not aware that S3 is being used).
S4 is an unfortunate midpoint between the two, which whilst being very useful, is not particularly
user-friendly in terms of programming classes and objects.

distr was developed soon after S4 was released and is arguably one of the best case studies for
how well S4 performs. Whilst S4 formalizes S3 to allow for a fully OO interface to be developed, its
dependence on inheritance forces design decisions that quickly become problematic. This is seen in the
large inheritance trees in distr in which one implemented distribution can be nested five child classes
deep. This is compounded by the fact that S4 does not use pointer objects but instead nests objects
internally. Therefore, distr has problems with composite distributions in that they quickly become
very large in size. For example, a mixture of two distributions can easily be around 0.5Mb, which is
relatively large. In contrast, R6 introduces pointers, which means that a wrapped object simply points
to its wrapped component and does not copy it needlessly.

Whilst a fully object-oriented interface can be developed in S3 and S4, they do not have the
flexibility of R6, which means that in the long run, extensibility and scalability can be problematic. R6
forces R users to learn a paradigm that they may not be familiar with, but packages like R62S3 allow
users to become acquainted with R6 on a slightly shallower learning curve. Speed differences for the
three paradigms are formally compared on the example above using microbenchmark (Mersmann,
2019); the results are in table 4. The R6 example is compared both including the construction of
the class, duck$new("Zaphod")$quack(), and without construction, d$quack(), where d is the object
constructed before comparison. A significant ‘bottleneck’ is noted when construction is included in
the comparison. However, despite this, S4 is still significantly the slowest.

Design patterns

In the simplest definition, ‘design patterns’ are abstract solutions to common coding problems. They
are probably most widely known due to the book ‘Design Patterns Elements of Reusable Object-
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Paradigm mean (µs) cld
S3 73.44 a
S4 276.17 c
R6 187.70 b
R6* 38.32 a

Table 4: Comparing S3, S4, and R6 in calling a method. R6 is tested both including object construction
(R6) and without (R6*). ‘cld’ is the significance testing from microbenchmark where ‘a’ is the fastest
and ‘c’ the slowest. Experiment conducted with R6 version 2.4.1, microbenchmark version 1.4.7, and
R version 4.0.2 (2020-06-22) on platform: x86_64-apple-darwin17.0 (64-bit) running under: macOS
Catalina 10.15.3.

Oriented Software’ (Design Patterns) (Gamma et al., 1996). distr6 primarily makes use of the following
design patterns

• Abstract Factory

• Decorator

• Composite

• Strategy

Strategy The strategy pattern is common in modeling toolboxes in which multiple algorithms can
be used to solve a problem. This pattern defines an abstract class for a given problem and concrete
classes that each implement different strategies, or algorithms, to solve the problem. For example,
in the context of mathematical integration (a common problem in R), one could use Simpson’s rule,
Kronrod’s, or many others. These can be specified by an integrate abstract class with concrete
sub-classes simpson and kronrod (figure 4).

Figure 4: Strategy pattern example.

Composite The composite pattern defines a collection of classes with an identical interface when
treated independently or when composed into a single class with constituent parts. To the user, this
means that only one interface needs to be learned in order to interact with composite or individual
classes. A well-built composite pattern allows users to construct complex classes with several layers of
composition and yet still be able to make use of a single interface. By inheriting from a parent class,
each class and composite share a common interface. Composition is a powerful design principle that
allows both modification of existing classes and reduction of multiple classes (Király et al., 2021).

Decorator Decorators add additional responsibilities to an object without making any other changes
to the interface. An object that has been decorated will be identical to its un-decorated counter-part
except with additional methods. This provides a useful alternative to inheritance. Whereas inheritance
can lead to large tree structures in which each sub-class inherits from the previous and contains all
previous methods, decorators allow the user to pick and choose with responsibilities to add. Figure 5
demonstrates how this is useful in a shopping cart example. The top of the figure demonstrates using
inheritance in which each sub-class adds methods to the Cart parent class. By the Tax child class,
there are a total of five methods in the interface. At the bottom of the figure, the decorator pattern
demonstrates how the functionality for adding items and tax is separated and can be added separately.

Contributions to R6

In order to implement distr6, several contributions were made to the R6 paradigm to extend its abilities
and to implement the design patterns discussed above.
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Figure 5: Decorator pattern example.

Abstract classes R6 did not have a concept of abstract classes, which meant that patterns such as
adapters, composites, and decorators, could not be directly implemented without problems. This is
produced in distr6 with the abstract function, which is placed in the first line of all abstract classes.
In the example below, obj expects the self argument from R6 classes, and class is the name of the
class, getR6Class is a custom function for returning the name of the class of the given object.

abstract <- function(obj, class) {
if (getR6Class(obj) == class) {

stop(sprintf("%s is an abstract class that can't be initialized.", class))
}

}

For example, in decorators, the following line is placed at the top of the initialize function:

abstract(self, "DistributionDecorator")

Decorators The typical implementation of decorators is to have an abstract decorator class with
concrete decorators inheriting from this, each with their own added responsibilities. In distr6, this
is made possible by defining the DistributionDecorator abstract class (see above) with a public
decorate method. Concrete decorators are simply R6 classes where the public methods are the ones to
‘copy’ to the decorated object.

> DistributionDecorator
<DistributionDecorator> object generator

Public:
packages: NULL
initialize: function ()
decorate: function (distribution, ...)
clone: function (deep = FALSE)

> CoreStatistics
<CoreStatistics> object generator

Inherits from: <DistributionDecorator>
Public:

mgf: function (t)
cf: function (t)
pgf: function (z)
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When the $decorate method from a constructed decorator object is called, the methods are simply
copied from the decorator environment to the object environment. The decorator() function simplifies
this for the user.

Composite and wrappers The composite pattern is made use of in what distr6 calls ‘wrappers’.
Again, this is implemented via an abstract class (DistributionWrapper) with concrete sub-classes.

> DistributionWrapper
<DistributionWrapper> object generator

Inherits from: <Distribution>
Public:

initialize: function (distlist = NULL, name, short_name, description, support,
wrappedModels: function (model = NULL)
setParameterValue: function (..., lst = NULL, error = "warn")

Private:
.wrappedModels: list

> TruncatedDistribution
<TruncatedDistribution> object generator

Inherits from: <DistributionWrapper>
Public:

initialize: function (distribution, lower = NULL, upper = NULL)
setParameterValue: function (..., lst = NULL, error = "warn")

Private:
.pdf: function (x, log = FALSE)
.cdf: function (x, lower.tail = TRUE, log.p = FALSE)
.quantile: function (p, lower.tail = TRUE, log.p = FALSE)
.rand: function (n)

Wrappers in distr6 alter objects by modifying either their public or private methods. Therefore, an
‘unwrapped’ distribution looks identical to a ‘wrapped’ one, despite inheriting from different classes.
This is possible via two key implementation strategies: 1) on the construction of a wrapper, parameters
are prefixed with a unique ID, meaning that all parameters can be accessed at any time; 2) the
wrappedModels public field allows access to the original wrapped distributions. These two factors allow
any new method to be called either by reference to wrappedModels or by using $getParameterValue
with the newly prefixed parameter ID. This is demonstrated in the .pdf private method of the
TruncatedDistribution wrapper (slightly abridged).

.pdf = function(x, log = FALSE) {
dist <- self$wrappedModels()[[1]]
lower <- self$getParameterValue("trunc_lower")
upper <- self$getParameterValue("trunc_upper")

pdf <- numeric(length(x))
pdf[x > lower & x <= upper] <- dist$pdf(x[x > lower & x <= upper]) /
(dist$cdf(upper) - dist$cdf(lower))

return(pdf)
}

As the public pdf is the same for all distributions, and this is inherited by wrappers, only the
private .pdf method needs to be altered.

6 Examples

This final section looks at concrete short examples for four key use cases.

Constructing and querying distributions

The primary use case for the majority of users will be in constructing distributions in order to query
their results and visualize their shape.
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Below, a distribution (Binomial) is constructed and queried for its distribution-specific traits and
parameterization-specific properties.

> b <- Binomial$new(prob = 0.1, size = 5)
> b$setParameterValue(size = 6)
> b$getParameterValue("size")
> b$parameters()
> b$properties
> b$traits

Specific methods from the distribution are queried as well.

> b$mean()
> b$entropy()
> b$skewness()
> b$kurtosis()
> b$cdf(1:5)

The distribution is visualized by plotting it’s density, distribution, inverse distribution, hazard,
cumulative hazard, and survival function; the output is in figure 6.

> plot(b, fun = "all")

Analysis of empirical data

distr6 can also serve as a toolbox for analysis of empirical data by making use of the three ‘empirical’
distributions: Empirical, EmpricalMV, and WeightedDiscrete.

First, an empirical distribution is constructed with samples from a standard exponential distribution.

> E <- Empirical$new(samples = rexp(10000))

The summary function is used to quickly obtain key information about the empirical distribution.

> summary(E)

Empirical Probability Distribution.

Quick Statistics
Mean: 0.105954
Variance: 1.140673
Skewness: 0.05808027
Ex. Kurtosis: -0.473978

Support: (-2.50, -2.19,...,2.27, 2.66) Scientific Type: R

Traits: discrete; univariate
Properties: asymmetric; platykurtic; positive skew

The distribution is compared to a (standard) Normal distribution and then (standard) Exponential
distribution; output in figure 7.

> qqplot(E, Normal$new(), xlab = "Empirical", ylab = "Normal")
> qqplot(E, Exponential$new(), xlab = "Empirical", ylab = "Exponential")

The CDF of a bivariate empirical distribution is visualized; output in figure 8.

> plot(EmpiricalMV$new(data.frame(rnorm(100, mean = 3), rnorm(100))), fun = "cdf")
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Learning from custom distributions

Whilst empirical distributions are useful when data samples have been generated, custom distributions
can be used to build an entirely new probability distribution. Though, here, we use a simple discrete
uniform distribution. This example highlights the power of decorators to estimate distribution results
without manual computation of every possible method. The output demonstrates the precision and
accuracy of these results.

Below, a custom distribution is created, and by including the decorators argument, all further
methods are imputed numerically. The distribution is summarized for properties, traits, and common
results (this is possible with the ‘CoreStatistics’ decorator). The summary is identical to the analytic
DiscreteUniform distribution.

> U <- Distribution$new(
+ name = "Discrete Uniform",
+ type = set6::Integers$new(), support = set6::Set$new(1:10),
+ pdf = function(x) ifelse(x < 1 | x > 10, 0, rep(1/10,length(x))),
+ decorators = c("CoreStatistics", "ExoticStatistics", "FunctionImputation"))
> summary(U)

Discrete Uniform

Quick Statistics
Mean: 5.5
Variance: 8.25
Skewness: 0
Ex. Kurtosis: -1.224242

Support: {1, 2,...,9, 10} Scientific Type: Z

Traits: discrete; univariate
Properties: asymmetric; platykurtic; no skew

Decorated with: CoreStatistics, ExoticStatistics, FunctionImputation

The CDF and simulation function are called (numerically imputed with the FunctionImputation
decorator), the hazard function from the ExoticStatistics decorator, and the kthmoment function
from the CoreStatistics decorator.

> U$cdf(1:10)
[1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
> U$rand(10)
[1] 8 10 5 8 5 10 6 7 1 4
> U$hazard(2)
[1] 0.125
> U$kthmoment(2)
[1] 8.25

Composite distribution modeling

Composite distributions are an essential part of any distribution software. The following example
demonstrates two types of composites: composition via distribution transformation (truncation) and
composition via mixtures and vectors.

First, a Binomial distribution is constructed and truncated between 1 and 5, the CDF of the new
distribution is queried.

> TB <- truncate(
Binomial$new(size = 20, prob = 0.5),
lower = 1,
upper = 5
)

> round(TB$cdf(0:6), 4)
[1] 0.0000 0.0000 0.0088 0.0613 0.2848 1.0000 1.0000
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Next, a vector distribution is constructed of two Normal distributions, with respective means 1
and 2 and unit standard deviation. The parameters are queried (some columns suppressed).

> V <- VectorDistribution$new(distribution = "Normal",
+ params = data.frame(mean = 1:2))
> V$parameters()

id value support
1: Norm1_mean 1 R
2: Norm1_var 1 R+
3: Norm1_sd 1 R+
4: Norm1_prec 1 R+
5: Norm2_mean 2 R
6: Norm2_var 1 R+
7: Norm2_sd 1 R+
8: Norm2_prec 1 R+

Vectorization is possible across distributions, samples, and both. In the example below, the first
call to $pdf evaluates both distributions at (1, 2), the second call evaluates the first at (1) and the second
at (2), and the third call evaluates the first at (1, 2) and the second at (3, 4).

> V$pdf(1:2)
Norm1 Norm2

1: 0.3989423 0.2419707
2: 0.2419707 0.3989423
> V$pdf(1, 2)

Norm1 Norm2
1: 0.3989423 0.3989423
> V$pdf(1:2, 3:4)

Norm1 Norm2
1: 0.3989423 0.24197072
2: 0.2419707 0.05399097

Finally, a mixture distribution with uniform weights is constructed from a Normal(2, 1) distribution
and an Exponential(1).

> MD <- MixtureDistribution$new(
+ list(Normal$new(mean = 2, sd = 1),
+ Exponential$new(rate = 1)
+ )
+ )
> MD$pdf(1:5)
[1] 0.304925083 0.267138782 0.145878896 0.036153303 0.005584898
> MD$cdf(1:5)
[1] 0.3953879 0.6823324 0.8957788 0.9794671 0.9959561
> MD$rand(5)
[1] 3.6664473 0.1055126 0.6092939 0.8880799 3.4517465

7 Future work

Whilst distr6 fulfils its primary purpose as an R6 interface for probability distributions with basic
features, it is not consider ’feature-complete’, as it currently lacks many of the important features
included in distr and other related software. distr6 is in constant development and has an active
GitHub with open issues and projects. Some concrete short-term goals include:

• A more generalized convolution interface
• Expanding truncation to other interval types (currently only left-open is supported)
• Extending the FunctionImputation decorator to work on higher-order distributions as well as

to improve speed and accuracy.
• Exposing further internal functionality for more user-control over numerical results.
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Figure 6: Visualizing a Binomial(0.1, 5) distribution, b, with plot(b, fun = "all"). Functions
clockwise from top-left: probability mass, cumulative distribution, quantile (inverse cdf), cumulative
hazard, hazard, and survival.

8 Summary

distr6 introduces a robust and scalable object-oriented interface for probability distributions to R and
aims to be the first-stop for class object-oriented probability distributions in R. By making use of R6,
every implemented distribution is clearly defined with properties, traits, and analytic results. Whilst R
stats is limited to very basic dpqr functions for representing evaluated distributions, distr6 ensures
that probability distributions are treated as complex mathematical objects.

Future updates of the package will include adding further numerical approximation strategies
in the decorators to allow users to choose different methods (instead of being forced to use one).
Additionally, the extensions to R6 could be abstracted into an independent package in order to better
benefit the R community.

distr6 is released under the MIT license on GitHub and CRAN. Extended documentation, tutorials,
and examples are available at https://alan-turing-institute.github.io/distr6/. Code quality
is monitored and maintained by an extensive suite of unit tests on multiple continuous integration
systems.
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Figure 7: Q-Q plots comparing an unknown Empirical distribution, E, to theoretical Normal (left) and
Exponential (right) distributions with qqplot(E, Normal$new() and qqplot(E, Exponential$new()
respectively.
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gofCopula: Goodness-of-Fit Tests for
Copulae
by Ostap Okhrin, Simon Trimborn and Martin Waltz

Abstract The last decades show an increased interest in modeling various types of data through
copulae. Different copula models have been developed, which lead to the challenge of finding the
best fitting model for a particular dataset. From the other side, a strand of literature developed a list
of different Goodness-of-Fit (GoF) tests with different powers under different conditions. The usual
practice is the selection of the best copula via the p-value of the GoF test. Although this method is not
purely correct due to the fact that non-rejection does not imply acception, this strategy is favored by
practitioners. Unfortunately, different GoF tests often provide contradicting outputs. The proposed
R-package brings under one umbrella 13 most used copulae - plus their rotated variants - together
with 16 GoF tests and a hybrid one. The package offers flexible margin modeling, automatized
parallelization, parameter estimation, as well as a user-friendly interface, and pleasant visualizations
of the results. To illustrate the functionality of the package, two exemplary applications are provided.

1 Introduction

Being firstly introduced in 1959 by Abe Sklar (see Sklar (1959)), copulae gained enormous popularity in
applications in the last two decades. Researchers from different fields recognize the power of copulae
while working with multivariate datasets from insurance (Fang and Madsen, 2013; Shi et al., 2016),
finance (Salvatierra and Patton, 2015; Oh and Patton, 2018), biology (Konigorski et al., 2014; Dokuzoğlu
and Purutçuoğlu, 2017), hydrology (Liu et al., 2018; Valle and Kaplan, 2019), medicine (Kuss et al., 2014;
Gomes et al., 2019), traffic engineering, (Huang et al., 2017; Ma et al., 2017), etc. For a recent review,
we refer to Größer and Okhrin (2021). Unfortunately, the correct specification of the multivariate
distribution is not easy to find, and often interest in the understanding of the functional form of the
copula is dominated by the expected performance of the whole model. This is natural, taking into
account the huge list of different copula models proposed in the literature for different needs; see, e.g.,
Durante and Sempi (2010), Joe and Kurowicka (2010), or Genest and Nešlehová (2014). Although an
expanding list of R-packages devoted to copulae is existent, the issue of GoF testing is less frequently
addressed. Primarily, GoF tests for copulae are implemented in copula comparison packages as copula
(Hofert et al., 2020), TwoCop (Remillard and Plante, 2012), and VineCopula (Nagler et al., 2019), but
since Remillard and Scaillet (2009) and Genest et al. (2009), many other powerful tests were developed
that are not integrated into these packages. Most of the tests focus on the bivariate case, leaving a
further gap in the existing R-package landscape.

Given a variety of tests, the selection of the most appropriate copula seems simple at first glance.
However, the power of these tests varies significantly depending on the use case and the copula
tested for. The absence of the overall best GoF test leads researchers and practitioners often to the
selection of the test (and copula), which supports some subjective expectation, but not the copula that
fits the data at its best. Although GoF tests are not intended for model selection but rather to decide
whether the selected copula is not suitable for the data, the model selection strategy based on the rank
of the p-values is still commonly used. Following proper scoring rules (Gneiting and Raftery, 2007),
some tests still allow for selection, and even if not purely statistically sound, it is heavily advocated
among practitioners; see De Valpine (2014). An eloquent illustrative example of different powers
and contradictory decisions was provided in Zhang et al. (2016), where three different tests (Rn by
Zhang et al. (2016), Sn by Genest et al. (2009), and Jn by Scaillet (2007)) were applied for testing the
dependency between the standardized returns of the Bank of America and Citigroup. The model
selection was done from three copula models: normal, Gumbel, and t-copula, based on their respective
p-values. Interestingly,

1) for the year 2004, the Rn gave a favor for the Gumbel copula, while the Sn and Jn for the normal
one;

2) for the year 2006, the Sn gave the favor for the normal copula, while Rn and Jn for the t-copula;

3) for the year 2009, the Jn indicated that the dependency is close to the normal one, while Rn and
Sn were in favor of the Gumbel copula.

This implies that for each year, a different pair of tests returns consistent results. In an empirical study,
it is difficult to decide which copula is suitable and which test provides the most plausible results. An
extensive comparative study of different GoF tests was performed a decade ago by Genest et al. (2009),
intensively discussing all, up to that moment existing, tests for copulae. The main findings are that
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there is no superior blanket test, but several tests have very good power under different, often disjunct
conditions. A test proposed by Zhang et al. (2016) fills some gaps in the set of models under which
this test performs better than others under certain conditions. However, a common phenomenon in
empirical studies is the interpretation of the non-rejection of a copula as the correct model. Especially,
in situations where the used GoF test has low power, this is not necessarily the case. Tackling this issue,
Zhang et al. (2016) also developed the hybrid test, which is simple in construction and implementation.
It combines the power of different tests and is very helpful for practitioners; see Section 2.6. However,
even in this case, the interpretation of finding the correct copula should be treated with care.

We propose the R-package gofCopula to automatize the whole empirical procedure of selecting the
most suitable copula. Table 1 displays the broad range of available tests, copula models, and the maxi-
mum dimension. The latest version of this table is also accessible via the function CopulaTestTable()
in the package. Further details on the functionality of each test are provided in Section 2.3, while Table
A.1 of Appendix A contains some characteristics of the copulae implemented in the package.
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gofCvM ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 2 2 2 2 2 2 2
gofKS ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 2 2 2 2 2 2 2
gofKendallCvM ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 2 2 2 2 2 2 2
gofKendallKS ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 2 2 2 2 2 2 2
gofRosenblattSnB ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 2 2 - - - 2 2
gofRosenblattSnC ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 2 2 - - - 2 2
gofRosenblattGamma ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 2 2 - - - 2 2
gofRosenblattChisq ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 2 2 - - - 2 2
gofArchmSnB - - ≥ 2 ≥ 2 ≥ 2 ≥ 2 2 - - - - - -
gofArchmSnC - - ≥ 2 ≥ 2 ≥ 2 ≥ 2 2 - - - - - -
gofArchmGamma - - ≥ 2 ≥ 2 ≥ 2 ≥ 2 2 - - - - - -
gofArchmChisq - - ≥ 2 ≥ 2 ≥ 2 ≥ 2 2 - - - - - -
gofKernel 2 2 2 2 2 2 2 2 2 2 2 2 2
gofWhite 2 2 2 2 2 2 - - - - - - -
gofPIOSTn 3 2 3 3 3 3 2 2 - - - 2 2
gofPIOSRn 3 2 3 3 3 3 2 2 - - - 2 2

Table 1: Implemented tests, copula models (columns), and the maximum available dimension of each
test-copula combination. "-" means this combination is not available, "2" is available in dimension two,
"3" in dimensions two and three, and "≥ 2" in any dimension. amh corresponds to the Ali-Mikhail-Haq
copula, tev to the t-extreme value copula, and fgm to the Farlie-Gumbel-Morgenstern copula.

In summary, the package gofCopula offers the following attractive features which distinguish it
from other R-packages:

• Each of the 13 copulae in Table 1 is available in a rotated form for the bivariate case. Furthermore,
the flexible hybrid test is implemented to aggregate the results of the 16 tests.

• We provide an interface to integrate new GoF tests. The users can provide their own test
statistics and perform the tests with the integrated parametric bootstrap and also make use of
the automatized parallelization of gofCopula. The new tests can be further combined with
other tests via the hybrid test.

• The whole copula community relies justifiably on the R-package copula for conducting different
studies on copulae. Thus we provide an interface to use objects from the R-package copula and
perform the GoF tests with gofCopula.

• For the estimation of the margins, ten different parametric distributions are available, in addition
to the nonparametric estimation per default.

• GoF tests rely on bootstrapping methods which can result in substantially high computational
costs. In contrast to other R-packages, the package gofCopula comes with an integrated option
for automatized parallelization of the bootstrapping samples. For the convenience of the user,
the parallelization can be activated by specifying the number of parallel jobs as an argument of
the functions.
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• As we believe in reproducible science, the user has the opportunity to specify the seeds for the
bootstrapping procedure in order to guarantee full reproducibility of all results gained from the
package gofCopula.

• An estimation function for the computation time is implemented, which fits a regression model
to give an estimate for the time adapted to the users’ machine.

• An informative console output is implemented, which keeps the user informed about the current
test and copula under estimation, as well as the remaining time until the derivation of the test
is performed. The latter functionality is supported by the R-package progress (Csárdi and
FitzJohn, 2019).

• The results of the tests are provided with the package’s own class "gofCOP", which allows
for a comprehensive overview of the test results. For a better comparison of the results, we
extend the generic plot function for objects of class "gofCOP", which illustrates the results in a
convenient manner. The plot function is supported by the R-package yarrr (Phillips, 2017), and
was customized to provide the user an insightful figure for the interpretation of the results.

The test statistics of six GoF tests were already implemented in R-packages. Thus, for the com-
putation of the test statistics of some tests, we use the functions gofTstat and BiCopGofTest from
the packages copula and VineCopula, respectively. For obvious reasons, we did not implement all
existing tests on copulae, but we will embed new tests in the proposed package as soon as they become
more relevant and actively used among academics and practitioners.

The paper, introducing the R-package gofCopula, is structured as follows: The tests and method-
ology implemented in the package are introduced in Sections 2.2 and 2.3 before presenting the
functionalities of the package in Section 2.4. We explain major functions, how to apply them, and elab-
orate the main arguments of each function. The explanations are supported by R-code and output. To
provide an impression of the runtime of various tests, we discuss the speed of the tests depending on
the copula to test for, the number of observations, and the number of bootstrap samples. A simulated
example (Section 2.5) contains a typical step-by-step procedure of how the package can be used in
practice, which is also applied to two real-world examples (Section 2.6), in which all corresponding
codes are given and explained. The cases are illustrated with interpretations of the console output and
plots, both generated directly from gofCopula, without any additional code. The results of the two
applications can be fully reproduced by the gofCopula package, which also contains the used datasets.
All illustrations, simulations, and applications in this paper are fully reproducible and designed to
guide the user into conducting their own research with the gofCopula package.

2 Estimation methods

Consider a d-dimensional random vector X = {X1, . . . , Xd} with corresponding marginal distributions
Fj, j = 1, . . . , d. The multivariate distribution F(x1, . . . , xd) can be decomposed via the copula function
Cθ(u1, . . . , ud) as

(X1, . . . , Xd) ∼ F(x1, . . . , xd) = Cθ{F1(x1), . . . , Fd(xd)}.

Having a sample X = {xij}, i = 1, . . . , n, j = 1, . . . , d of size n with the columns defined as xj, the main
task for empirical studies is to estimate the copula parameter θ and the margins Fj, j = 1, . . . , d for a
given copula specification. Since the properties and goodness of the estimator of θ heavily depend on
the estimators of the latter, their choice is also of importance.

In the bivariate case, one of the standard methods of estimation of the univariate parameter θ is
based on Kendall’s τ by Genest and Rivest (1993). Following Joe (1997) for (X1, X2), and (X

′
1, X

′
2)

being independent random pairs with continuous distribution F, Kendall’s τ is defined via:

τ = P{(X1 − X
′
1)(X2 − X

′
2) > 0} − P{(X1 − X

′
1)(X2 − X

′
2) < 0}.

This can be written in terms of the underlying copula C in form of τ = 4
∫

CdC − 1, linking Kendall’s
τ and the copula parameter of interest under a correct copula specification, e.g., for the normal copula,
the equality τ = 2

π arcsin θ holds, with θ being the copula correlation, c.f. Demarta and McNeil (2005).
Thus, the parameter θ can be estimated via inversion of this relation and replacement of τ by its
empirical counterpart. However, as shown in Genest et al. (1995), the ML method leads to substantially
more efficient estimators. Therefore, we employ it as the first option in our study. The second reason
for ML estimation is the fact that several implemented tests are based on the likelihood ratios. Thus,
results based on Kendall’s τ will not be supported by the theory behind these tests. The ML procedure
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can be performed for the parameters of the margins and of the copula function simultaneously:

(θ̂, α̂1, . . . , α̂d)
⊤ = argmax

θ,α1,...,αd

L(X , θ, α1, . . . , αd), (1)

with L(X , θ, α1, . . . , αd) =
n

∑
i=1

log

c{F1(xi1, α1), . . . , Fd(xid, αd), θ}
d

∏
j=1

f j(xij, αj)

 ,

(2)

where c(·) is the copula density, α1, . . . , αd are parameters of the margins, f j(·) are marginal densities,
and L(·) is the full log-likelihood function. Nevertheless, simultaneous maximization of the function
in (1) is very computationally intensive. Therefore, we consider only two-stage procedures, where at
the first stage, we estimate margins parametrically (c.f. Joe (1997) and Joe (2005)) as

Fj(x, α̂j) = Fj

{
x, argmax

α

n

∑
i=1

log f j(xij, α)

}
, for j = 1, . . . , d, (3)

or nonparametrically (c.f. Chen and Fan (2006) and Chen et al. (2006)) as

F̂j(x) = (n + 1)−1
n

∑
i=1

1{xij ≤ x}, j = 1, . . . , d, (4)

with 1 being the indicator function. Afterward, the copula parameter is estimated in the second step as

θ̂ = argmax
θ

n

∑
i=1

log c
{

F̃1(xi1), . . . , F̃d(xid), θ
}

, (5)

where F̃(x) ∈ {F̂(x), F(x, α̂)} are parametrically or nonparametrically estimated margins. In the
case of parametric margins, one shall be aware that the two-step approach does not lead to efficient
estimators, though the loss in the efficiency is moderate and mainly depends on the strength of
dependencies (Joe, 1997). The method of nonparametric estimation of the marginal distributions for
copula estimation was first used in Oakes (1994) and further investigated in Genest et al. (1995) and
Shih and Louis (1995).

Furthermore, Fermanian and Scaillet (2003) and Chen and Huang (2007) consider a fully non-
parametric estimation of the copula, which is heavily used in the GoF testing. It is called an empirical
copula and is shown to be a consistent estimator of the true underlying copula, c.f. Gaensler and Stute
(1987) and Radulovic and Wegkamp (2004). This estimator is defined as

Cn(u1, . . . , ud) = n−1
n

∑
i=1

d

∏
j=1

1{F̂j(xij) ≤ uj}.

3 Goodness-of-fit tests for copulae

Having a list of different copulae, the most suitable one for real applications still needs to be found
and motivated. For this purpose, a series of different GoF tests has been developed in the last decades.
Several authors, e.g., Genest et al. (2009), tested the power of those tests against each other and showed
that no superior test for all possible situations exist. We cover 16 tests and implement them into
the gofCopula package. Most of these tests work with the parametric family of copulae denoted by
C0 = {Cθ ; θ ∈ A ⊂ Rp} for some integer p ≥ 1 and the copula C, under the general H0-hypothesis:

H0 : C ∈ C0.

We differentiate seven groups of GoF tests for copulae based on: (1) empirical copula process; (2)
Kendall’s process; (3) Rosenblatt integral transform; (4) transformation for Archimedean copulae; (5)
Kernel density; (6) White’s information matrix equality; and (7) pseudo in-and-out-of-sample (PIOS)
estimator.

Empirical copula process

The first group is based on the most natural approach: the deviation of the empirical copula Cn from
the parametric copula C(u1, . . . , ud; θ), captured by the empirical copula process

√
n{Cn(u1, . . . , ud)−

C(u1, . . . , ud; θ)}. Based on an estimation of the parametric copula C(u1, . . . , ud; θ̂), the following
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process can be defined:

Cn(u1, . . . , ud) =
√

n{Cn(u1, . . . , ud)− C(u1, . . . , ud; θ̂)}.

Different measures of divergence can be constructed to evaluate Cn; see Fermanian (2005) and Genest
and Rèmillard (2008). We implemented two commonly applied approaches using the Cramér-von
Mises and Kolmogorov-Smirnov statistics:

SE
n =

∫
[0,1]d

Cn(u1, . . . , ud)
2dCn(u1, . . . , ud), TE

n = sup
u1,...,ud∈[0,1]d

|Cn(u1, . . . , ud)|.

Notice that the Cramér-von Mises statistic yields better performances in most cases (Genest et al.,
2009). The evaluation of the d-dimensional integral in practice uses numerical approximations, and
the test statistic SE

n has been already implemented in the copula package as function gofTstat, so we
included it into our package. The tests are later denoted by gofCvM and gofKS, respectively.

Kendall’s process

The tests from the second group were developed and investigated by Genest and Rivest (1993), Wang
and Wells (2000), Genest et al. (2006). The main idea behind them is to use the copula-based random
variable:

C{F1(X1), . . . , Fd(Xd); θ} ∼ K(·, θ), (6)

where K(·, θ) is the univariate Kendall’s distribution (not uniform in general); see Barbe et al. (1996),
Jouini and Clemen (1996). The empirical version of K(·) is given through:

Kn(v) = n−1
n

∑
i=1

1
[
Cn{F̂1(xi1), . . . , F̂d(xid)} ≤ v

]
, v ∈ [0, 1].

Based on the definition of Kendall’s process
√

n{Kn(v)− K(·, θ)} and a parametric K(·, θ̂) estimated
with the parameter θ̂, we can define an empirical process as

Kn(v) =
√

n{Kn(v)− K(v, θ̂)}. (7)

On this basis, two applicable test statistics are Cramér-von Mises and Kolmogorov-Smirnov; see
Genest et al. (2006).

S(K)
n =

∫ 1

0
Kn(v)2dK(v, θ̂), T(K)

n = sup
v∈[0,1]

|Kn(v)|.

Worth mentioning are the different null hypotheses H
′′
0 : K ∈ K0 = {K(·, θ) : θ ∈ Θ} of these tests.

Since H0 ⊂ H
′′
0 , the non-rejection of H′′

0 does not imply non-rejection of H0. However, for bivariate
Archimedean copulae, H

′′
0 and H0 are equivalent (Genest et al., 2009). Both tests are later denoted as

gofKendallCvM and gofKendallKS, respectively.

Rosenblatt transform

Under the assumption of copula dependency, the conditional distribution of Ui given U1, . . . , Ui−1 is
specified through:

Cd(ui|u1, . . . , ui−1) = P{Ui ≤ ui|U1 = u1 . . . Ui−1 = ui−1}

=
∂i−1C(u1, . . . , ui, 1, . . . , 1)/∂u1 . . . ∂ui−1

∂i−1C(u1, . . . , ui−1, 1, . . . , 1)/∂u1 . . . ∂ui−1
.

The Rosenblatt transform (c.f. Rosenblatt, 1952) is then defined as follows.

Definition 1 Rosenblatt’s probability integral transform of a copula C is the mapping R : (0, 1)d → (0, 1)d,
R(u1, . . . , ud) = (e1, . . . , ed) with e1 = u1 and ei = Cd(ui|u1, . . . , ui−1), ∀i = 2, . . . , d.

If the copula is correctly specified, the variables (e1, . . . , ed)
⊤ resulting from the Rosenblatt transform

should be independent from each other and uniformly distributed. Therefore, the null hypothesis
H0 : C ∈ C0 is equivalent to

H0R : (e1, . . . , ed)
⊤ ∼ Π, (8)

where Π(u1, . . . , ud) = u1 · . . . · ud is the product (independence) copula.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 498

Two different types of tests may be constructed using this property. In the first type, similar to
the previous two groups, we measure the deviation of the product copula of (e1, . . . , ed)

⊤ from the
corresponding empirical copula:

Dn(u1, . . . , ud) = n−1
n

∑
i=1

d

∏
j=1

1{eij ≤ uj}.

Thus, following Genest et al. (2009), two Cramér-von Mises statistics result:

S(B)
n = n

∫
[0,1]d

{Dn(u1, . . . , ud)− Π(u1, . . . , ud)}2du1 · · · dud,

S(C)
n = n

∫
[0,1]d

{Dn(u1, . . . , ud)− Π(u1, . . . , ud)}2dDn(u1, . . . , ud).

Since the H0 changed to H0R, the tests evaluate the difference of Dn(u) to the product copula. In the
package, these tests are defined as gofRosenblattSnB and gofRosenblattSnC, respectively.

The second type of test uses the fact that a specific combination of independent uniformly dis-
tributed random variables follows some known distribution. Based on this, two further Anderson-
Darling type tests were introduced by Breymann et al. (2003). By defining

Gi,Γ = Γd

 d

∑
j=1

(− log eij)

 ,

where Γd(·) is the Gamma distribution with shape d and scale 1 and

Gi,χ2 = χ2
d

 d

∑
j=1

{Φ−1(eij)}2

 ,

where χ2
d(·) is the Chi-squared distribution with d degrees of freedom and Φ being the standard

normal distribution. It results:

Tn = −n −
n

∑
i=1

2i − 1
n

[log G(i) + log{1 − G(n+1−i)}],

where G(i) is the i-th ordered observation of the Gi,Γ or Gi,χ2 . One should note that Anderson-
Darling type tests have almost no power and even do not capture the type 1 error (Dobrić and
Schmid, 2007), while the Cramér-von Mises tests behave much more satisfactory (Genest et al., 2009).
Furthermore, the basic assumption of uniformly distributed and independent observations after
applying the Rosenblatt transform is violated since those variables are not mutually independent and
only approximately uniform. The latter two tests are denoted in the package as gofRosenblattGamma
and gofRosenblattChisq, respectively, and are obtained via the function gofTstat from the package
copula.

Transformation for Archimedean copulae

Recently, Hering and Hofert (2015) proposed a procedure of GoF testing based on a transformation
similar to the one of Rosenblatt (1952) specifically designed for Archimedean copulae.

Definition 2 Hering and Hofert’s transformation of an Archimedean copula C of dimension d ≥ 2 with
d-monotone generator ψ and continuous Kendall distribution K is the mapping T : (0, 1)d → (0, 1)d,

T(u1, . . . , ud) = (v1, . . . , vd) with vi =

{
∑i

k=1 ψ−1(uk)

∑i+1
k=1 ψ−1(uk)

}i
, ∀i = 1, . . . , d − 1 and vd = K{C(u1, . . . , ud)}.

Distribution function K is estimated empirically, and the variables (v1, . . . , vd)
⊤ are independent and

uniformly distributed if the copula is correctly specified. Note that this transformation was originally
considered in Wu et al. (2007) as a method for generating random numbers from Archimedean
copulae, such as the inverse of the Rosenblatt transform can be used for sampling copulae. Following
Hering and Hofert (2015), the main advantage of this approach in comparison to tests based on
the Rosenblatt transform is the more convenient computation in higher dimensions, in which the
Rosenblatt procedure is numerically challenging and unstable.

The null hypothesis equals (8) from the tests based on Rosenblatt’s probability integral transform:
H0T : (v1, . . . , vd)

⊤ ∼ Π with Π being the product copula. Consequently, the approaches to test it are
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identical. In analogy to the naming introduced in Section 2.3.3, we denoted the tests as gofArchmSnB,
gofArchmSnC, gofArchmGamma, and gofArchmChisq in the package.

Kernel density estimator

A test from this group has been introduced by Scaillet (2007). Following his approach, a d-variate
quadratic kernel K with bandwidth H = 2.6073n−1/6Σ̂1/2 is used, with Σ̂ being a sample covariance
matrix with Σ̂1/2 its Cholesky decomposition. Using KH(y1, . . . , yd) = K(H−1{y1, . . . , yd}⊤)/ det(H),
the copula density is nonparametrically estimated by

ĉ(u1, . . . , ud) = n−1
n

∑
i=1

KH [(u1, . . . , ud)
⊤ − {F̃1(xi1), . . . , F̃d(xid)}⊤],

where under F̃i(·), we consider nonparametric as well as parametric estimators of the margins. The
test statistic is then:

Jn =
∫
[0,1]d

{ĉ(u1, . . . , ud)−KH ∗ c(u1 . . . , ud; θ̂)}2w(u1, . . . , ud)du1 · · · dud, (9)

with “∗” being a convolution operator, w(u1, . . . , ud) a weight function, and c(u1, . . . , ud; θ̂) the cop-
ula density under the H0, with estimated copula parameter θ̂. Note that the integral is computed
numerically using the Gauss-Legendre quadrature method; see Scaillet (2007). The number of knots
can be specified via the argument nodes.Integration. A scaling parameter for H is implemented
via delta.J, and the internal size of the bootstrapping samples can be controlled via MJ. This test is
denoted by gofKernel in the package.

White test

This test was introduced by Huang and Prokhorov (2014) and had its foundation in the information
matrix equality stated by White (1982). Given the presence of certain regularity conditions, the White
equality establishes a connection between the negative sensitivity matrix S(θ), and the variability
matrix V(θ) defined as

S(θ) = −E0

[
∂2

∂θ∂θ⊤
log c{F1(x1), ..., Fd(xd); θ}

]
,

V(θ) = E0

([
∂

∂θ
log c{F1(x1), ..., Fd(xd); θ}

] [
∂

∂θ
log c{F1(x1), ..., Fd(xd); θ}

]⊤)
,

where E0 is the expectation under correct model specification, which is represented by the null
hypothesis to be specified. The equality states:

S(θ) = V(θ).

Using this approach, the testing problem can be formulated as follows:

H0W : S(θ) = V(θ) vs. H1W : S(θ) ̸= V(θ).

Following Schepsmeier (2015), a test statistic is based on empirical versions of the two information
matrices, denoted by Ŝ(θ̂) and V̂(θ̂). These are aggregated via d(θ̂) = vech{Ŝ(θ̂) + V̂(θ̂)} with vech
denoting vectorization of the lower triangular of a matrix. As a result, d(θ̂) is a vector of dimension
p(p+1)

2 , given the copula parameter vector is of dimension p. It can be shown that the constructed test
statistics:

TW = n{d(θ̂)}⊤ Â−1
θ̂

d(θ̂),

with Â−1
θ̂

being the sample estimator of the asymptotic covariance matrix of
√

nd(θ̂), follows asymp-

totically a χ2 distribution with p(p+1)
2 degrees of freedom. For the derivation of the test statistic, this

test relies on the function BiCopGofTest from the VineCopula package, again, in order to avoid code
redundancy. Note that the implementation of the test can be unstable for the t-copula; see Nagler et al.
(2019). This is the reason why it could not be computed in some cases of the second empirical example
in Section 2.6.2. This test is called gofWhite in the package.
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Cross-validated tests

A recent test using a leave-one-block strategy, and its approximation were introduced by Zhang et al.
(2016). Authors derive θ̂ as in (5) and compare it with θ̂−b, 1 ≤ b ≤ B, which are delete-one-block
pseudo ML estimates:

θ̂−b = argmax
θ∈Θ

B

∑
b′ ̸=b

m

∑
i=1

log c{F̃1(xi1), . . . , F̃d(xid); θ}, b = 1, . . . , B,

where B is the number of non-overlapping blocks and m the length of each block. Note that in the
general setting, these blocks need not be of the same size. However, we follow here the approach of
Zhang et al. (2016), who restrict themselves to the same length case of each block. This assumption
also simplifies the usage in terms of many parameters. The resulting test statistics,

Tn(m) =
B

∑
b=1

m

∑
i=1

[
log

c{F̃1(xi1), . . . , F̃d(xid); θ̂}
c{F̃1(xi1), . . . , F̃d(xid); θ̂−b}

]
, (10)

compares the full likelihood, “in-sample”, against the resulting likelihoods from the leave-one-block
out estimation, “out-of-sample”. If the data in each block significantly influence the estimation of the
copula parameter under the null hypothesis, then the chosen copula model is inadequate to represent
the data.

Depending on the number of blocks, B, a possibly huge amount of dependence parameter esti-
mations have to be performed to get (10). In the case of equal length of each block, [ n

m ] parameters
should be computed. To overcome this drawback, under suitable regularity conditions, Zhang et al.
(2016) proposed the test statistic asymptotically equivalent to (10):

Rn = tr{Ŝ(θ̂)−1V̂(θ̂)}. (11)

As we see, this result is very similar to the White (1982) test, but the power of the test is much higher.
Both exact and asymptotic test statistics are denoted in the package as gofPIOSTn and gofPIOSRn,
respectively.

Hybrid test

Many power studies including Genest et al. (2009) showed that no overall single optimal test exists for
testing for copula models. Zhang et al. (2016) introduced a Hybrid test to combine the testing power
of several tests. Having q different tests and the corresponding p-values, p(1), . . . , p(q), the combined
p-value is defined to be:

phybrid = min{q · min (p(1), . . . , p(q)), 1}. (12)

In Zhang et al. (2016), it is shown that the consistency of (12) is ensured as long as at least one of the q
tests is consistent.

Bootstrapping test statistics

As the distribution of the test statistics is in most cases unknown, we perform a parametric bootstrap
to receive the p-values. The necessary steps are described as follows:

Step 1. Generate bootstrap sample
{

ϵ
(m)
i , i = 1, . . . , n

}
from copula C(u1, . . . , ud; θ̂) under H0 with θ̂

and estimated marginal distributions F̃ obtained from original data;

Step 2. Based on
{

ϵ
(m)
i , i = 1, . . . , n

}
from Step 1, estimate θ of the copula under H0 and compute test

statistics under consideration, say ;
Step 3. Repeat M-times Steps (1. – 2.) and obtain M statistics Tm

n , m = 1, . . . , M;
Step 4. Compute an empirical p-value as pe = M−1 ∑M

m=1 1{|Tm
n | ≥ |Tn|} with Tn being the test

statistics estimated from original dataset.

Depending on the different tests, variants of the described steps have to be performed. For example,
the Kernel density estimation test of Scaillet (2007) described in Section 2.3.5 relies on a double
bootstrapping procedure, in which for the computation of each test statistic, Tn and Tm

n in the steps
above, an additional bootstrapping is utilized. Thus, the double bootstrapping approach consists of
one bootstrap to calculate the p-value from a given test statistic and a second bootstrap to calculate
the test statistic from an estimated copula. For further details, we refer to Scaillet (2007). Both
bootstrapping procedures can be controlled via the arguments M and MJ, respectively.
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4 Functionality of the R-package

The core of the gofCopula package is the function gof, which computes different tests for different
copulae for a given dataset, based on the user’s choice.

R> library("gofCopula")
R> data("IndexReturns2D", package = "gofCopula")
R> system.time(result <- gof(IndexReturns2D, M = 100, seed.active = 1))

The margins will be estimated as: ranks
normal copula
Test gofCvM is running
Test gofKendallCvM is running
Test gofKendallKS is running
Test gofKernel is running
Test gofKS is running

t copula
Test gofCvM is running
Test gofKendallCvM is running
Test gofKendallKS is running
Test gofKernel is running
Test gofKS is running

clayton copula
Test gofCvM is running
Test gofKendallCvM is running
Test gofKendallKS is running
Test gofKernel is running
Test gofKS is running

gumbel copula
Test gofCvM is running
Test gofKendallCvM is running
Test gofKendallKS is running
Test gofKernel is running
Test gofKS is running

frank copula
Test gofCvM is running
Test gofKendallCvM is running
Test gofKendallKS is running
Test gofKernel is running
Test gofKS is running

joe copula
Test gofCvM is running
Test gofKendallCvM is running
Test gofKendallKS is running
Test gofKernel is running
Test gofKS is running

amh copula
The copula amh is excluded from the analysis since the parameters do not fit its
parameter space. See warnings and manual for more details.

galambos copula
Test gofCvM is running
Progress: [===>--------------------------------------] 15% | time left: 3s
...

user system elapsed
629.26 1.08 628.94
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Warnings:
...

gof considers all 13 available copula models if no copulae or tests are specified. If a copula is unsuitable
in the sense that the estimated parameter is at the boundary of the parameter space, the copula is
automatically excluded, and the user is informed via a console statement (see above) and additional
warnings. In the given example, this is the case for the AMH, tawn, and FGM copulae because the
used IndexReturns2D dataset exhibits an estimated Kendall’s τ̂ = 0.611, which none of these three
copulae can model adequately; see Table A.1. The object result is of class "gofCOP" and has length 10,
which is the number of copulae used in testing (here: 13) minus the ones excluded during calculation
(here: 3). Following Table 1, five tests are available for all of these copula models in d = 2, and these
are used in the given function call.

If the user specifies copulae, tests, or both, the intersection of possible tests and copulae following
Table 1 is considered. For example, if copula = c("normal","tawn") is specified, the function
calculates the five tests which are implemented for both copulae (assuming d = 2). If, on the
other hand, tests = c("gofKernel","gofArchmSnB") is selected, the five Archimedean copulae
implemented for both tests are computed. In the case when both copulae and tests are defined, the
function provides results for the possible combinations. During the calculation, the user is informed
about the computation progress by statements about the running test and copula. Furthermore, a
progress bar indicates the percentage of progress for this specific test as well as a dynamically updated
estimated remaining time.

R> result$normal

$method
[1] "Parametric bootstrap goodness-of-fit test with hybrid test and normal copula"

$copula
[1] "normal"

$margins
[1] "ranks"

$param.margins
list()

$theta
[,1]

[1,] 0.8347428

$df
NULL

$res.tests
p.value test statistic

CvM 1.00 0.01520542
KendallCvM 0.41 0.06286712
KendallKS 0.11 0.80800000
Kernel 0.39 0.56012429
KS 1.00 0.31392428
hybrid(1, 2) 0.82 NA
hybrid(1, 3) 0.22 NA
...

The first element of result provides results for the normal copula. Note that in the field res.tests
the hybrid tests, starting after the individual ones, contain numbers in brackets indicating which tests
are considered for this hybrid. Thus, hybrid(1,2) means that this is the hybrid of CvM and KendallCvM
tests. The p-value 0.82 in testing for normality is obtained following formula (12) and therefore is
min{2 · min(1.00, 0.41), 1} = 0.82. To access the rotated versions of the copulae, one can set, for
example, copula = c("clayton","gumbel") together with flip = c(0,180), which would test for
the Clayton copula and the 180 degrees rotated Gumbel copula.
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gofCOP class

Objects of class "gofCOP" are generated by the function gof or a single test function like, e.g., gofPIOSTn.
They consist of different sub-elements - one for each copula - as, e.g., result$normal in the given
example. These sub-elements are lists of length seven and contain the estimation and test results
for the specific copula. They present in the field method a description of the test scenario. The field
margins lists the defined marginal distribution that can also be a vector of distributions where each
element is applied to the respective data column, whereas param.margins returns the estimates of the
parameters of the marginal distributions if a parametric approach was specified. Field theta contains
the ML estimate of the copula parameter. In case of the t- and t-EV-copulae, the section df is the
estimated number of degrees of freedom for the copula. The values of these parameters are identical
for all the tests. In res.tests, the p-values and test statistics (only for individual tests) are given for
each of the executed tests. Each row corresponds to one test from the individual to the hybrid tests.
p-values of all the individual tests are computed via the bootstrap method described in Section 2.3.9.
The number of bootstrap samples M can be adjusted via the parameter M.

Plotting gofCOP class objects

"gofCOP" objects can be called by a generic plot function allowing the user to get the p-values of the
single, and the hybrid tests visualized in a pirateplot of the R-package yarrr. It enables the user to
select which copulae and hybrid testing sizes are desired for plotting. The remaining customization
options are equal to those of the function pirateplot from the package yarrr, except for the arguments
formula, data, sortx, xaxt, xlim, ylim, and ylab.

R> plot(result, copula = c("clayton", "joe", "plackett"), hybrid = c(1, 3, 5))
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Figure 1: Resulting p-values of different hybrid tests for the Clayton, Joe, and Plackett copula visualized
in a pirateplot.

Specifying hybrid = c(1,3,5) means that the p-values of the single tests (column singleTests
in Figure 1), the p-values of hybrid tests of size three (column hyb3), and size five (column hyb5)
should be plotted, separated by selected copulae. For example, we focus on the column hyb3 for the
Plackett copula. It contains information of all hybrid tests, which include three single tests for the
Plackett copula. In this case, we can see that the mean of these tests is approximately 0.76, as shown
by the thick horizontal line. All test p-values are shown by light-grey points in the column, indicating
the heterogeneity of the tests ranging from 0.6 to 1. Finally, the green bar around the mean line is a
Bayesian highest density interval, which provides the user, together with the shown density estimate
in the grey continuous lines, further information about the distribution of the p-values. For more
details on the pirateplot and its customization options, we refer to Phillips (2017).

Fire-and-forget

The R-package gofCopula includes all the discussed tests in Section 2.3. For each of the tests, a separate
function is implemented with a variety of arguments. We give shortly the most important arguments
all the tests share before we go into details about the structure of the package.

• copula: The copula to test for. Possible options depend on the test and dimension.
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• x: A matrix containing the data with rows being observations and columns being variables.

• M (default: 1000): Number of bootstrapping loops.

• param (default: 0.5): The copula parameter to use if it shall not be estimated. In case of the
Gumbel copula, the default value is set to 1.5.

• param.est (default: TRUE): Boolean. TRUE means that param will be estimated.

• margins (default: ranks): Specifies which estimation method shall be used. The default ranks
stands for formula (4), which is the standard approach to convert data. Alternatively, the
following distributions can be specified: beta, cauchy, Chi-squared (chisq), f, gamma, Log
normal (lnorm), Normal (norm), t, weibull, Exponential (exp).

• flip (default: 0): The parameter to rotate the copula by 90, 180, 270 degrees clockwise. Only
applicable for bivariate copula.

• seed.active (default: NULL): Sets the seeds for the bootstrapping procedure. It has to be either
an integer or a vector of M+1 integers. If an integer is provided, the seeds for the bootstrap
samples will be simulated based on it. If M+1 seeds are given, these are used in the bootstrapping
procedure. In the default case (seed.active = NULL), R generates the seeds from the computer
runtime.

• processes (default: 1): The number of parallel processes which are performed to speed up the
bootstrapping. Should not be larger than the number of logical processors.

The package is coded as a fire-and-forget package. Each of the single tests just requires the input of
a dataset x and a copula to test for. All the other function parameters have reasonable default values
such that quick first results can be achieved easily. The calculation steps of each GoF test function are
the following:

• Estimation of margins: At first, the function transforms the data nonparametrically or parametri-
cally to U [0, 1]; see Section 2.2. This transformation is performed automatically, and a console
statement informs the user about the transformation.

• Estimation of copula: Afterward, the parameters of the copula model are estimated, so a two-stage
estimation is applied; see Section 2.2. Since a full ML estimation is computationally demanding,
canonical ML estimation or inference for margins is applied. In case the ML estimation fails, the
package automatically changes to inversion of Kendall’s tau (see Section 2.2), which guarantees
a result. The user is informed about that switch by a warning message.

• Bootstrapping: Following the estimation of the copula parameters, the bootstrapping procedure
will be performed, and the empirical p-value will be derived according to the test statistics in
Section 2.3.9. Since the bootstrapping procedure can require a long computational time, it can
pay out to parallelize the bootstrapping via the argument processes.

Hybrid testing and further functionality

Besides gof and the single tests, the package gofCopula offers additional functionality for the user.
Next to descriptions, illustrative examples are provided, assuming the following was called before-
hand:

R> library("gofCopula")
R> data("IndexReturns2D", package = "gofCopula")
R> (res <- gof(copula = "normal", x = IndexReturns2D, M = 10, seed.active = 1,
+ tests = c("gofPIOSRn", "gofCvM", "gofKernel")))

The margins will be estimated as: ranks
normal copula
Test gofPIOSRn is running
Test gofCvM is running
Test gofKernel is running
-------------------------------------------------------------------------------
Parametric bootstrap goodness-of-fit test with hybrid test and normal copula

Parameters:
theta.1 = 0.834742824340301

Tests results:
p.value test statistic

PIOSRn 0.5 -0.11032857
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Sn 1.0 0.01520542
Kernel 0.3 0.56012429
hybrid(1, 2) 1.0 NA
hybrid(1, 3) 0.6 NA
hybrid(2, 3) 0.6 NA
hybrid(1, 2, 3) 0.9 NA

Please use the functions gofGetHybrid() and gofOutputHybrid() for
display of subsets of Hybrid tests. To access the results, please
obtain them from the structure of the gofCOP object.

The functions are:

• gofCustomTest: This function has - next to the standard arguments listed in Section 2.4.3 -
the argument customTest, a character string referencing one customized test loaded in the
workspace. The function containing this test should have two arguments: a matrix named
x for the dataset and a character string named copula for the copula to test for. The whole
calculation process, including the estimation of the margins and the copula, the calculation of
the test statistics, and the bootstrapping of the p-value, is performed for this customized test.
The procedure is shown using the test statistics of the gofCvM test.

R> Testfunc = function(x, copula) {
+ C.theo = pCopula(x, copula = copula)
+ C.n = F.n(x, X = x)
+ CnK = sum((C.n - C.theo)^2)
+ return(CnK)
+ }

R> gofCustomTest(copula = "normal", x = IndexReturns2D, M = 10,
+ customTest = "Testfunc", seed.active = 1)

The margins will be estimated as: ranks
-------------------------------------------------------------------------------
Parametric bootstrap goodness-of-fit test with Testfunc test and normal copula

Parameters:
theta.1 = 0.834742824340301

Tests results:
p.value test statistic

Testfunc 1 0.01520542

• gofGetHybrid: Allows calculating hybrid test p-values for given p-values from customized
tests with an object of class "gofCOP" generated in the package. Through the combination of
gofCustomTest and gofGetHybrid, the users are not limited to the implemented tests in the
package and have the opportunity to include their own tests in the analysis. Note that the
function gofOutputHybrid has slightly different but comparable functionality, which is the
reason it is not separately shown.

R> gofGetHybrid(result = res, nsets = 5, p_values = c("MyTest" = 0.7,
+ "AnotherTest" = 0.3))

-------------------------------------------------------------------------------
Hybrid test p-values for given single tests.

Parameters:
theta.1 = 0.834742824340301

Tests results:
p.value

PIOSRn 0.5
Sn 1.0
Kernel 0.3
MyTest 0.7
AnotherTest 0.3
hybrid(1, 2, 3, 4, 5) 1.0
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• gofTest4Copula: Returns for a given copula and a given dimension the list of applicable imple-
mented tests.

R> gofTest4Copula("gumbel", d = 5)

[1] "gofArchmChisq" "gofArchmGamma" "gofArchmSnB"
[4] "gofArchmSnC" "gofCustomTest" "gofCvM"
[7] "gofKendallCvM" "gofKendallKS" "gofKS"

[10] "gofRosenblattChisq" "gofRosenblattGamma" "gofRosenblattSnB"
[13] "gofRosenblattSnC"

• gofCopula4Test: Returns for a given test the list of applicable implemented copulae.

R> gofCopula4Test("gofPIOSTn")

[1] "normal" "t" "clayton" "gumbel" "frank" "joe"
[7] "amh" "galambos" "fgm" "plackett"

• gofCheckTime: Estimates the time necessary to compute a selected single or group of GoF tests
for a given number of bootstrapping rounds. This function uses an underlying regression model,
so the results may vary from reality and also from the progress bar predictions. See Section
2.4.5.

R> gofCheckTime("normal", x = IndexReturns2D, tests = "gofRosenblattSnC",
+ M = 10000, seed.active = 1)

The margins will be estimated as: ranks
An estimate of the computational time is under derivation.
Depending on the tests chosen, dimensionality and complexity of the data, this
might take a while.
The computation will take approximately 0 d, 0 h, 10 min and 7 sec.

• gofco: In the case a copula is already estimated with the package copula, one can provide
an object of class "copula" to this function, and the parameter estimates are taken from the
respective object.

R> copObject = normalCopula(param = 0.8)
R> gofco(copObject, x = IndexReturns2D, M = 10, seed.active = 1,
+ tests = c("gofPIOSRn", "gofKernel"))

The margins will be estimated as: ranks
Test gofPIOSRn is running
Test gofKernel is running
-------------------------------------------------------------------------------
Parametric bootstrap goodness-of-fit test with hybrid test and normal copula

Parameters:
theta.1 = 0.8

Tests results:
p.value test statistic

PIOSRn 0.9 -0.03641543
Kernel 0.2 0.57115224
hybrid(1, 2) 0.4 NA

Please use the functions gofGetHybrid() and gofOutputHybrid() for
display of subsets of Hybrid tests. To access the results, please
obtain them from the structure of the gofCOP object.
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Computational time and parallelization

One of the main drivers of long computation times is the high number of bootstrapping loops to achieve
an asymptotically reliable result. As mentioned in Section 2.4.4, the build-in function gofCheckTime
allows estimating the necessary computation time for a given test, copula, dataset, and number of
bootstrapping rounds. Since different machines may have highly varying computation times for
tests, the function relies on a regression using the number of bootstrapping loops as the independent
variable. To ensure that the linear model is a valid assumption, we investigated the case using the
functions gofKendallKS and gofKernel; see Section 2.5.2 for the results.

Enabling parallelization of the bootstrapping is necessary for computationally demanding tests
as gofPIOSTn where, e.g., the computation for a dataset of 500 observations and 1000 bootstrapping
loops for the t-copula can take, depending on the engine, up to several hours. However, even for
tests with faster computation time, parallelization is useful given the sample size and the number of
bootstrapping loops is sufficiently high. This is shown in Table 2 in the form of a comparison between
the computation times of five tests for five copulas without and with parallelization on four cores.
The dataset contained n = 500 observations randomly generated from a bivariate standard normal
distribution, and the number of bootstrapping loops was set to M = 1000.

Test normal t clayton gumbel frank

#processes = 1:

gofKendallCvM 200.33 530.22 166.85 249.86 167.81
gofKendallKS 115.43 450.50 100.69 172.26 88.83
gofPIOSRn 84.90 433.32 67.20 148.09 50.98
gofRosenblattChisq 75.79 431.02 73.09 143.94 55.97
gofRosenblattGamma 75.28 420.31 75.77 142.16 52.17

#processes = 4:

gofKendallCvM 106.19 288.86 104.29 140.25 94.69
gofKendallKS 68.73 238.55 56.13 89.02 53.00
gofPIOSRn 48.81 235.35 47.37 83.71 33.66
gofRosenblattChisq 49.43 230.33 45.83 85.70 35.47
gofRosenblattGamma 47.45 234.50 48.41 82.04 37.32

Table 2: Computation times in seconds without and with parallelization using an Intel Core i7-4712MQ
CPU with 2.3 GHz on a 64-Bit Windows 10 system.

5 Simulations

Empirical process of using the package

We would like to illustrate the power of the GoF tests with the use of the gofCopula package. In
practice, one is often confronted with realizations of random variables for which an adequate copula
model has to be found, as, e.g., in the two examples from the financial domain provided in Section 2.6.
To illustrate the procedure, we focus in this Section on an easy replicable example. For this purpose,
we start by simulating n = 1000 observations from a Clayton copula with Kendall’s τ = 0.5.

R> library("gofCopula")
R> param = iTau(copula = claytonCopula(), tau = 0.5)
R> n = 1000; set.seed(1)
R> x = rCopula(n = n, copula = claytonCopula(param = param))

To gain a better understanding of the data, Figure 2 shows the simulated data with different margins,
reflecting the typical shape of the Clayton copula.

R> par(mfrow = c(1,2))
R> u = cbind(ecdf(x[,1])(x[,1]), ecdf(x[,2])(x[,2])) * n / (n + 1)
R> plot(u, col = "blue3", pch = 19, cex.lab = 1.25,
+ xlab = expression(u[1]), ylab = expression(u[2]))
R> plot(qnorm(u), col = "blue3", pch = 19, cex.lab = 1.25,
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+ xlab = expression(x[1]), ylab = expression(x[2]))
R> par(mfrow = c(1,1))
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Figure 2: n = 1000 observations sampled from a Clayton copula with τ = 0.5. Margins are transformed
using ranks on the left plot and are standard normal on the right plot.

To make an adequate decision on which copula should be used in the respective modeling task,
the GoF testing should involve more than looking at one or two test results and should consider a
reasonable amount of potential copula models. We structure our procedure by testing for three groups
of copulae separately: Elliptical, Archimedean, and extreme value (EV) copulae. In the function call,
we select the FGM and Plackett copulae together with the EV category, although they do not belong
to any of the three categories. Elliptical copulae include the normal and t-copula, while the Clayton,
Gumbel, Frank, Joe, and AMH copulae are the Archimedean ones. Galambos, Husler-Reiss, Tawn,
and t-EV belong to the EV category. Notice that this categorization could be modified, as, e.g., the
Gumbel copula is also an EV copula. However, the given approach offers not only a logical structuring
of the modeling task, but leads to using a close to maximal number of tests via only three function
calls. The bootstrap parameters were set to M = 100 and MJ = 1000. As this task is computationally
demanding, we set the argument processes = 7 to speed up the calculation using parallelization on 7
cores. We use the default margins = "ranks" and set seed.active = 10 for reproducibility.

R> cop_1 = gof(x = x, M = 100, MJ = 1000, processes = 7, seed.active = 10,
+ copula = c("normal", "t"))
R> cop_2 = gof(x = x, M = 100, MJ = 1000, processes = 7, seed.active = 10,
+ copula = c("clayton", "gumbel", "frank", "joe", "amh"))
R> cop_3 = gof(x = x, M = 100, MJ = 1000, processes = 7, seed.active = 10,
+ copula = c("galambos", "huslerReiss", "tawn", "tev", "fgm", "plackett"))

To evaluate the gained objects of class "gofCOP", one can manually inspect the resulting p-values
and look closer at the performances and differences between the single tests and the corresponding
hybrids. However, the easiest and most informative way is to visualize the p-values, which is done
using the plot function.

R> plot(cop_1)
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Figure 3: p-values of the hybrid tests for the data from Figure 2 for elliptical copulae.
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R> plot(cop_2)
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Figure 4: p-values of the hybrid tests for the data from Figure 2 for Archimedean copulae.

R> plot(cop_3)
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Figure 5: p-values of the hybrid tests for the data from Figure 2 for EV, FGM, and Plackett copulae.

Interpreting Figures 3, 4, and 5 clearly shows the ability of the tests to detect the true copula. The
column singleTests in Figure 4 indicates that the Clayton copula is appropriate. The decision is
supported by the higher-order hybrid tests, as all p-values except for the Clayton copula become 0,
strongly rejecting the H0-hypothesis in these cases. Notice that similar to the introductory example in
Section 2.4, the AMG, Tawn, and FGM are automatically excluded, which is why they do not appear in
the plots. Having such a result at hand, the user can proceed with the modeling task with the selected
copula.

Validating the model for the time estimation

In the next step, we validate the assumption of using a linear model for estimating the computation
time in gofCheckTime. We have chosen the gofKendallKS test as a representative for the group of single
bootstrapping tests and gofKernel, as the test having a double bootstrapping procedure. Both tests are
available for all copulae in the bivariate case. For gofKendallKS, we measured the computation times
for 12 copulae, varying numbers of bootstrap loops (M) and sample sizes (n) of the underlying dataset,
which is simulated from a normal copula with Kendall’s τ = 0.1. This value is selected because it falls
within the attainable interval of Kendall’s τ for all copulae, see Table A.1. For gofKernel, we fixed
n = 100 and investigated the situation for 12 copulae, different M, and different sample sizes MJ of
the internal bootstrap. The results are shown in Figures 6, 7, and 8. The t-EV copula is not included in
these illustrations due to its tremendous computation time, which can exceed the one of the t-Copula
even for small sample sizes by a factor of 10 and higher. However, similar properties in the behavior of
the computation time depending on the number of bootstrapping loops can be found. All calculations
were performed without parallelization using an Intel Core i7-4712MQ CPU with 2.3 GHz on a 64-Bit
Windows 10 system.
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For the gofKendallKS test, the computation time increases linearly with the number of bootstrap-
ping loops M, while the t-Copula is generally the most time-demanding of the considered copulae.
This holds for all the analyzed sample sizes. A similar observation can be made for the gofKernel
test. Here, a rapid increase in computation time is expected if both M and MJ increase. However,
following Figures 7 and 8, this is not the case, and a linear dependency is justifiable. Therefore, the
package implements for gofKernel a linear model with M and MJ being independent variables.
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Figure 6: Computation times of gofKendallKS for different copulae, sample sizes n, and number of
bootstrapping loops M.
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Figure 7: Computation times of gofKernel for different copulae, number of bootstrapping loops M,
and internal bootstrap sample size MJ.

Figure 8: Computation times of gofKernel for different copulae, number of bootstrapping loops M,
and internal bootstrap sample size MJ.

6 Application

Cryptocurrency market

We intend to demonstrate the functionality of the gofCopula package and show the empirical pro-
cedure as described in Section 2.5.1 on a real-world example from the market of cryptocurrencies.
To account for the relevant steps in a realistic application study, we split the procedure into Data
Investigation and Goodness-of-Fit testing.

Data investigation

We have chosen Bitcoin (BTC) and Litecoin (LTC) for our analysis. The objective is to detect which
copula is appropriate to model the dependence structure between BTC-LTC and check whether the
copula changes over the years. For that purpose, we use the volatility-adjusted log-returns of the
currencies in the time span from 2015 to 2018. The volatility correction was performed by fitting a
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GARCH(1,1) process to each time series for each year separately in order to extract their standardized
residuals. These are included in the package as CryptoCurrencies, whereas each element of the list
contains the data for a particular year. In order to gain a visual impression beforehand, we plotted
the data with margins transformed to standard normal, leading to Figure 9. A strong dependency
between both cryptocurrencies is visible, especially in the year 2018. Based on these residual diagrams,
it is possible to take a guess which copula is the most adequate for the given situation. For 2015, one
could possibly argue that the elliptical shape of a normal copula is present, while in 2016 and 2018,
the shapes are more similar to the one of a t-Copula. Finally, for the year 2017, Figure 9 shows a
comparable plot to Figure 2 from the simulated example in Section 2.5.1, indicating a Clayton copula
might be present. However, these visual impressions are to a certain degree subjective and need to be
backed up by the GoF tests. Ideally, the test results would match our plot-based guesses.

R> library("gofCopula")
R> data("CryptoCurrencies", package = "gofCopula")
R> par(mfrow = c(2,2))
R> years = as.character(2015:2018)

R> for(i in years){
+ x1 = CryptoCurrencies[[i]][,1]
+ x2 = CryptoCurrencies[[i]][,2]
+ n = length(x1)
+ plot(qnorm(cbind(ecdf(x1)(x1), ecdf(x2)(x2)) * n / (n + 1)), col = "blue3",
+ pch = 19, cex.lab = 1.25, main = i, xlab = "Bitcoin", ylab = "Litecoin")
+ }
R> par(mfrow = c(1,1))
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Figure 9: Residual plots for BTC-LTC with margins transformed to standard normal.

Goodness-of-fit testing

In this example, the focus in testing is on the most popular copula models in practice: normal, t,
Clayton, Gumbel, and Frank copulae. To get the highest testing power, we include all tests, which
are available for all five copulae. Thus, following Table 1, each test in the package except the ones
based on the transformation for Archimedean copulae (see Section 2.3.4) is computed. Additionally, all
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possible hybrid tests are considered. We use the function gof while setting the bootstrap parameters
M = 100 and MJ = 1000. We specify the number of cores for the parallelization to processes = 7.
For replicability, we set seed.active = 1:101 and apply the non-parametric margin transformation
by default.

R> copulae = c("normal", "t", "clayton", "gumbel", "frank")

R> BTC_LTC_15 = gof(x = CryptoCurrencies[["2015"]], copula = copulae, M = 100,
+ MJ = 1000, processes = 7, seed.active = 1:101)
R> BTC_LTC_16 = gof(x = CryptoCurrencies[["2016"]], copula = copulae, M = 100,
+ MJ = 1000, processes = 7, seed.active = 1:101)
R> BTC_LTC_17 = gof(x = CryptoCurrencies[["2017"]], copula = copulae, M = 100,
+ MJ = 1000, processes = 7, seed.active = 1:101)
R> BTC_LTC_18 = gof(x = CryptoCurrencies[["2018"]], copula = copulae, M = 100,
+ MJ = 1000, processes = 7, seed.active = 1:101)

After finishing the calculations, we proceed by plotting the received objects of class "gofCOP". For a
detailed explanation about the information contained in the gofCopula pirateplots, please see Section
2.4.2 and Phillips (2017).

R> plot(BTC_LTC_15)
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Figure 10: p-values of the single and hybrid tests for BTC-LTC in the year 2015.

R> plot(BTC_LTC_16)
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Figure 11: p-values of the single and hybrid tests for BTC-LTC in the year 2016.
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R> plot(BTC_LTC_17)
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Figure 12: p-values of the single and hybrid tests for BTC-LTC in the year 2017.

R> plot(BTC_LTC_18)
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Figure 13: p-values of the single and hybrid tests for BTC-LTC in the year 2018.

Figures 10 to 13 show the resulting p-values in the form of "gofCOP"-plots for all the considered
years. Following the usual approach in practice, we select the copula corresponding to the highest
p-values. For the year 2015, we see that the t-copula is favored by the tests, as all remaining p-values
become 0 with increasing hybrid testing size; see Figure 10. This rejects our initial visual guess that
a normal copula might be appropriate. Continuing with 2016, we see our visual opinion solidified,
as the plot suggests using a t-copula to capture the dependence structure. We can even see that the
p-values converge to 1 for the t-copula when we consider the hybrid testing orders 9, 10, 11, and 12 .
Figure 12 is in line with our visual impression as well. We see that the tests favor a Clayton copula,
while the other copula models are rejected by the higher-order hybrid tests. Finally, for 2018 Figure
13 gives for the t-copula the highest p-values, although the difference to the p-values of the Clayton
copula is not too large. Therefore, in three out of four years, the results from gofCopula matched our
visual impressions from the residual plots.

Summarizing, the following conclusions can be drawn from this analysis:

• Generally, the dominant copulae in describing the dependency between the volatility-adjusted
log-returns of BTC-LTC is the t-copula. Following the test results, the year 2017 is an exception,
as the dependence structure shifted towards a Clayton copula. This observation reflects the
change in the market during the year 2017, as many investors got attracted by cryptocurrencies
in this phase. Due to the developed hype, both the prices of BTC and LTC drastically increased,
resulting in a modified underlying dependence structure between the two currencies.

• The hybrid tests are able to stabilize the results of the single tests, as they clearly selected for
2015, 2016, and 2018 the t-copula and in 2017 the Clayton copula. Therefore it is recommendable
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to take hybrid tests into account in order to use the package adequately and get the highest
testing power.

Stock return data

As a second real-world example, we analyze the volatility-adjusted stock log-returns of Citigroup (C)
and the Bank of America (BoA) in the time span from 2004 to 2012. The procedure is, again, splitted
into Data Investigation and Goodness-of-Fit testing.

Data investigation

This data was analyzed by Zhang et al. (2016), and we are expanding their procedure and consider the
same copulae and tests as in the example in Section 2.6.1. The volatility correction was performed
similarly in terms of fitting a GARCH(1,1) process, and the resulting data is included in gofCopula in
the list Banks. Note that in this section, we focus on the years 2004 and 2007, while the results of the
other years are given in Appendix B. We start by visualizing the residuals with margins transformed
to standard normal.

R> library("gofCopula")
R> data("Banks", package = "gofCopula")
R> par(mfrow = c(1,2))

R> for(i in c("2004", "2007")){
+ x1 = Banks[[i]][,1]
+ x2 = Banks[[i]][,2]
+ n = length(x1)
+ plot(qnorm(cbind(ecdf(x1)(x1), ecdf(x2)(x2)) * n / (n + 1)), col = "blue3",
+ pch = 19, cex.lab = 1.25, main = i, xlab = "Citigroup", ylab = "Bank of America")
+ }
R> par(mfrow = c(1,1))
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Figure 14: Residual plots for C/BoA in 2004 and 2007 with standard normal margins.

Analyzing the shape of the data in Figure 14 for 2004, one may argue that the elliptical normal
copula is present, while in 2007, a t-copula is possibly more appropriate. To check these assumptions,
we proceed with the GoF testing.

Goodness-of-fit testing

We set M = 100 and MJ = 1000 as bootstrap parameters, parallelize via processes = 7, and set
seed.active = 1:101 for reproducibility. Further, we implicitly keep the default margins = "ranks"
to perform the margin transformation nonparametrically.
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R> copulae = c("normal", "t", "clayton", "gumbel", "frank")

R> C_BoA_04 = gof(x = Banks[["2004"]], copula = copulae, M = 100, MJ = 1000,
+ processes = 7, seed.active = 1:101)
R> C_BoA_07 = gof(x = Banks[["2007"]], copula = copulae, M = 100, MJ = 1000,
+ processes = 7, seed.active = 1:101)

Following these calculations, we continue to plot the results, leading to Figures 15 and 16. For a
detailed explanation about the information contained in the gofCopula pirateplots, please see Section
2.4.2 and Phillips (2017). Interpreting these "gofCOP"-plots of the p-values, the tests propose for 2004
indeed a normal copula (and a Frank one, which is radially symmetric), although a t-copula is a valid
assumption as well. Compared to 2004, the p-values for the normal copula definitely decreased in 2007
and converged slowly to 0 with increasing hybrid testing size. The decision goes clearly in favor of the
t-copula, which is in line with our original guess. Evaluating the results from Appendix B leads to
similar conclusions as in Section 2.6.1. The hybrid tests are relatively stable and match in the majority
of the cases the visual impressions from the residual plots. The proper copula seems to be the t-copula
in most of the years, although in 2004 and 2009, the normal copula is a reasonable assumption. The
hybrid tests are able to stabilize the selection of the copula.

R> plot(C_BoA_04)
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Figure 15: p-values of the C/BoA data for 2004. The column hyb12 of the t-copula is empty, as the
p-value of the test gofWhite could not be computed due to instability in the test statistics. For a
detailed description of this phenomenon, see Nagler et al. (2019).

R> plot(C_BoA_07)
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Figure 16: p-values of the C/BoA data for 2007.
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7 Conclusion

This paper introduces a gofCopula package that provides maximum flexibility in performing statistical
Goodness-of-Fit tests for copulae. The package provides an interface for 16 most popular GoF tests for
13 copulae with automatic estimation of margins via different techniques. The user is not limited to
the implemented tests as self-defined test statistics functions can be easily embedded via a function
provided in the package. As the computation of p-values relies on a parametric bootstrap, efficient
and user-friendly parallelization is available. During the bootstrapping procedure, all tests inform the
user about the progress of the calculations as well as the estimated time until the results are available.
Additionally, gofCopula allows for the replication of said results. The package offers intelligible and
interpretable visualization of the results of the hybrid tests that strengthen the overall test power. The
flexibility and the usefulness of the tests are shown via a simulation and two empirical studies in
economic sciences. In a nutshell, the broad range of tests, the comprehensive combination of methods,
and an informative user-interface make gofCopula a fire-and-forget package providing flexibility in
testing for the proper copula.
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1 Appendix A

Table A.1 contains parameter ranges, the bivariate cumulative distribution function (CDF), and possible
values of Kendall’s τ for the copulae available in gofCopula.

Copula θ ∈ C(u1, u2) τ ∈

Normal [−1, 1]
∫ Φ−1(u1)
−∞

∫ Φ−1(u2)
−∞

1
2π

√
1−θ2 exp

{
2θst−s2−t2

2(1−θ2)

}
dsdt [−1, 1]

t [−1, 1]
ν > 0

∫ t−1
ν (u1)

−∞

∫ t−1
ν (u2)

−∞
1

2π
√

1−θ2

{
1 + s2+t2−2θst

ν(1−θ2)

}− ν+2
2 dsdt [−1, 1]

Clayton [−1, ∞)\{0}
{

max(u−θ
1 + u−θ

2 − 1, 0)
}− 1

θ
[−1, 1]

Gumbel [1, ∞) exp
[
−
{
(− log u1)

1
θ + (− log u2)

1
θ

}θ
]

[0, 1]

Frank (−∞, ∞)\{0} − 1
θ log

[
1 + {exp(−θu1)−1}{exp(−θu2)−1}

exp(−θ)−1

]
[−1, 1]

Joe [1, ∞) 1 −
{
(1 − u1)

θ + (1 − u2)
θ − (1 − u1)

θ(1 − u2)
θ
} 1

θ [0, 1]

AMH [−1, 1] u1u2
1−θ(1−u1)(1−u2)

[
5−8 log 2

3 , 1
3 ]

≈ [−0.1817, 0.3333]

Galambos [0, ∞) u1u2 exp
[{

(− log u1)
−θ + (− log u2)

−θ
}− 1

θ

]
[0, 1]

Husler-Reiss [0, ∞) exp
{

log(u1)Φ( 1
θ +

1
2 θ log log u1

log u2
) + log(u2)Φ( 1

θ +
1
2 θ log log u2

log u1
)
}

[0, 1]

Tawn [0, 1] u1u2 exp
(
−θ

log u1 log u2
log u1+log u2

)
[0,

8 arctan(
√

1
3 )√

3
− 2]

≈ [0, 0.4184]

t-EV [−1, 1]
ν > 0 see Demarta and McNeil (2005) [0, 1]

FGM [−1, 1] u1u2 + u1u2θ(1 − u1)(1 − u2) [− 2
9 , 2

9 ]

Plackett (0, ∞)
{1+(θ−1)(u1+u2)}−

√
{1+(θ−1)(u1+u2)}2−4u1u2θ(θ−1)

2(θ−1) [−1, 1]

Table A.1: This table is mainly based on Michiels and De Schepper (2008). AMH abbreviates Ali-
Mikhail-Haq. FGM stands for Farlie-Gumbel-Morgenstern. Φ is the CDF of the univariate standard
normal distribution and Φ−1 its inverse. t−1

ν is the inverse CDF of the univariate t-distribution with ν
degrees of freedom. The expression of the CDF for the t-EV is complex due to the construction via a
Pickands dependence function, which is why we do not explicitly list it. The given parameterization
of the tawn copula is based on the one implemented in the package copula.

2 Appendix B

This section is devoted to the results of Section 2.6.2.
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Figure B.1: p-values of the C/BoA data for 2005. The column hyb12 of the t-copula is empty, as
the p-value of the test gofWhite could not be computed due to instability in the test statistics. For a
detailed description of this phenomenon, see Nagler et al. (2019).
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Figure B.2: p-values of the C/BoA data for 2006.
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Figure B.3: p-values of the C/BoA data for 2008. The column hyb12 of the t-copula is empty, as
the p-value of the test gofWhite could not be computed due to instability in the test statistics. For a
detailed description of this phenomenon, see Nagler et al. (2019).
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Figure B.4: p-values of the C/BoA data for 2009. The column hyb12 of the t-copula is empty, as
the p-value of the test gofWhite could not be computed due to instability in the test statistics. For a
detailed description of this phenomenon, see Nagler et al. (2019).
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Figure B.5: p-values of the C/BoA data for 2010.
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Figure B.6: p-values of the C/BoA data for 2011.
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Figure B.7: p-values of the C/BoA data for 2012. The column hyb12 of the t-copula is empty, as
the p-value of the test gofWhite could not be computed due to instability in the test statistics. For a
detailed description of this phenomenon, see Nagler et al. (2019).
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ROCnReg: An R Package for Receiver
Operating Characteristic Curve Inference
With and Without Covariates
by María Xosé Rodríguez-Álvarez and Vanda Inácio

Abstract This paper introduces the package ROCnReg that allows estimating the pooled ROC
curve, the covariate-specific ROC curve, and the covariate-adjusted ROC curve by different methods,
both from (semi) parametric and nonparametric perspectives and within Bayesian and frequentist
paradigms. From the estimated ROC curve (pooled, covariate-specific, or covariate-adjusted), several
summary measures of discriminatory accuracy, such as the (partial) area under the ROC curve and the
Youden index, can be obtained. The package also provides functions to obtain ROC-based optimal
threshold values using several criteria, namely, the Youden index criterion and the criterion that
sets a target value for the false positive fraction. For the Bayesian methods, we provide tools for
assessing model fit via posterior predictive checks, while the model choice can be carried out via
several information criteria. Numerical and graphical outputs are provided for all methods. This is
the only package implementing Bayesian procedures for ROC curves.

1 Introduction

The receiver operating characteristic (ROC) curve (Metz, 1978) is, unarguably, the most popular tool
used for evaluating the discriminatory ability of continuous-outcome diagnostic tests. The ROC
curve displays the false positive fraction (FPF) against the true positive fraction (TPF) for all possible
threshold values that can be used to dichotomize the test result. The ROC curve thus provides a global
description of the trade-off between the FPF and the TPF of the test as the threshold changes. Plenty of
parametric and semi/nonparametric methods are available for estimating the ROC curve, either from
frequentist or Bayesian viewpoints, and we refer the interested reader to Pepe (1998, Chapter 5), Zhou
et al. (2011, Chapter 4), Inácio et al. (2020), and references therein.

It is known that in many situations, the outcome of a test and, possibly, its discriminatory capacity
can be affected by covariates. Two different ROC-based measures that incorporate covariate infor-
mation have been proposed: the covariate-specific or conditional ROC curve (see, e.g., Pepe, 2003,
Chapter 6) and the covariate-adjusted ROC curve (Janes and Pepe, 2009). The formal definition of both
curves is given in Section Notation and definitions. Succinctly, a covariate-specific ROC curve is an
ROC curve that conditions on a specific covariate value, thus describing the accuracy of the test in
the ‘subpopulation’ defined by that covariate value. On the other hand, the covariate-adjusted ROC
curve is a weighted average of covariate-specific ROC curves. Regarding estimation, since the seminal
paper of Pepe (1998), a plethora of methods have been proposed in the literature for the estimation
of the covariate-specific ROC curve and associated summary measures. Without being exhaustive,
we mention the work of Faraggi (2003), Rodríguez-Álvarez et al. (2011a,b), Inácio de Carvalho et al.
(2013), and Inácio de Carvalho et al. (2017). A detailed review can be found in Rodríguez-Álvarez et al.
(2011c), Pardo-Fernández et al. (2014), and Inácio et al. (2020). With respect to the covariate-adjusted
ROC curve, estimation has been discussed in Janes and Pepe (2009), Rodríguez-Álvarez et al. (2011a),
Guan et al. (2012), and Inácio de Carvalho and Rodríguez-Álvarez (2018).

A few R packages for ROC curve analysis are available on the Comprehensive R Archive Network
and, as far as we are aware, all of them implementing frequentist approaches. The package sROC
(Wang, 2012) contains functions to perform nonparametric, kernel-based, estimation of ROC curves.
pROC (Robin et al., 2011) offers a set of tools to visualize, smooth, and compare ROC curves, and
nsROC (Pérez Fernández et al., 2018) also allows estimating ROC curves, building confidence bands
as well as comparing several curves both for dependent and independent data (i.e., data arising
from paired and unpaired study designs, respectively). However, covariate information cannot be
explicitly taken into account in any of these packages. The packages ROCRegression (available at
https://bitbucket.org/mxrodriguez/rocregression) and npROCRegression (Rodriguez-Alvarez
and Roca-Pardinas, 2017) provide routines to estimate semiparametrically and nonparametrically,
under a frequentist framework, the covariate-specific ROC curve. We also mention OptimalCutpoints
(López-Ratón et al., 2014) and ThresholdROC (Perez Jaume et al., 2017) that provide a collection of
functions for point and interval estimation of optimal thresholds for continuous diagnostic tests. To
the best of our knowledge, there is no statistical software package implementing Bayesian inference
for ROC curves and associated summary indices and optimal thresholds.

To close this gap, in this paper we introduce the ROCnReg package that allows conducting
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Method Description
Pooled ROC curve
emp (Frequentist) empirical estimator (Hsieh and Turnbull, 1996).
kernel (Frequentist) kernel-based approach (Zou et al., 1997).
BB Bayesian bootstrap method (Gu et al., 2008).
dpm Nonparametric Bayesian approach based on a Dirichlet process

mixture of normal distributions (Erkanli et al., 2006).
Covariate-specific ROC curve
sp (Frequentist) parametric and semiparametric induced ROC regres-

sion approach (Pepe, 1998; Faraggi, 2003)
kernel Nonparametric (kernel-based) induced ROC regression approach

(Rodríguez-Álvarez et al., 2011a).
bnp Nonparametric Bayesian model based on a single-weights depen-

dent Dirichlet process mixture of normal distributions (Inácio de
Carvalho et al., 2013).

Covariate-adjusted ROC curve
sp (Frequentist) semiparametric method (Janes and Pepe, 2009).
kernel Nonparametric (kernel-based) induced ROC regression approach

(Rodríguez-Álvarez et al., 2011a).
bnp Nonparametric Bayesian model based on a single-weights depen-

dent Dirichlet process mixture of normal distributions and the
Bayesian bootstrap (Inácio de Carvalho and Rodríguez-Álvarez,
2018).

Table 1: Overview of ROC estimation methods included in the ROCnReg package.

Bayesian inference for the (pooled or marginal) ROC curve, the covariate-specific ROC curve, and
the covariate-adjusted ROC curve. For the sake of generality, frequentist approaches are also imple-
mented. Specifically, in what concerns estimation of the pooled ROC curve, ROCnReg implements
the frequentist empirical estimator described in Hsieh and Turnbull (1996), the kernel-based approach
proposed by Zou et al. (1997), the Bayesian Bootstrap method of Gu et al. (2008), and the Bayesian
nonparametric method based on a Dirichlet process mixture of normal distributions model proposed
by Erkanli et al. (2006). Regarding the covariate-specific ROC curve, ROCnReg implements the
frequentist normal method of Faraggi (2003) and its semiparametric counterpart as described in Pepe
(1998), the kernel-based approach of Rodríguez-Álvarez et al. (2011a), and the Bayesian nonparametric
model based on a single-weights dependent Dirichlet process mixture of normal distributions pro-
posed by Inácio de Carvalho et al. (2013). As for the covariate-adjusted ROC curve, the ROCnReg
package allows estimation using the frequentist semiparametric approach of Janes and Pepe (2009),
the frequentist nonparametric method discussed in Rodríguez-Álvarez et al. (2011a), and the recently
proposed Bayesian nonparametric estimator of Inácio de Carvalho and Rodríguez-Álvarez (2018).
Table 1 shows a summary of all methods implemented in the package. In addition, ROCnReg also
provides functions to obtain ROC-based optimal thresholds to perform the classification/diagnosis of
individuals as, say, diseased or nondiseased, using two different criteria, namely, the Youden index
and the criterion that sets a target value for the false positive fraction. These are implemented for both
the ROC curve, the covariate-specific, and the covariate-adjusted ROC curve.

The remainder of the paper is organized as follows. In Section Notation and definitions, we
formally introduce the (pooled or marginal) ROC curve, the covariate-specific ROC curve, and the
covariate-adjusted ROC curve. The description of the Bayesian estimation methods implemented in
the ROCnReg package is given in Section Methods. In Section Package presentation and illustration,
the usage of the main functions and capabilities of ROCnReg are described and illustrated using
a synthetic dataset mimicking endocrine data. The paper concludes with a discussion in Section
Summary and future plans.

2 Notation and definitions

This section sets out the formal definition of the pooled or marginal ROC curve, the covariate-specific
ROC curve, and the covariate-adjusted ROC curve. It also describes the most commonly used summary
measures of discriminatory accuracy, namely, the area under the ROC curve, the partial area under the
ROC curve, and the Youden Index. For conciseness, we intentionally avoid giving too many details
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and refer the interested reader to Pepe (2003) (and references therein) for an extensive account of many
aspects of ROC curves with and without covariates.

In what follows, we denote as Y the outcome of the diagnostic test and as D the binary variable
indicating the presence (D = 1) or absence (D = 0) of disease. We also assume that along with Y
and the true disease status D, a covariate vector X is also available and that it may encompass both
continuous and categorical covariates. For ease of notation, the covariate vector X is assumed to be the
same in both the diseased (D = 1) and nondiseased (D = 0) populations, although this is not always
necessarily the case in practice (e.g., disease stage is, obviously, a disease-specific covariate). By a
slight abuse of notation, we use the subscripts D and D̄ to denote (random) quantities conditional on,
respectively, D = 1 and D = 0. For example, YD and YD̄ denote the test outcomes in the diseased and
nondiseased populations, respectively.

Pooled ROC curve

In the case of a continuous-outcome diagnostic test, the classification is usually made by comparing
the test result Y against a threshold c. If the outcome is equal or above the threshold, Y ≥ c, the subject
will be diagnosed as diseased. On the other hand, if the test result is below the threshold, Y < c, he or
she will be classified as nondiseased. The ROC curve is then defined as the set of all possible pairs
of false positive fractions, FPF (c) = Pr(Y ≥ c | D = 0) = Pr(YD̄ ≥ c), and true positive fractions,
TPF (c) = Pr(Y ≥ c | D = 1) = Pr(YD ≥ c), that can be obtained by varying the threshold value c, i.e.,

{(FPF (c) , TPF (c)) : c ∈ R} .

It is common to represent the ROC curve as {(p, ROC(p)) : p ∈ [0, 1]}, where

p = FPF(c) = 1 − FD̄(c), ROC(p) = 1 − FD

{
F−1

D̄ (1 − p)
}

, (1)

with FD̄ (y) = Pr(YD̄ ≤ y) and FD (y) = Pr(YD ≤ y) denoting the cumulative distribution function
(CDF) of Y in the nondiseased and diseased groups, respectively. Several indices can be used as global
summary measures of the accuracy of a test. The most widely used is the area under the ROC curve
(AUC), defined as

AUC =
∫ 1

0
ROC (p)dp. (2)

In addition to its geometric definition, the AUC has also a probabilistic interpretation (see, e.g., Pepe,
2003, p. 78)

AUC = Pr (YD ≥ YD̄) , (3)

that is, the AUC is the probability that a randomly selected diseased subject has a higher test outcome
than that of a randomly selected nondiseased subject. The AUC takes values between 0.5, in the case
of an uninformative test that classifies individuals no better than chance, and 1.0 for a perfect test.
We note that an AUC below 0.5 simply means that the classification rule should be reversed. As it is
clear from its definition, the AUC integrates the ROC curve over the whole range of FPFs. However,
depending on the clinical circumstances, interest might lie only on a relevant interval of FPFs or TPFs,
which leads to the notion of the partial area under the ROC curve (pAUC). The pAUC over a range of
FPFs (0, u1), where u1 is typically low and represents the largest acceptable FPF, is defined as

pAUC (u1) =
∫ u1

0
ROC (p)dp. (4)

On the other hand, the pAUC over a range of TPFs (v1, 1), where v1 is typically large and represents
the lowest acceptable TPF, is defined as

pAUCTPF (v1) =
∫ 1

v1

ROCTNF (p)dp, (5)

where ROCTNF is a 270◦ rotation of the ROC curve, which can be expressed as

ROCTNF(p) = FD̄{F−1
D (1 − p)}. (6)

The curve in (6) is referred to as the true negative fraction (TNF) ROC curve since TNF ( = 1 − FPF)
is plotted on the y-axis. We shall highlight that the argument p in the ROC curve stands for a false
positive fraction, whereas in the ROCTNF curve, it stands for a true positive fraction. In Figure 1, we
graphically illustrate the two partial areas.
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Figure 1: (a) Shaded area in blue represents the partial area under the ROC curve over the interval
(0, u1) of FPFs. (b) Shaded area in blue represents the partial area under the ROC curve over the
interval (v1, 1) of TPFs. (c) The same as in (b) but now represented as an area under the true negative
fraction ROC curve.

Another summary index of diagnostic accuracy is the Youden index (Shapiro, 1999; Youden, 1950)

YI = max
c

{TPF(c)− FPF(c)} (7)

= max
c

{FD̄ (c)− FD (c)} (8)

= max
p

{ROC(p)− p} . (9)

The YI ranges from 0 to 1, taking the value of 0 in the case of an uninformative test and 1 for a perfect
test. As for the AUC, a YI below 0 means that the classification rule should be reversed. The value c∗,
which maximizes Equation (7) (or, equivalently, Equation (8)), is frequently used in practice to classify
subjects as diseased or nondiseased. It should be noted that the Youden index is equivalent to the
Kolmogorov–Smirnov measure of distance between the distributions of YD and YD̄ (Pepe, 2003, p. 80).

Covariate-specific ROC curve

The conditional or covariate-specific ROC curve, given a covariate value x, is defined as

ROC(p | x) = 1 − FD{F−1
D̄ (1 − p | x) | x}, (10)

where FD̄(y | x) = Pr(YD̄ ≤ y | XD̄ = x) and FD(y | x) = Pr(YD ≤ y | XD = x) are the conditional
CDFs of the test in the nondiseased and diseased groups, respectively. In this case, a number of
possibly different ROC curves (and therefore discriminatory accuracies) may be obtained for different
values of x. Thus, the covariate-specific ROC curve is an important tool that helps to understand
and determine the optimal and suboptimal populations where to apply the tests on. That is, the
covariate-specific ROC curve allows determining the populations, defined by or homogeneous with
respect to x, where the diagnostic test has a ‘good’ or ‘poor’ discriminatory capacity. Similarly to the
unconditional case, the covariate-specific TNF-ROC curve is given by

ROCTNF(p | x) = FD̄{F−1
D (1 − p | x) | x}, (11)
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and the covariate-specific AUC, pAUC, and Youden index are

AUC(x) =
∫ 1

0
ROC(p | x)dp, (12)

pAUC(u1 | x) =
∫ u1

0
ROC(p | x)dp, (13)

pAUCTPF(v1 | x) =
∫ 1

v1

ROCTNF(p | x)dp, (14)

YI(x) = max
c

|TPF(c | x)− FPF(c | x)| (15)

= max
c

|FD̄(c | x)− FD(c | x)| (16)

= max
p

|ROC(p | x)− p|. (17)

The value c∗x that achieves the maximum in (15) (or (16)) is called the optimal covariate-specific YI
threshold and can be used to classify a subject, with covariate value x, as diseased or nondiseased.

Covariate-adjusted ROC curve

The covariate-specific ROC curve and associated AUC, pAUCs, and YI described in the previous
section depict the accuracy of the test for specific covariate values. However, it would be undoubtedly
useful to have a global summary measure that also takes covariate information into account. Such
summary measure was developed by Janes and Pepe (2009), who proposed the covariate-adjusted
ROC (AROC) curve, defined as

AROC(p) =
∫

ROC(p | x)dHD(x), (18)

where HD(x) = Pr(XD ≤ x) is the CDF of XD. That is, the AROC curve is a weighted average of
covariate-specific ROC curves, weighted according to the distribution of the covariates in the diseased
group. Equivalently, as shown by Janes and Pepe (2009), the AROC curve can also be expressed as

AROC(p) = Pr{YD > F−1
D̄ (1 − p | XD)}

= Pr{1 − FD̄(YD | XD) ≤ p}. (19)

As will be seen in Section Methods, Expression (19) is very convenient when it comes to estimating
the AROC curve. Also, it emphasizes that the AROC curve at an FPF of p is the overall TPF when the
thresholds used for defining a positive test result are covariate-specific and chosen to ensure that the
FPF is p in each subpopulation defined by the covariate values.

In contrast to the pooled ROC curve (see Expressions (1) and (6)) and the covariate-specific ROC
curve (see Expressions (10) and (11)), the AROC curve (and its 270◦ rotation) cannot be expressed
in terms of the (conditional) CDFs of the test in each group. This does not, however, preclude the
possibility of defining AROC-based summary accuracy measures, yet more care is needed. Thus, for
the AROC curve, the area under the AROC, as well as the partial areas and YI, are expressed as follows

AAUC =
∫ 1

0
AROC(p)dp, (20)

pAAUC(u1) =
∫ u1

0
AROC(p)dp, (21)

pAAUCTPF(v1) =
∫ 1

AROC−1(v1)
AROC(p)dp − {1 − AROC−1(v1)}v1, (22)

YIAROC = max
p

{AROC(p)− p} . (23)

Note, in particular, that the expressions for both the partial area under the AROC curve over a range
of TPFs (see also Figure 1b) and for the YI are defined in terms of the AROC curve. For the YI, once
the value that achieves the maximum in (23) is obtained, say p∗, covariate-specific threshold values
can be calculated as follows

c∗x = F−1
D̄ (1 − p∗ | XD = x).

Note that, by construction, these threshold values will ensure that the FPF is p∗ in each subpopulation
defined by the covariate values. However, the TPF may vary with the covariate values, i.e.,

TPF (c∗x) = 1 − FD (c∗x | XD = x) .
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To finish this part, we mention that when the accuracy of a test is not affected by covariates, this does
not necessarily mean that the covariate-specific ROC curve (which, in this case, is the same for all
covariate values) coincides with the pooled ROC curve. It does coincide, however, with the AROC
curve (see Janes and Pepe, 2009; Pardo-Fernández et al., 2014; Inácio de Carvalho and Rodríguez-
Álvarez, 2018, for more details). As such, in all cases where covariates affect the test results, even
though they might not affect its discriminatory capacity, inferences based on the pooled ROC curve
might be misleading. In such cases, the AROC curve should be used instead. This also applies to the
selection of (optimal) threshold values, which might be covariate-specific (i.e., possibly different for
different covariate values).

3 Methods

For space reasons, we focus ourselves here on the Bayesian methods for ROC curve inference (with
and without covariates) implemented in the ROCnReg package. A detailed description, as well as
usage examples, of the frequentist approaches are available as Supplementary Material at https:
//bitbucket.org/mxrodriguez/rocnreg.

Pooled ROC curve

In what follows, let {yD̄i}
nD̄
i=1 and {yDj}nD

j=1 be two independent random samples of test outcomes
from the nondiseased and diseased groups of size nD̄ and nD, respectively.

Bayesian bootstrap based estimator

The function pooledROC.bb implements the Bayesian bootstrap (BB) approach proposed by Gu et al.
(2008). Their estimator relies on the notion of placement value (Pepe, 2003, Chapter 5), which is simply
a standardization of the test outcomes with respect to a reference group. Specifically, UD = 1− FD̄(YD)
is to be interpreted as a standardization of a diseased test outcome with respect to the distribution of
test results in the nondiseased population. The ROC curve can be regarded as the CDF of UD

Pr(UD ≤ p) = Pr{1 − FD̄(YD) ≤ p} = 1 − FD{F−1
D̄ (1 − p)} = ROC(p), 0 ≤ p ≤ 1. (24)

The representation of the ROC given in (24) provides the rationale for the two-step algorithm of Gu
et al. (2008), which can be described as follows. Let S be the number of iterations.

Step 1: Computation of the placement value based on the BB.
For s = 1, . . . , S, let

U(s)
Dj =

nD̄

∑
i=1

q(s)1i I
(

yD̄i ≥ yDj

)
, j = 1, . . . , nD,

where
(

q(s)11 , . . . , q(s)1nD̄

)
∼ Dirichlet(nD̄; 1, . . . , 1).

Step 2: Generate a realization of the ROC curve. Based on (24), generate a realization of ROC(s)(p),
the cumulative distribution function of (U(s)

D1, . . . , U(s)
DnD

), where

ROC(s)(p) =
nD

∑
j=1

q(s)2j I
(

U(s)
Dj ≤ p

)
,
(

q(s)21 , . . . , q(s)2nD

)
∼ Dirichlet(nD; 1, . . . , 1).

The BB estimate of the ROC curve is obtained by averaging over the ensemble of ROC curves
{ROC(1)(p), . . . , ROC(S)(p)}, that is,

R̂OC
BB
(p) =

1
S

S

∑
s=1

ROC(s)(p),

and a (1 − α)× 100% pointwise credible band can be obtained from the α/2 × 100% and (1 − α/2)×
100% percentiles of the same ensemble (α ∈ (0, 1)). Note that these pointwise credible bands for the
ROC curve are to be interpreted as credible intervals for the corresponding constituents TPFs.

The Bayesian bootstrap estimator leads to closed-form expressions for the AUC and pAUC, which
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are, respectively, given by

AUC(s) =
∫ 1

0
ROC(s)(p)dp = 1 −

nD

∑
j=1

q(s)2j U(s)
Dj ,

pAUC(s)(u1) =
∫ u1

0
ROC(s)(p)dp = u1 −

nD

∑
j=1

q(s)2j min
{

u1, U(s)
Dj

}
.

It is easy to show that

pAUC(s)
TPF(v1) =

∫ 1

v1

ROC(s)
TNF (p)dp =

nD̄

∑
i=1

q(s)1i max
{

v1, U(s)
D̄i

}
− v1,

where

U(s)
D̄i =

nD

∑
j=1

q(s)2j I
(

yDj ≥ yD̄i

)
, i = 1, . . . , nD̄,

and it is also easy to demonstrate that the ROCTNF curve is the survival function of the placement
value UD̄ = 1 − FD(YD̄). With respect to the Youden index, it is obtained by maximising, over a grid
of possible threshold values, the following expression

YI(s) = max
c

{
F(s)

D̄ (c)− F(s)
D (c)

}
,

where

F(s)
D̄ (c) =

nD̄

∑
i=1

q(s)1i I (yD̄i ≤ c) and F(s)
D (c) =

nD

∑
j=1

q(s)2j I
(

yDj ≤ c
)

.

As for the ROC curve, point estimates for the AUC, pAUC, pAUCTPF, YI, and c∗ can be obtained
by averaging over the respective ensembles of S realizations, with credible bands derived from the
percentiles of such ensembles.

Dirichlet process mixture of normal distributions based estimator

The Bayesian nonparametric approach, based on a Dirichlet process mixture (DPM) of normal distribu-
tions, for estimating the pooled ROC curve (Erkanli et al., 2006) is implemented in the pooledROC.dpm
function. In this case, as implicit by the name, the CDFs of the test outcomes in each group are
estimated via a Dirichlet process mixture of normal distributions. That is, it is assumed that the CDF,
say in the diseased group (the one in the nondiseased group, D̄, follows analogously), is of the form

FD(y) =
∫

Φ(y | µ, σ2)dGD(µ, σ2), GD ∼ DP(αD, G∗
D(µ, σ2)), (25)

where Φ(y | µ, σ2) denotes the CDF of the normal distribution with mean µ and variance σ2 evaluated
at y. Here, GD ∼ DP(αD, G∗

D) is used to denote that the mixing distribution GD follows a Dirichlet
process (DP) (Ferguson, 1973) with centering distribution G∗

D, for which E(GD) = G∗
D, and precision

parameter αD. Usually, due to conjugacy reasons, G∗
D(µ, σ2) ≡ N(µ | mD0, SD0)Γ(σ−2 | aD, bD), and

this is the centering distribution used by the pooledROC.dpm function. Note that here, SD0 denotes the
variance of the normal distribution, and aD and bD are, respectively, the shape and rate parameters of
the gamma distribution. All hyperparameter values are fixed.

For ease of posterior simulation and because it provides a highly accurate approximation, we make
use of the truncated stick-breaking representation of the DP (Ishwaran and James, 2001), according to
which GD can be written as

GD(·) =
LD

∑
l=1

ωDlδ(µDl ,σ2
Dl)

(·),

where (µDl , σ2
Dl)

iid∼ G∗
D(µ, σ2), for l = 1, . . . , LD, and the weights follow the so-called (truncated) stick-

breaking construction: ωD1 = vD1, ωDl = vDl ∏r<l(1 − vDr), l = 2, . . . , LD, and vD1, . . . , vD,LD−1
iid∼

Beta(1, αD). Further, one must set vDLD = 1 in order to ensure that the weights add up to one. The
CDF in (25) can therefore be written as

FD(y) =
LD

∑
l=1

ωDlΦ(y | µDl , σ2
Dl),

where we shall note that LD is not the exact number of components expected to be observed, but
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rather an upper bound on it, as some of the components may be unoccupied. Some comments are
in order regarding the specification of the hyperparameters’ values. In what concerns the centering
distribution, mD0 represents the prior belief about the components’ means, and SD0 represents the
confidence in such prior belief. Similarly, the values of aD and bD can be chosen to represent the
prior belief about the components’ variance. Of course, when setting these parameters, it is crucial to
consider the measurement scale of the data. By default, test outcomes are standardized (so that the
resulting mean is zero and the variance is one) in the pooledROC.dpm function and the default values
are as follows

mD0 = 0, SD0 = 10, aD = 2, bD = 0.5.

Because test outcomes are standardized, we expect the means of the components to be near zero and
hence mD0 = 0. The parameter SD0 then controls where the drawn µDl can lie, and the value of 10
implies that approximately 95% of the values roughly lie within −6 and 6. Further, note that aD = 2
leads to a prior with an infinite variance that is centered around a finite mean (bD = 0.5) and therefore
favors variances less than one. Considering that the standardized data have a variance of one, it
is reasonable to expect the within component variance to be smaller than the overall variance. The
option of not standardizing the test outcomes is also available in pooledROC.dpm, and in such a case,
the defaults for the centering distribution hyperparameters’ values are as following

mD0 = ȳD, SD0 = 100s2
D/nD, aD = 2, bD = s2

D/2,

with ȳD = 1
nD

∑nD
j=1 yDj and s2

D = 1
nD−1 ∑nD

j=1(yDj − ȳD)
2. Regarding the precision parameter of the

DP, αD, it has a direct relationship with the number of occupied mixture components. One possible
strategy for specifying αD is to fix it to a small value to favor a small number of occupied components
relative to the sample size. In the pooledROC.dpm function, we set αD = 1, a commonly used default
value (Gelman et al., 2013, p. 553). Lastly, by default, LD = 10. Before proceeding, we shall emphasize
that these two configurations of hyperparameters values (for standardized and not standardized test
outcomes) have proved to work well for a different range of test outcomes distributions, but it is
certainly not our goal to encourage users to use it blindly and indeed thought should be dedicated to
this important task. Nevertheless, output from the function pooledROC.dpm may be post-processed,
and (informal) model fit diagnostics obtained; see more in Section Package presentation and illustration
and in the Supplementary Materials.

Because the full conditional distributions for all model parameters are available in closed-form,
posterior simulation can be easily conducted through Gibbs sampler (see the details, for instance, in
Ishwaran and James 2002). At iteration s of the Gibbs sampler procedure, the ROC curve is computed
as

ROC(s)(p) = 1 − F(s)
D

{
F−1(s)

D̄ (1 − p)
}

, s = 1, . . . , S,

with

F(s)
D (y) =

LD

∑
l=1

ω
(s)
Dl Φ

(
y | µ

(s)
Dl , σ

2(s)
Dl

)
, F(s)

D̄ (y) =
LD̄

∑
k=1

ω
(s)
D̄kΦ

(
y | µ

(s)
D̄k, σ

2(s)
D̄k

)
, (26)

and where the inversion is performed numerically. There is a closed-form expression for the AUC
(Erkanli et al., 2006) given by

AUC(s) =
LD̄

∑
k=1

LD

∑
l=1

ω
(s)
D̄kω

(s)
Dl Φ

 b(s)kl√
1 + a2(s)

kl

 , b(s)kl =
µ
(s)
Dl − µ

(s)
D̄k

σ
(s)
Dl

, a(s)kl =
σ
(s)
D̄k

σ
(s)
Dl

.

Also, when LD = LD̄ = 1, there are closed-form expressions for the pAUC and pAUCTPF which are
used in the package (see Hillis and Metz, 2012). For the pAUC/pAUCTPF, when LD > 1 or LD̄ > 1, the
integrals are approximated numerically using Simpson’s rule. The Youden index/optimal threshold is
computed as in the Bayesian bootstrap method, with the obvious difference that here the CDFs are
expressed as in (26). At the end of the sampling procedure, we have an ensemble of S ROC curves
and AUCs/pAUCs/pAUCTPFs/YIs/optimal thresholds, which, as before, allows obtaining point and
interval estimates.

Covariate-specific ROC curve

We now let {(xD̄i, yD̄i)}
nD̄
i=1 and {(xDj, yDj)}nD

j=1 be two independent random samples of test outcomes
and covariates from the nondiseased and diseased groups of size nD̄ and nD, respectively. Further,
for all i = 1, . . . , nD̄ and j = 1, . . . , nD, let xD̄i = (xD̄i,1, . . . , xD̄i,q)

⊤ and xDj = (xDj,1, . . . , xDj,q)
⊤ be

q-dimensional vectors of covariates, which can be either continuous or categorical.

The function cROC.bnp implements the Bayesian nonparametric approach for conducting inference
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about the covariate-specific ROC curve of Inácio de Carvalho et al. (2013), which is based on a single-
weights dependent Dirichlet process mixture of normal distributions (De Iorio et al., 2009). Specifically,
under this method, the conditional CDF in the diseased group is modeled as follows

FD(yDj | xDj) =
∫

Φ(yDj | µD(xDj, β), σ2)dGD(β, σ2), GD ∼ DP(αD, G∗
D(β, σ2)),

with the conditional CDF in the nondiseased group D̄ following in an analogous manner. As in the
no-covariate case, by making use of Sethuraman’s truncated representation of the DP, we can write the
conditional CDF as

FD(yDj | xDj) =
LD

∑
l=1

ωDlΦ(yDj | µD(xDj, βDl), σ2
Dl),

ωD1 = vD1, ωDl = vDl ∏
r<l

(1 − vDr), l = 2, . . . , LD,

vDl
iid∼ Beta(1, αD), l = 1, . . . , LD − 1, vDLD = 1.

It is worth mentioning that although the variance of each component does not depend on covariates,
the overall variance of the mixture does depend on covariates, as it can be written as

var(yDj | xDj) =
LD

∑
l=1

ωDlσ
2
Dl +

LD

∑
l=1

ωDl

µD(xDj, βDl)−
(

LD

∑
l=1

ωDlµD(xDj, βDl)

)2
 .

Note that by assuming that the weights, wDl , do not vary with covariates, the model might have
limited flexibility in practice (MacEachern, 2000). This issue can, however, be largely mitigated by
using a flexible formulation for µD(xDj, βDl), which is needed not only for the model to be able to
recover nonlinear trends but also to recover flexible shapes that might arise due to a dependence of
the weights on the covariates. As such, the function cROC.bnp in ROCnReg allows modeling the mean
function of each component using an additive smooth structure

µD(xDj, βDl) = βDl0 + fDl1(xDj,1) + . . . + fDlq(xDj,q), l = 1, . . . , LD, (27)

where the smooth functions, fDlm (m = 1, . . . , q), are approximated using a linear combination of
cubic B-splines basis functions. To avoid notational burden, we have assumed that all q covariates
are continuous and modeled in a flexible way. However, the function cROC.bnp can also deal with
categorical covariates, linear effects of continuous covariates, as well as interactions. For the reasons
mentioned before, we recommend that all continuous covariates are modeled as in (27). Nonetheless,
posterior predictive checks, as illustrated in Section Package presentation and illustration, can also be
used to informally validate the fitted model. We write

µD(xDj, βDl) = z⊤DjβDl , l = 1, . . . , LD, j = 1, . . . , nD, (28)

where z⊤Dj is the jth row of the design matrix that contains the intercept, the continuous covariates
that are modeled in a linear way (if any), the cubic B-splines basis representation for those modeled in
a flexible way, the categorical covariates (if any), and their interaction(s) (if believed to exist). Also,
βDl collects, for the lth component, the regression coefficients associated with the aforementioned
covariates. For the covariate effects modeled using cubic B-splines, an important issue is the selection
of the number and location of the knots at which to anchor the basis functions, as this has the potential
to impact inferences, more so for the former than the latter. The selection of the number of knots can
be assisted by a model selection criterion, for example, (the adaptation to the case of mixture models
of) the deviance information criterion (DIC) (Celeux et al., 2006), the log pseudo marginal likelihood
(LPML) (Geisser and Eddy, 1979), and the widely applicable information criterion (WAIC) (Gelman
et al., 2014). In turn, for the location of the interior knots themselves, we follow Rosenberg (1995) and
use the quantiles of the covariate values.

The regression coefficients and variances associated with each of the LD components are sampled

from the conjugate centering distribution (βDl , σ−2
Dl )

iid∼ NQD (mD, SD)Γ(aD, bD), with conjugate hyper-
priors mD ∼ N(mD0, SD0) and S−1

D ∼ Wishart(νD, (νDΨD)
−1) (a Wishart distribution with degrees of

freedom νD and expectation Ψ−1
D ), and where QD is the dimension of the vector zDj . Hyperparameters

mD0 and ΨD must be chosen to represent the prior belief about the regression coefficients associated
to each mixture component and about their covariance matrix, respectively, whereas SD0 and νD
are chosen to represent the confidence in the prior belief of mD0 and ΨD, respectively. As in the
no-covariate case, by default, in cROC.bnp, test outcomes and covariates are standardized, which not
only facilitates specification of the hyperparameter values but also improves the mixing of the Markov
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chain Monte Carlo (MCMC) chains. The default values are as follows

mD0 = 0QD , SD0 = 10IQD , νD = QD + 2, ΨD = IQD , aD = 2, bD = 0.5.

When test outcomes and covariates are not standardized, the defaults are the following

mD0 = β̂D, SD0 = Σ̂D, νD = QD + 2, ΨD = 30Σ̂D, aD = 2, bD = σ̂2
D/2,

where β̂D and σ̂D are the least squares estimates from fitting the linear model yDj = zDjβD + σDεDj,
where E(εDj) = 0, var(εDj) = 1, and Σ̂D is the estimated covariance matrix of β̂D. With regard to the
specification of αD and LD, as in the DPM model (no-covariate case), we set them, respectively, to 1
and 10. The blocked Gibbs sampler is used to simulate draws from the posterior distribution, and
details about it can be found, for instance, in the Supplementary Materials of Inácio de Carvalho et al.
(2017).

Similarly to the analogous model for the no-covariate case, at iteration s of the Gibbs sampler
procedure, the covariate-specific ROC curve is computed as

ROC(s)(p | x) = 1 − F(s)
D

{
F−1(s)

D̄ (1 − p | x) | x
}

, s = 1, . . . , S,

with

F(s)
D (y | x) =

LD

∑
l=1

ω
(s)
Dl Φ

(
y | z⊤β

(s)
Dl , σ

2(s)
Dl

)
, F(s)

D̄ (y | x) =
LD̄

∑
k=1

ω
(s)
D̄kΦ

(
y | z⊤β

(s)
D̄k, σ

2(s)
D̄k

)
, (29)

and where the inversion is performed numerically. A point estimate for ROC(p | x) can be obtained
by computing the mean of the ensemble {ROC(1)(p | x), . . . , ROC(S)(p | x)}, with pointwise credible
bands derived from the percentiles of the ensemble. Although the results presented in Erkanli
et al. (2006) can be extended to derive a closed-form expression for the covariate-specific AUC, for
computational reasons, in ROCnReg, the integral in (12) is approximated using Simpson’s rule, and
the same applies for the partial areas. Conditionally on a specific covariate value, the computation of
the Youden index and of the optimal threshold proceeds in a similar way as in the DPM model (see
Inácio de Carvalho et al., 2017 for details). As for the covariate-specific ROC curve, point and interval
estimates can be obtained from the corresponding covariate-specific ensemble of each summary
measure.

We finish this section by noting that a particular case of the above estimator arises when the effect
of all continuous covariates is assumed to be linear and only one component is considered, i.e.,

F(s)
D (y | x) = Φ

(
y | x̃⊤β

(s)
D , σ

2(s)
D

)
, and F(s)

D̄ (y | x) = Φ
(

y | x̃⊤β
(s)
D̄ , σ

2(s)
D̄

)
, (30)

with x̃⊤ =
(

1, x⊤
)

. In this case, it is easy to show that

ROC(s)(p | x) = 1 − Φ
{

a(s)(x) + b(s)Φ−1(1 − p)
}

, (31)

where

a(s)(x) = x̃⊤

(
β
(s)
D̄ − β

(s)
D

)
σ
(s)
D

, and b(s) =
σ
(s)
D̄

σ
(s)
D

. (32)

With this configuration, the model for the covariate-specific ROC curve can be regarded as a Bayesian
counterpart of the induced ROC approach proposed by Faraggi (2003) (and detailed in the Supple-
mentary Material). We denote it as the Bayesian normal linear model (for the test outcomes).

Covariate-adjusted ROC curve

The estimation of the AROC curve rests on the following three steps:

1. Estimation of the conditional distribution of test outcomes in the nondiseased group, FD̄(yD̄i |
xD̄i).

2. Computation of the placement value UD = 1 − FD̄(YD | XD), where, by a slight abuse of
notation, we are designating it by the same letter used for the unconditional case.

3. Estimation of the cumulative distribution function of UD.

The approach proposed by Inácio de Carvalho and Rodríguez-Álvarez (2018) for estimating the AROC
curve is implemented in function AROC.bnp, and it combines a single-weights dependent Dirichlet
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process mixture of normal distributions in Step 1 and the Bayesian bootstrap in Step 3. Again, here, in
Step 1, we also recommend using cubic B-splines transformations of all continuous covariates. Using
the same notation as before, we model the conditional density as

FD̄(yD̄i | xD̄i) =
LD̄

∑
l=1

ωD̄lΦ(yD̄i | z⊤D̄iβD̄l , σ2
D̄l).

The same prior distributions and default values as in the cROC.bnp function are adopted for βD̄l and
σ2

D̄l . Once Step 1 has been completed, and given a posterior sample from the parameters of interest, the
corresponding realization of the placement value of a diseased subject in the nondiseased population
is easily computed as

U(s)
Dj = 1 − F(s)

D̄ (yDj | xDj) =
LD̄

∑
l=1

ω
(s)
D̄l Φ

(
yDj | z⊤Djβ

(s)
D̄l , σ

2(s)
D̄l

)
, j = 1, . . . , nD, s = 1, . . . , S.

Finally, in Step 3, the cumulative distribution function of
{

U(s)
Dj

}nD

j=1
is estimated through the Bayesian

bootstrap

AROC(s)(p) =
nD

∑
j=1

q(s)j I
(

U(s)
Dj ≤ p

)
, (q(s)1 , . . . , q(s)nD ) ∼ Dirichlet(nD; 1, . . . , 1).

As before, closed-form expressions do exist for the AAUC and pAAUC

AAUC(s) =
∫ 1

0
AROC(s)(p)dp = 1 −

nD

∑
j=1

q(s)j U(s)
Dj ,

pAAUC(s)(u1) =
∫ u1

0
AROC(s)(p)dp = u1 −

nD

∑
j=1

q(s)j min
{

u1, U(s)
Dj

}
,

and the pAAUCTNF (Equation (22)) is computed using numerical integration methods. With regards
to the YI, it is obtained by directly plugging in AROC(s)(p) in Expression (23).

A point estimate for AROC(p) can be obtained by computing the mean of the ensemble {AROC(1)(p), . . . , AROC(S)(p)},
that is,

ÂROC(p) =
1
S

S

∑
s=1

AROC(s)(p),

and the percentiles of the ensemble can be used to provide pointwise credible bands/credible intervals.
The same applies for the AAUC, pAAUC, and YI.

4 Package presentation and illustration

This section describes the main functions in the ROCnReg package and illustrates their usage using,
due to confidentiality reasons, a synthetic dataset mimicking endocrine data from a cross-sectional
study carried out by the Galician Endocrinology and Nutrition Foundation. A detailed description
of the original dataset can be found in Tomé Martínez de Rituerto et al. (2009). The original data
have also been previously analyzed in Rodríguez-Álvarez et al. (2011a,b) and Inácio de Carvalho and
Rodríguez-Álvarez (2018). The synthetic data can be found in the ROCnReg package under the name
endosyn, and a summary of it follows.

R> library("ROCnReg")
R> data("endosyn")
R> summary(endosyn)

cvd_idf age gender bmi
Min. :0.0000 Min. :18.25 Men :1317 Min. :12.60
1st Qu.:0.0000 1st Qu.:29.57 Women:1523 1st Qu.:23.19
Median :0.0000 Median :39.28 Median :26.24
Mean :0.2433 Mean :41.43 Mean :26.69
3rd Qu.:0.0000 3rd Qu.:50.84 3rd Qu.:29.74
Max. :1.0000 Max. :84.66 Max. :46.20

The dataset is comprised of 2840 individuals (1317 men and 1523 women, variable gender), with
an age range between 18 and 85 years old. Variable bmi contains the body mass index (BMI) values,
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and cvd_idf is the variable that indicates the presence (1) or absence (0) of two or more cardiovascular
disease (CVD) risk factors. Following previous studies, the CVD risk factors considered include raised
triglycerides, reduced HD-cholesterol, raised blood pressure, and raised fasting plasma glucose. Note
that from the 2840 individuals, about 24% present two or more CVD risk factors.

Using the ROCnReg package, in the subsequent sections, we will illustrate how to ascertain,
through the pooled ROC curve, the discriminatory capacity of the BMI (which acts as our diagnostic
test in this example) in differentiating individuals with two or more CVD risk factors (those belonging
to the diseased class D) from those having none or just one CVD risk factor (and that therefore belong
to the nondiseased group D̄). We will also show how to evaluate, through the covariate-specific ROC
curve, the possible modifying effect of age and gender on the discriminatory capacity of the BMI.
Finally, the last part of this section focuses on the covariate-adjusted ROC curve as a global summary
measure of the BMI discriminatory ability when taking the age and gender effects into account. In the
Supplementary Material, we show the usage of the package for those methods not described here in
the main text.

Pooled ROC curve

The ROCnReg package allows estimating the pooled ROC curve by means of the four methods
listed in Table 1. Here, we only present the syntax for the functions pooledROC.BB and pooledROC.dpm
that correspond, respectively, to the Bayesian bootstrap estimator and the approach based on a
Dirichlet process mixture (of normal distributions). The function pooledROC.emp, which implements
an empirical estimator, and the function pooledROC.kernel, which is based on kernel methods, are
illustrated in the Supplementary Material. The input arguments in the functions are method-specific
(details can be found in the manual accompanying the package), but in all cases, numerical and
graphical summaries can be obtained by calling the functions print.pooledROC, summary.pooledROC,
and plot.pooledROC, which can be abbreviated by print, summary, and plot. Recall that our aim
is to ascertain, using the endosyn dataset, the discriminatory capacity of the BMI in differentiating
individuals with two or more CVD risk factors from those having just one or none CVD risk factors.

R> set.seed(123, "L'Ecuyer-CMRG") # for reproducibility
R> pROC_dpm <- pooledROC.dpm(marker = "bmi", group = "cvd_idf", tag.h = 0,
+ data = endosyn, standardise = TRUE, p = seq(0, 1, l = 101), ci.level = 0.95,
+ compute.lpml = TRUE, compute.WAIC = TRUE, compute.DIC = TRUE,
+ pauc = pauccontrol(compute = TRUE, focus = "FPF", value = 0.1),
+ density = densitycontrol(compute = TRUE),
+ prior.h = priorcontrol.dpm(L = 10), prior.d = priorcontrol.dpm(L = 10),
+ mcmc = mcmccontrol(nsave = 8000, nburn = 2000, nskip = 1),
+ parallel = "snow", ncpus = 2, cl = NULL)

Before describing in detail the previous call, we first present the control functions that are used. In
particular,

pauccontrol(compute = FALSE, focus = c("FPF", "TPF"), value = 1)

can be used to indicate whether the pAUC should be computed (by default it is not computed), and
in case it is computed (i.e., compute = TRUE ), whether the focus should be placed on restricted FPFs
(pAUC; see (4)) or on restricted TPFs (pAUCTPF; see (5)). In both cases, the upper bound u1 (if focus
is the FPF) or the lower bound v1 (if focus is the TPF) should be indicated in the argument value. In
addition to the pooled ROC curve, AUC, and pAUC (if required), the function pooledROC.dpm also
allows computing the probability density function (PDF) of the test outcomes in both the diseased and
nondiseased groups. In order to do so, we use

densitycontrol(compute = FALSE, grid.h = NA, grid.d = NA)

By default, PDFs are not returned by the function pooledROC.dpm, but this can be changed by setting
compute = TRUE, and through grid.h and grid.d, the user can specify a grid of test results where
the PDFs are to be evaluated in, respectively, the nondiseased and diseased groups. Value NA signals
auto initialization, with default a vector of length 200 in the range of the test results. Regarding the
hyperparameters for the Dirichlet process mixture of normals model (used for the estimation of the
PDFs/CDFs of the test outcomes in each group), they can be controlled using

priorcontrol.dpm(m0 = NA, S0 = NA, a = 2, b = NA, alpha = 1, L = 10)

A detailed description of these hyperparameters is found in Section Methods. Finally, to set the various
parameters controlling the MCMC procedure (which in our case is simply a Gibbs sampler), we use

mcmccontrol(nsave = 8000, nburn = 2000, nskip = 1)
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Here, nsave is an integer value with the total number of scans to be saved, nburn is the number of
burn-in scans, and nskip is the thinning interval. Unless due to memory usage reasons, we recommend
not thinning and instead monitoring the effective sample size of the MCMC chain.

Coming back to the pooledROC.dpm function, through marker, the user specifies the name of the
variable containing the test results. In our case, these are the values of the BMI. The name of the
variable that distinguishes diseased (two or more CVD risk factors, D) from nondiseased individuals
(none or one CVD risk factor, D̄) is represented by the argument group, and the value codifying
nondiseased individuals in group is specified by tag.h. The data argument is a data frame containing
the data and all needed variables. Setting standardise = TRUE (the default) will standardize (i.e.,
subtract the mean and divide by the standard deviation) the test outcomes. The set of FPFs at which
to estimate the pooled ROC curve is specified in the argument p, and argument ci.level allows
specifying the level for the credible intervals (by default: 0.95). The LPML, WAIC, and DIC are
computed by setting, respectively, the arguments compute.lpml, compute.WAIC, and compute.DIC to
TRUE. Argument pauc is an (optional) list of values to replace the default values returned by the
function pauccontrol. Here, we ask for the pAUC to be computed, with the focus on restricted FPFs
and upper bound u1 = 0.1. Similarly, the argument density is an (optional) list of values to replace the
default values returned by the function densitycontrol, as it is the argument mcmc. Through prior.h
and prior.d arguments, we specify the hyperparameters in the nondiseased and diseased groups,
respectively. Again, both arguments are (optional) lists of values to replace the default values returned
by the function priorcontrol.dpm. We shall remember that different hyperparameters’ default values
are set depending on whether test outcomes are standardized or not. Finally, arguments parallel,
ncpus and cl allow performing parallel computations (based on the R-package parallel). In particular,
through parallel, the user specifies the type of parallel operation: either "no" (default), "multicore"
(not available on Microsoft Windows operating systems), or "snow". Argument ncpus is used to
indicate the number of processes to be used in a parallel operation (when parallel = "multicore",
or parallel = "snow"), and cl is an optional parallel or snow cluster to be used when parallel =
"snow". If cl is not supplied (as in our example), a cluster on the local machine is created for the
duration of the call.

A numerical summary of the fitted model can be obtained by calling the function summary, which
provides, among other information, the estimated AUC (posterior mean) and 95% credible interval
(recall that we set in the call to the function ci.level = 0.95) and, if required, the LPML, WAIC, and
DIC, separately, in the nondiseased (denoted here as Group H) and diseased (Group D) groups.

R> summary(pROC_dpm)

Call:
pooledROC.dpm(marker = "bmi", group = "cvd_idf", tag.h = 0, data = endosyn,

standardise = TRUE, p = seq(0, 1, l = 101), ci.level = 0.95,
compute.lpml = TRUE, compute.WAIC = TRUE, compute.DIC = TRUE,
pauc = pauccontrol(compute = TRUE, focus = "FPF", value = 0.1),
density = densitycontrol(compute = TRUE), prior.h = priorcontrol.dpm(L = 10),
prior.d = priorcontrol.dpm(L = 10), mcmc = mcmccontrol(nsave = 8000,

nburn = 2000, nskip = 1), parallel = "snow", ncpus = 2, cl = NULL)

Approach: Pooled ROC curve - Bayesian DPM
----------------------------------------------
Area under the pooled ROC curve: 0.759 (0.74, 0.777)*
Partial area under the pooled ROC curve (FPF = 0.1): 0.168 (0.139, 0.199)*
* Credible level: 0.95

Model selection criteria:
Group H Group D

WAIC 12490.485 4017.063
WAIC (Penalty) 8.431 5.468
LPML -6245.247 -2008.541
DIC 12490.276 4016.920
DIC (Penalty) 8.326 5.396

Sample sizes:
Group H Group D

Number of observations 2149 691
Number of missing data 0 0

To complement these numerical results, the ROCnReg package also provides graphical results that
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can be used to further explore the fitted model. Specifically, the function plot depicts the estimated
pooled ROC curve and AUC (posterior means), jointly with ci.level×100% (pointwise) credible
intervals (here 95%)

R> plot(pROC_dpm, cex.main = 1.5, cex.lab = 1.5, cex.axis = 1.5, cex = 1.5)

The result of the above code is shown in Figure 2.
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AUC (95% CI): 0.759 (0.74, 0.777)

Figure 2: Graphical results as provided by the plot.pooledROC function for an object of class
pooledROC.dpm. Posterior mean and 95% pointwise credible band for the pooled ROC curve and
corresponding posterior mean and 95% credible interval for the AUC.

By means of density = densitycontrol(compute = TRUE) in the call to the function, the estimates
of the PDFs of the BMI in both groups are to be returned. This information can be accessed through
component dens in the object pROC_dpm (i.e., pROC_dpm$dens), which is a list with elements h and d
associated with the nondiseased and diseased groups, respectively. Each of the two elements is itself
another list of two components: (1) grid, a vector that contains the grid of test results at which the
PDFs have been evaluated (estimated); and (2) dens, a matrix with the PDFs at each iteration of the
MCMC procedure. We can use these results to plot, e.g., the posterior mean (and 95% pointwise
credible bands) of the PDF of the BMI in the healthy and diseased populations (see Figure 3a obtained
using the R package ggplot2 by Wickham, 2016). As can be observed, the estimated densities obtained
under the DPM method follow very closely the histograms of the data. Further, the estimated densities
available in dens can be used, as advised by Gelman et al. (2013, p. 553), to monitor convergence of the
MCMC chains. The well-known label switching problem often leads to poor mixing of the chains of
the component-specific parameters, but this may not impact convergence and mixing of the induced
density/distribution of interest. For instance, Figure 4 shows the trace plots of the MCMC iterations
(after burn-in) of the PDFs of the BMI in the two groups for different (and randomly selected) values of
the BMI, and Figure 5 depicts the corresponding effective sample sizes and Geweke statistics (obtained
using the R package coda by Plummer et al., 2006). Note that all plots give evidence of a good mixing
and do not suggest a lack of convergence. For conciseness, the R code for reproducing Figures 3a, 4,
and 5 is not provided here but in the replication code that accompanies the paper.

It is worth noting that the function pooledROC.dpm also allows fitting a normal distribution in each
group. This is just a particular case (for which LD = LD̄ = 1) of the more general DPM model. In
order to fit such model, one simply needs to set L = 1 in the prior.d and prior.h arguments. The
code follows.

R> set.seed(123, "L'Ecuyer-CMRG") # for reproducibility
R> pROC_normal <- pooledROC.dpm(marker = "bmi", group = "cvd_idf", tag.h = 0,
+ data = endosyn, standardise = TRUE, p = seq(0, 1, l = 101), ci.level = 0.95,
+ compute.lpml = TRUE, compute.WAIC = TRUE, compute.DIC = TRUE,
+ pauc = pauccontrol(compute = TRUE, focus = "FPF", value = 0.1),
+ density = densitycontrol(compute = TRUE),
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(a) DPM model with 10 mixture components in each group
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(b) Normal model in each group

Figure 3: Histogram of the (observed) BMI and posterior mean jointly along with 95% pointwise
credible bands (red lines) of the PDF of the BMI obtained using (a) a Dirichlet process mixture of
normals model (object pROC_dpm); and (b) a normal model (object pROC_normal). Left: Nondiseased
individuals (none or one CVD risk factor). Right: Diseased individuals (two or more CVD risk factors).

+ prior.h = priorcontrol.dpm(L = 1), prior.d = priorcontrol.dpm(L = 1),
+ mcmc = mcmccontrol(nsave = 8000, nburn = 2000, nskip = 1),
+ parallel = "snow", ncpus = 2)

For the sake of space, we omit from the summary the call to the function

R> summary(pROC_normal)

Call: [...]

Approach: Pooled ROC curve - Bayesian DPM
----------------------------------------------
Area under the pooled ROC curve: 0.748 (0.728, 0.768)*
Partial area under the pooled ROC curve (FPF = 0.1): 0.224 (0.194, 0.253)*
* Credible level: 0.95

Model selection criteria:
Group H Group D

WAIC 12639.952 4049.004
WAIC (Penalty) 2.431 2.267
LPML -6319.976 -2024.502
DIC 12639.505 4048.714
DIC (Penalty) 1.986 1.987

Sample sizes:
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Figure 4: Trace plots of the MCMC draws (after burn-in) of the PDFs of the BMI based on the model
pROC_dpm. Results are shown separately for the nondiseased and diseased populations and for different
values of the BMI.

Group H Group D
Number of observations 2149 691
Number of missing data 0 0

The fit of the DPM and normal models in each group can be compared on the basis of the WAIC, DIC,
and/or the LPML. Remember that for the LPML, the higher its value, the better the model fit, while for
the WAIC and DIC, it is the other way around. By comparing these values, provided in the summary
of each fitted model, we can conclude that the three criteria favor, in both the diseased and (especially
in the) nondiseased groups, the more general DPM model. This is also corroborated by the plot of the
fitted densities in each group shown in Figure 3b.

We now estimate the pooled ROC curve using the Bayesian bootstrap estimator (function pooledROC.BB),
and comparisons with the results obtained using the DPM approach are provided.

R> set.seed(123, "L'Ecuyer-CMRG") # for reproducibility
R> pROC_BB <- pooledROC.BB(marker = "bmi", group = "cvd_idf", tag.h = 0, data = endosyn,
+ p = seq(0, 1, l = 101), pauc = pauccontrol(compute = TRUE, focus = "TPF", value = 0.8),
+ B = 5000, ci.level = 0.95, parallel = "snow", ncpus = 2)

R> summary(pROC_BB)

Call: [...]

Approach: Pooled ROC curve - Bayesian bootstrap
----------------------------------------------
Area under the pooled ROC curve: 0.76 (0.74, 0.779)*
Partial area under the pooled ROC curve (FPF = 0.1): 0.17 (0.14, 0.201)*
* Credible level: 0.95

Sample sizes:
Group H Group D

Number of observations 2149 691
Number of missing data 0 0

Note that the posterior means for the AUC and pAUC obtained using the DPM method (0.759 and
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Figure 5: Effective sample size and Geweke statistic of the MCMC chains (after burn-in) and of the
PDFs of the BMI based on model pROC_dpm in the nondiseased and diseased populations. In both
cases, results are shown along BMI values.

0.168, respectively) and the Bayesian bootstrap approach (0.760 and 0.170) are almost identical. This
can also be observed when plotting the estimated ROC curves under the two methods (Figure 6).

We finish this section by showing how to use ROCnReg to obtain an (optimal) threshold value
which could be further used to ‘diagnose’ an individual as diseased (two or more CVD risk factors)
or healthy/nondiseased (none or only one CVD risk factor). To that aim, and for pooledROC objects (i.e.,
those obtained using functions pooledROC.dpm, pooledROC.BB, pooledROC.emp, and pooledROC.kernel),
we use the function compute.threshold.pooledROC, which allows obtaining (optimal) threshold val-
ues using two criteria: the YI and the one that sets a target value for the FPF. For illustration, we show
here the results using the YI criterion.

R> th_pROC_dmp <- compute.threshold.pooledROC(pROC_dpm, criterion = "YI",
+ ci.level = 0.95, parallel = "snow", ncpus = 2)
R> th_pROC_dmp

$call
compute.threshold.pooledROC(object = pROC_dpm, criterion = "YI",

ci.level = 0.95, parallel = "snow", ncpus = 2)

$thresholds
est ql qh

26.46877 26.07129 26.85029

$YI
est ql qh

0.4045776 0.3721684 0.4366298

$FPF
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Figure 6: Estimated ROC curve using the Bayesian bootstrap approach (in black) and the DPM method
(in red). Solid lines represent the posterior means and dashed lines the 95% pointwise credible bands.

est ql qh
0.3808336 0.3469580 0.4159478

$TPF
est ql qh

0.7854112 0.7528575 0.8161865

The function returns the posterior mean (est) and ci.level×100% (here 95% since ci.level =
0.95) credible interval (lower bound: ql, upper bound: qh) for the YI and associated threshold value,
as well as for the FPF and TPF associated with this cutoff value. For our example, the (posterior mean
of the) YI is 0.40, and the YI-based threshold value is a BMI value of 26.5, which falls in the nutritional
status defined as pre-obesity by the World Health Organization. By using this YI-based threshold
value, we would have an FPF of 0.38 and a TPF of 0.79.

Covariate-specific ROC curve

We now turn our attention to the inclusion of covariates in ROC analysis. As shown in Table 1, with
ROCnReg, the user can estimate the covariate-specific ROC curve by means of three approaches.
As for the functions in ROCnReg for estimating the pooled ROC curve, the input arguments are
method-specific, and we refer the reader to the manual for details. For all methods, numerical and
graphical summaries are obtained using functions print.cROC, summary.cROC, and plot.cROC. Here,
we describe how to use the function cROC.bnp that implements the Bayesian nonparametric approach
for estimating the covariate-specific ROC curve detailed in Section Methods. Also, for objects of this
class, ROCnReg provides the function predictive.checks, which implements tools for assessing
model fit via posterior predictive checks.

Recall that, when including covariate information in ROC analysis, interest resides in evaluating
if and how the discriminatory capacity of the test varies with such covariates. In particular, in our
endocrine study, we aim at evaluating the possible effect of both age and gender in the discriminatory
capacity of the BMI. In what follows, with this aim in mind, two different models are fitted using the
function cROC.bnp. One which considers a normal distribution in each group and that incorporates the
age effect in a linear way and a second one which caps the maximum number of mixture components
in each group at 10 (i.e., LD = LD̄ = 10) and that models the age effect using cubic B-splines (and
thus allows for a nonlinear effect of age). Following Rodríguez-Álvarez et al. (2011a,b), both models
consider the interaction between age and gender. For clarity, we first focus on the code that models
the age effect in a linear way and use it to describe in detail the different arguments of the cROC.bnp
function.

R> # Dataframe for predictions
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R> agep <- seq(22, 80, l = 30)
R> endopred <- data.frame(age = rep(agep,2), gender = factor(rep(c("Women", "Men"),
+ each = length(agep))))

R> set.seed(123, "L'Ecuyer-CMRG") # for reproducibility
R> cROC_bp <- cROC.bnp(formula.h = bmi ~ gender*age, formula.d = bmi ~ gender*age,
+ group = "cvd_idf", tag.h = 0, data = endosyn, newdata = endopred,
+ standardise = TRUE, p = seq(0, 1, l = 101), ci.level = 0.95, compute.lpml = TRUE,
+ compute.WAIC = TRUE, compute.DIC = TRUE, pauc = pauccontrol(compute = FALSE),
+ prior.h = priorcontrol.bnp(L = 1), prior.d = priorcontrol.bnp(L = 1),
+ density = densitycontrol(compute = TRUE),
+ mcmc = mcmccontrol(nsave = 8000, nburn = 2000, nskip = 1),
+ parallel = "snow", ncpus = 2)

As can be seen, many arguments coincide with those of the function pooledROC.dpm (described
in the previous section). We thus focus here on those that are specific to cROC.bnp. The arguments
formula.h and formula.d are formula objects specifying the model for the regression function (see
Equation (28)) in, respectively, the nondiseased and diseased groups. They are similar to the formula
used with the glm function, except that nonlinear functions (modeled by means of cubic B-splines) can
be added using function f (an example will follow later in this section). Note that in both cases, the
left-hand side of the formulas should include the name of the test/marker (in our case bmi). In our
application, and for both groups, the model for the component’s means includes, in addition to the
linear effect of age and gender, the (linear) interaction between these two covariates (i.e., gender*age
≡ gender + age + gender:age). Through the newdata argument, the user can specify a new data
frame containing the values of the covariates at which the covariate-specific ROC curve and AUC (and
also pAUC and PDFs, if required) are to be computed. Finally, prior.h (the same holds for prior.d) is
a (optional) list of values to replace the defaults returned by priorcontrol.bnp, which allows setting
the hyperparameters for the single-weights dependent Dirichlet process mixture of normals model
(see Section Methods and the manual accompanying the package for more details)

priorcontrol.bnp(m0 = NA, S0 = NA, nu = NA, Psi = NA, a = 2, b = NA,
alpha = 1, L = 10)

In our example, we only modified the upper bound for the number of components in the mixture
model, which by default is 10, and set it to 1.

In this case, the summary of the fitted model provides the following information.

R> summary(cROC_bp)

Call: [...]

Approach: Conditional ROC curve - Bayesian nonparametric
----------------------------------------------------------

Parametric coefficients
Group H:

Post. mean Post. quantile 2.5% Post. quantile 97.5%
(Intercept) 26.1459 25.8765 26.4096
genderWomen -0.9160 -1.2726 -0.5680
age 1.1949 0.9180 1.4690
genderWomen:age 1.1948 0.8455 1.5394

Group D:
Post. mean Post. quantile 2.5% Post. quantile 97.5%

(Intercept) 29.1865 28.7625 29.6115
genderWomen 2.0826 1.3705 2.7665
age 0.6578 0.2162 1.0904
genderWomen:age -0.7711 -1.4655 -0.0956

ROC curve:
Post. mean Post. quantile 2.5% Post. quantile 97.5%

(Intercept) -0.6959 -0.8177 -0.5776
genderWomen -0.6863 -0.8695 -0.5046
age 0.1229 0.0045 0.2415
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genderWomen:age 0.4499 0.2745 0.6245
b 0.9391 0.8824 0.9975

Model selection criteria:
Group H Group D

WAIC 12174.986 4007.980
WAIC (Penalty) 6.283 5.646
LPML -6087.492 -2003.990
DIC 12173.664 4007.329
DIC (Penalty) 4.994 5.053

Sample sizes:
Group H Group D

Number of observations 2149 691
Number of missing data 0 0

The first aspect to note is that, in this case, the summary function does not provide the estimated AUC
as there is one (possibly different) AUC for each combination of covariate values. Also, given that:
(1) only one component has been considered for modeling the CDFs of test results in the diseased
and nondiseased groups, and (2) covariate effects have been modeled in a linear way, the summary
function provides the posterior mean (and quantiles) of the (parametric) coefficients associated with
the regression functions (Equation (30)) and with the covariate-specific ROC curve (Equation (32)). We
note that since in the call to the function we have specified standardise = TRUE (and consequently
both the test outcomes and covariates are standardized), the regression coefficients are on the scale of
the standardized covariates. If we focus on the coefficients for the covariate-specific ROC curve, it
seems that the discriminatory capacity of the BMI decreases with age, with the decrease being more
pronounced in women (note that the expression of the covariate-specific ROC curve in Equation (31)
implies that positive coefficients correspond to a decrease in discriminatory capacity). These results are
possibly better judged by plotting the estimated covariate-specific ROC curves and associated AUCs.
This can be done using the plot function. For the covariate-specific ROC curve, the depicted graphics
will depend on the number and nature of the covariates included in the analyses. In particular, for our
application, we obtain, separately for men and women, the covariate-specific ROC curves (and AUCs)
along age. These are shown in Figure 7, obtained using the code

R> op <- par(mfrow = c(2,2))
R> plot(cROC_sp, ask = FALSE)
R> par(op)

Although in this example we have modeled the age effect linearly and only one mixture component
was considered, ROCnReg also allows for modeling the effect of continuous covariates in a nonlinear
way, either using cubic B-spline basis expansions (through the function cROC.bnp) or kernel-based
smoothers (via the function cROC.kernel which is described in the Supplementary Material). Also, as
noted before, using only one mixture component for the single-weights dependent Dirichlet process
mixture of normals model (function cROC.bnp) is equivalent to considering a (Bayesian) normal model,
which might be too restrictive for most data applications. In what follows, we provide more flexibility
to the model for the covariate-specific ROC curve by means of (1) increasing the number of mixture
components and (2) modeling the age effect in a nonlinear way (recall our considerations in Section
Covariate-specific ROC curve about the lack of flexibility of the single-weights dependent Dirichlet
process mixture of normals model when covariates effects on the components’ means are modeled
linearly). The former is done by modifying the value of L in the arguments prior.h and prior.d, with
10 being the default value. Regarding the latter, this is done by making use of the function f when
specifying the component’s mean functions through formula.h and formula.d. In particular, in our
application we are interested in modeling the factor-by-curve interaction between age and gender (i.e.,
we model the age effect ‘separately’ for men and women). This is done using, e.g., bmi ˜ gender +
f(age,by = gender,K = c(3,5)). Through argument K, we indicate the number of internal knots
used for constructing the cubic B-spline basis used to approximate the nonlinear effect of age (with the
quantiles of age used to anchor the knots). Note that we can specify a different number of internal
knots for men and women (K = c(3,5)), where the order of vector K should match the ordering of the
levels of the factor gender. We also note that to assist in the selection of the number of interior knots
(in ROCnReg, the location is always based on the quantiles of the corresponding covariates), the user
can make use of the WAIC, DIC, and/or LPML. For instance, for this application, we fitted different
models with a different number of internal knots, and we have chosen the model that provided the
lowest WAIC (this was done in both the nondiseased and diseased populations, and we remark that
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Figure 7: Graphical results as provided by the plot.cROC function for an object of class cROC.bnp.
Results for the model that includes the linear interaction between age and gender and one mixture
component. Top row: Posterior mean of the covariate-specific ROC curve along age, separately for men
and women. Bottom row: Posterior mean and 95% pointwise credible band for the covariate-specific
AUC along age, separately for men and women.

the number of knots does not need to be the same in the two populations). The final model is shown
below.

R> # Levels of gender, and its ordering.
R> # Needed if we want to specify different
R> # number of knots for men and women
R> levels(endosyn$gender)

[1] "Men" "Women"

R> set.seed(123, "L'Ecuyer-CMRG") # for reproducibility
R> cROC_bnp <- cROC.bnp(
+ formula.h = bmi ~ gender + f(age, by = gender, K = c(0,0))
+ formula.d = bmi ~ gender + f(age, by = gender, K = c(4,4)),
+ group = "cvd_idf", tag.h = 0, data = endosyn, newdata = endopred,
+ standardise = TRUE, p = seq(0, 1, l = 101), ci.level = 0.95, compute.lpml = TRUE,
+ compute.WAIC = TRUE, compute.DIC = TRUE, pauc = pauccontrol(compute = FALSE),
+ prior.h = priorcontrol.bnp(L = 10), prior.d = priorcontrol.bnp(L = 10),
+ density = densitycontrol(compute = TRUE),
+ mcmc = mcmccontrol(nsave = 8000, nburn = 2000, nskip = 1),
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+ parallel = "snow", ncpus = 2)

R> summary(cROC_bnp)

Call: [...]

Approach: Conditional ROC curve - Bayesian nonparametric
----------------------------------------------------------

Model selection criteria:
Group H Group D

WAIC 11833.000 3909.828
WAIC (Penalty) 31.236 38.583
LPML -5916.766 -1955.449
DIC 11829.750 3904.532
DIC (Penalty) 29.611 35.934

Sample sizes:
Group H Group D

Number of observations 2149 691
Number of missing data 0 0

R> op <- par(mfrow = c(2,2))
R> plot(cROC_sp, ask = FALSE)
R> par(op)

The graphical results are shown in Figure 8. Note that, especially for women, age displays a
marked nonlinear effect. Recall that for objects of class cROC.bnp, and if required in the call to the
function, the summary function provides, separately for the diseased and nondiseased/healthy groups,
the WAIC, LPML, and DIC. Note that, in both cases, the three criteria support the use of the more
flexible model that uses cubic B-splines and 10 mixture components for modeling the distribution of
the BMI (model cROC_bnp) over the more restrictive Bayesian normal linear model (model cROC_bp).
Because the WAIC, LPML, and DIC are relative criteria, posterior predictive checks are also available
in ROCnReg through the function predictive.checks. Specifically, the function generates replicated
datasets from the posterior predictive distribution in the two groups D and D̄ and compares them to
the test values (BMI values in our application) using specific statistics. For the choice of such statistics,
we follow Gabry et al. (2019), who suggest choosing statistics that are ‘orthogonal’ to the model
parameters. Since we are using a location-scale mixture of normals model for the test outcomes, we
use the skewness and kurtosis here and check how well the posterior predictive distribution captures
these two quantities.

R> op <- par(mfrow = c(2,3))
R> pc_cROC_bp <- predictive.checks(cROC_bp,
+ statistics = c("kurtosis", "skewness"), devnew = FALSE)
R> par(op)

R> op <- par(mfrow = c(2,3))
R> pc_cROC_bnp <- predictive.checks(cROC_bnp,
+ statistics = c("kurtosis", "skewness"), devnew = FALSE)
R> par(op)

Results are shown in Figure 9. As can be seen, the model that includes the factor-by-curve interaction
between age and gender and 10 mixture components performs quite well in capturing both quantities,
while the Bayesian normal linear model fails to do so. Also shown in Figure 9 (and provided by
function predictive.checks) are the kernel density estimates of 500 randomly selected datasets drawn
from the posterior predictive distribution, in each group, compared to the kernel density estimate of
the observed BMI (in each group). Again, the more flexible model, as opposed to the Bayesian normal
linear model, is able to simulate data that are very much similar to the observed BMI values.

As for the pooled ROC curve, ROCnReg also provides a function that allows obtaining (optimal)
threshold values for the covariate-specific ROC curve. For illustration, instead of the threshold values
based on the Youden index, we now use the criterion that sets a target value for the FPF. The code for
model cROC_bnp, when setting the FPF = 0.3, is as follows.

R> th_fpf_cROC_bnp <- compute.threshold.cROC(cROC_bnp, criterion = "FPF", FPF = 0.3,
+ newdata = endopred, ci.level = 0.95, parallel = "snow", ncpus = 2)
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Figure 8: Graphical results as provided by the plot.cROC function for an object of class cROC.bnp.
Results for the model that includes the factor-by-curve interaction between age and gender and
10 mixture components. Top row: Posterior mean of the covariate-specific ROC curve along age,
separately for men and women. Bottom row: Posterior mean and 95% pointwise credible band for the
covariate-specific AUC along age, separately for men and women.

R> names(th_fpf_cROC_bnp)

[1] "newdata" "thresholds" "TPF" "FPF" "call"

In addition to the data frame newdata containing the covariate values at which the thresholds are
computed, the function compute.threshold.cROC also returns the covariate-specific thresholds corre-
sponding to the specified FPF as well as the covariate-specific TPF attached to these thresholds. In both
cases, the function returns the posterior mean and the ci.level×100% (here 95%) pointwise credible
intervals. Although ROCnReg does not provide a function for plotting the results obtained using
compute.threshold.cROC, graphical results can be easily obtained. For simplicity, we only show here
the code for the covariate-specific threshold values (thresholds), but a similar code can be used to plot
the covariate-specific TPFs. Both plots are shown in Figure 10. As can be observed, for an FPF of 0.3,
the BMI age-specific thresholds tend to increase with age both for men and women, although for the
latter, there is a slight decrease after the age of about 70 years old. The age-specific TPFs corresponding
to the thresholds for which the FPF is 0.3 show a nonlinear behavior, and these are in general higher
for women than for men (of the same age).

R> df <- data.frame(age = th_fpf_cROC_bnp$newdata$age,
+ gender = th_fpf_cROC_bnp$newdata$gender, y = th_fpf_cROC_bnp$thresholds[[1]][,"est"],
+ ql = th_fpf_cROC_bnp$thresholds[[1]][,"ql"],
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(b) Model including the factor-by-curve interaction between age and gender and 10 mixture components

Figure 9: Graphical results as provided by the predictive.checks function for an object of class
cROC.bnp. Histograms of the statistics skewness and kurtosis computed from 8000 draws from the
posterior predictive distribution in the diseased and nondiseased groups. The red line is the estimated
statistic from the observed BMI values. The right-hand side plots show the kernel density estimate of
the observed BMI (solid black line), jointly with the kernel density estimates for 500 simulated datasets
drawn from the posterior predictive distributions.

+ qh = th_fpf_cROC_bnp$thresholds[[1]][,"qh"])

R> g0 <- ggplot(df, aes(x = age, y = y, ymin = ql, ymax = qh)) + geom_line() +
+ geom_ribbon(alpha = 0.2) +
+ labs(title = "Covariate-specific thresholds for an FPF = 0.3",
+ x = "Age (years)", y = "BMI") +
+ theme(strip.text.x = element_text(size = 20),
+ plot.title = element_text(hjust = 0.5, size = 20),
+ axis.text = element_text(size = 20),
+ axis.title = element_text(size = 20)) + facet_wrap(~gender)
R> print(g0)

For conciseness, we have not shown here how to perform convergence diagnostics of the MCMC
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Figure 10: Top row: Posterior mean (solid black line) and 95% pointwise credible band for the BMI
threshold values, along age, corresponding to an FPF of 0.3. Bottom row: Posterior mean (solid black
line) and 95% pointwise credible band of the TPFs, along age, corresponding to the BMI threshold
values for which FPF = 0.3.

chains for models fitted using the function cROC.bnp. In very much the same way as shown in the
previous section for the object pROC_dpm, using the information contained in component dens in the
list of returned values (if required), one can produce trace plots of the conditional densities at some
sampled values, as well as obtain the corresponding effective sample sizes and Geweke statistics.
Some results are provided in the Supplementary Material, and the associated code can be found in the
replication code that accompanies this paper.

Covariate-adjusted ROC curve

In this section, we illustrate how to conduct inference about the covariate-adjusted ROC curve using
ROCnReg. Similar to the covariate-specific ROC curve, three approaches are available for estimating
the AROC curve. The function AROC.bnp is illustrated below, while AROC.sp and AROC.kernel are
exemplified in the Supplementary Material.

Recall that the AROC curve is a global summary measure of diagnostic accuracy that takes
covariate information into account. In the context of our endocrine application, we seek to study
the overall discriminatory capacity of the BMI for detecting the presence of CVD risk factors when
adjusting for age and gender. Here, we focus on how to estimate the AROC curve using the AROC.bnp
function. The function syntax is exactly similar to the one of cROC.bnp, with the only difference being
that we only need to specify the arguments related to the nondiseased population. The code and
respective summary follow.

R> set.seed(123, "L'Ecuyer-CMRG") # for reproducibility
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R> AROC_bnp <- AROC.bnp(
+ formula.h = bmi ~ gender + f(age, by = gender, K = c(0,0))
+ group = "cvd_idf", tag.h = 0, data = endosyn, standardise = TRUE,
+ p = seq(0, 1, l = 101), ci.level = 0.95, compute.lpml = TRUE, compute.WAIC = TRUE,
+ compute.DIC = TRUE, pauc = pauccontrol(compute = FALSE),
+ prior.h = priorcontrol.bnp(L = 10), density = densitycontrol(compute = TRUE),
+ mcmc = mcmccontrol(nsave = 8000, nburn = 2000, nskip = 1),
+ parallel = "snow", ncpus = 2)

R> summary(AROC_bnp)

Call: [...]

Approach: AROC Bayesian nonparametric
----------------------------------------------
Area under the covariate-adjusted ROC curve: 0.656 (0.629, 0.684)*
* Credible level: 0.95

Model selection criteria:
Group H

WAIC 11833.000
WAIC (Penalty) 31.236
LPML -5916.766
DIC 11829.750
DIC (Penalty) 29.611

Sample sizes:
Group H Group D

Number of observations 2149 691
Number of missing data 0 0

The area under the AROC curve is 0.656 (95% credible interval: (0.629, 0.684)) thus revealing a
reasonable good ability of the BMI to detect the presence of CVD risk factors when teasing out the
age and gender effects. As for the pooled ROC curve and the covariate-specific ROC curve, a plot
function is also available (result in Figure 11a).

R> plot(AROC_bnp, cex.main = 1.5, cex.lab = 1.5, cex.axis = 1.5, cex = 1.3)

Finally, we compare the AROC curve with the pooled ROC curve that was obtained earlier by using a
DPM model with 10 components in each group. In Figure 11b, we show the plots of the two curves,
and, as can be noticed, the pooled ROC curve lies well above the AROC curve, thus evidencing the
need for incorporating covariate information into the analysis.

R> plot(AROC_bnp$p, AROC_bnp$ROC[,1], type = "l", xlim = c(0,1), ylim = c(0,1),
+ xlab = "FPF", ylab = "TPF", main = "Pooled ROC curve vs AROC curve", cex.main = 1.5,
+ cex.lab = 1.5, cex.axis = 1.5, cex = 1.5)
R> lines(AROC_bnp$p, AROC_bnp$ROC[,2], col = 1, lty = 2)
R> lines(AROC_bnp$p, AROC_bnp$ROC[,3], col = 1, lty = 2)
R> lines(pROC_dpm$p, pROC_dpm$ROC[,1], col = 2)
R> lines(pROC_dpm$p, pROC_dpm$ROC[,2], col = 2, lty = 2)
R> lines(pROC_dpm$p, pROC_dpm$ROC[,3], col = 2, lty = 2)
R> abline(0, 1, col = "grey", lty = 2)

Computational aspects

We finish this section with some comments on computational aspects. In our experience, the methods
with the largest computing times are those implemented in cROC.bnp when LD̄ > 1 and in cROC.kernel
when confidence bands are to be constructed. In the first case, the main reason behind the computa-
tional burden is the need to invert FD̄ (· | x) in order to obtain the covariate-specific ROC curve (see
equation (10)). Note that when LD̄ > 1, the conditional distribution function in the nondiseased group
is given by a mixture of normal distributions, and the corresponding quantile function needs to be
computed for each covariate(s) value we might be interested in and for each iteration of the Gibbs
sampler procedure. Regarding the cROC.kernel function, the computing time is mainly driven by the
number of bootstrap samples used for constructing the confidence bands. In Table 2, we show the
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Figure 11: (a) Age and gender-adjusted ROC curve: posterior mean and 95% pointwise credible band.
(b) Age and gender-adjusted ROC curve (in black) and pooled ROC curve (estimated using a DPM of
normals model) (in red). Solid lines represent the posterior means and dashed lines the 95% pointwise
credible bands.

time, in seconds, needed for fitting the pooled, the covariate-specific, and the covariate-adjusted ROC
curve using the Bayesian nonparametric and the kernel approaches for the synthetic endocrine data
and when both parallel (with 2 and 4 processes) and no parallel options are used. We note that for
the Bayesian approaches, we also computed the densities/conditional densities, as well as the WAIC,
LPML, and DIC, which further increase the computing time (in the case of the AROC curve, these
were only computed in the nondiseased population). With respect to the kernel-based approach (in
this case, the fit is done separately for men and women and the corresponding results are presented
in the Supplementary Material), we have used 500 bootstrap samples to construct the confidence
bands. As it can be appreciated, for these two intense tasks, using 4 processes drastically improves
the computation time. All computations were performed in a iMac with 3.6GHz quad core Intel i7
processor and 32GB RAM running under a macOS Catalina 10.15.5 operating system.

No parallel Snow (2 cores) Snow (4 cores)
pooledROC.dpm 138 118 111

pooledROC.kernel 376 196 105
cROC.bnp 2052 1117 680

cROC.kernel
Men: 1159 Men: 528 Men: 279

Women: 1885 Women: 916 Women: 466
AROC.bnp 126 115 112

AROC.kernel
Men: 847 Men: 404 Men: 214

Women: 1707 Women: 833 Women: 438

Table 2: Time in seconds (rounded to the nearest second) needed to fit the pooled, the covariate-
specific, and the covariate-adjusted ROC curve for the Bayesian nonparametric and kernel approaches.

5 Summary and future plans

In this paper, we have introduced the capabilities of the R package ROCnReg for conducting in-
ference about the pooled ROC curve, the covariate-specific ROC curve, and the covariate-adjusted
ROC curve and their associated summary indices. As we have illustrated, the current version of the
package provides several options for estimating ROC curves, both under frequentist and Bayesian
paradigms, either parametrically, semiparametrically, or nonparametrically. To the best of our knowl-
edge, this is the first software package implementing Bayesian inference for ROC curves. Several
additions/extensions are planned in the future, and these, among others, include:
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• Implement the most time-consuming parts in C or C++.

• Incorporate methods for non-binary disease status (e.g., no disease, mild disease, severe disease).
That is, implement ROC surface models.

• Implement new (optimal) threshold criteria (e.g., YI including costs).

6 Computational details

The results in this paper were obtained using R 4.0.3 with the ROCnReg 1.0-5 package. The ROCnReg
package has several dependencies: graphics, grDevices, parallel, splines, stats, moments (Komsta and
Novomestky, 2015), nor1mix (Maechler, 2019), Matrix (Bates and Maechler, 2019), spatstat (Baddeley
and Turner, 2005), np (Hayfield and Racine, 2008), lattice (Sarkar, 2008), MASS (Venables and Ripley,
2002), and pbivnorm (Genz and Kenkel, 2015). R itself and all packages used are available from the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/.

7 Acknowledgements

We acknowledge the reviewer for their constructive comments that led to an improved version of
the article. MX Rodríguez-Álvarez was funded by project MTM2017-82379-R (AEI/FEDER, UE),
by the Basque Government through the BERC 2018-2021 program and Elkartek project 3KIA (KK-
2020/00049) and by the Spanish Ministry of Science, Innovation, and Universities (BCAM Severo
Ochoa accreditation SEV-2017-0718).

Bibliography

A. Baddeley and R. Turner. spatstat: An R package for analyzing spatial point patterns. Journal of
Statistical Software, 12(6):1–42, 2005. URL http://doi.org/10.18637/jss.v012.i06. [p552]

D. Bates and M. Maechler. Matrix: Sparse and Dense Matrix Classes and Methods, 2019. URL https:
//CRAN.R-project.org/package=Matrix. R package version 1.2-18. [p552]

G. Celeux, F. Forbes, C. P. Robert, and D. M. Titterington. Deviance information criteria for missing data
models. Bayesian Analysis, 1(4):651–673, 2006. URL https://doi.org/10.1214/06-BA122. [p533]

M. De Iorio, W. O. Johnson, P. Müller, and G. L. Rosner. Bayesian nonparametric nonproportional
hazards survival modeling. Biometrics, 65(3):762–771, 2009. URL https://doi.org/10.1111/j.1541-
0420.2008.01166.x. [p533]

A. Erkanli, M. Sung, E. Jane Costello, and A. Angold. Bayesian semi-parametric ROC analysis. Statistics
in Medicine, 25(22):3905–3928, 2006. URL https://doi.org/10.1002/sim.2496. [p526, 531, 532, 534]

D. Faraggi. Adjusting receiver operating characteristic curves and related indices for covariates.
Journal of the Royal Statistical Society D, 52(2):179–192, 2003. URL https://doi.org/10.1111/1467-
9884.00350. [p525, 526, 534]

T. S. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1(2):
209–230, 1973. URL https://doi.org/10.1214/aos/1176342360. [p531]

J. Gabry, D. Simpson, A. Vehtari, M. Betancourt, and A. Gelman. Visualization in Bayesian workflow.
Journal of the Royal Statistical Society A, 182(2):389–402, 2019. URL https://doi.org/10.1111/rssa.
12378. [p546]

S. Geisser and W. F. Eddy. A predictive approach to model selection. Journal of the American Statistical
Association, 74(365):153–160, 1979. URL https://doi.org/10.2307/2286745. [p533]

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. Bayesian Data Analysis.
Chapman and Hall/CRC, third edition, 2013. [p532, 538]

A. Gelman, J. Hwang, and A. Vehtari. Understanding predictive information criteria for Bayesian
models. Statistics and Computing, 24(6):997–1016, 2014. URL https://doi.org/10.1007/s11222-
013-9416-2. [p533]

A. Genz and B. Kenkel. pbivnorm: Vectorized Bivariate Normal CDF, 2015. URL https://CRAN.R-
project.org/package=pbivnorm. R package version 0.6.0. [p552]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=moments
https://CRAN.R-project.org/package=nor1mix
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=spatstat
https://CRAN.R-project.org/package=np
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=pbivnorm
https://CRAN.R-project.org/
http://doi.org/10.18637/jss.v012.i06
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=Matrix
https://doi.org/10.1214/06-BA122
https://doi.org/10.1111/j.1541-0420.2008.01166.x
https://doi.org/10.1111/j.1541-0420.2008.01166.x
https://doi.org/10.1002/sim.2496
https://doi.org/10.1111/1467-9884.00350
https://doi.org/10.1111/1467-9884.00350
https://doi.org/10.1214/aos/1176342360
https://doi.org/10.1111/rssa.12378
https://doi.org/10.1111/rssa.12378
https://doi.org/10.2307/2286745
https://doi.org/10.1007/s11222-013-9416-2
https://doi.org/10.1007/s11222-013-9416-2
https://CRAN.R-project.org/package=pbivnorm
https://CRAN.R-project.org/package=pbivnorm


CONTRIBUTED RESEARCH ARTICLE 553

J. Gu, S. Ghosal, and A. Roy. Bayesian bootstrap estimation of ROC curve. Statistics in Medicine, 27:
5407–5420, 2008. URL https://doi.org/10.1002/sim.3366. [p526, 530]

Z. Guan, J. Qin, and B. Zhang. Information borrowing methods for covariate-adjusted ROC curve.
Canadian Journal of Statistics, 40(3):569–587, 2012. URL https://doi.org/10.1002/cjs.11145. [p525]

T. Hayfield and J. S. Racine. Nonparametric econometrics: The np package. Journal of Statistical
Software, 27(5), 2008. URL https://doi.org/10.18637/jss.v027.i05. [p552]

S. L. Hillis and C. E. Metz. An analytic expression for the binormal partial area under the ROC curve.
Academic Radiology, 19(12):1491 – 1498, 2012. URL https://doi.org/10.1016/j.acra.2012.09.009.
[p532]

F. Hsieh and B. W. Turnbull. Nonparametric and semiparametric estimation of the receiver operating
characteristic curve. The Annals of Statistics, 24(1):25–40, 02 1996. URL https://doi.org/10.1214/
aos/1033066197. [p526]

V. Inácio, M. X. Rodríguez-Álvarez, and P. Gayoso-Diz. Statistical evaluation of medical tests. Annual
Review of Statistics and Its Application, 8, 2020. URL https://doi.org/10.1146/annurev-statistics-
040720-022432. [p525]

V. Inácio de Carvalho and M. X. Rodríguez-Álvarez. Bayesian nonparametric inference for the
covariate-adjusted ROC curve. arXiv:1806.00473 [stat.ME], 2018. URL https://arxiv.org/abs/
1806.00473. [p525, 526, 530, 534, 535]

V. Inácio de Carvalho, A. Jara, T. E. Hanson, and M. de Carvalho. Bayesian nonparametric ROC
regression modeling. Bayesian Analysis, 8(3):623–646, 2013. URL https://doi.org/10.1214/13-
BA825. [p525, 526, 533]

V. Inácio de Carvalho, M. de Carvalho, and A. J. Branscum. Nonparametric Bayesian covariate-
adjusted estimation of the Youden index. Biometrics, 73(4):1279–1288, 2017. URL https://doi.org/
10.1111/biom.12686. [p525, 534]

H. Ishwaran and L. F. James. Gibbs sampling methods for stick-breaking priors. Journal of the American
Statistical Association, 96(453):161–173, 2001. URL https://doi.org/10.1198/016214501750332758.
[p531]

H. Ishwaran and L. F. James. Approximate Dirichlet process computing in finite normal mixtures:
Smoothing and prior information. Journal of Computational and Graphical Statistics, 11(3):508–532,
2002. URL https://doi.org/10.1198/106186002411. [p532]

H. Janes and M. S. Pepe. Adjusting for covariate effects on classification accuracy using the covariate-
adjusted receiver operating characteristic curve. Biometrika, 96(2):371–382, 2009. URL https:
//doi.org/10.1093/biomet/asp002. [p525, 526, 529, 530]

L. Komsta and F. Novomestky. moments: Moments, cumulants, skewness, kurtosis and related tests, 2015.
URL https://CRAN.R-project.org/package=moments. R package version 0.14. [p552]

M. López-Ratón, M. X. Rodríguez-Álvarez, C. Cadarso-Suárez, and F. Gude-Sampedro. OptimalCut-
points: an R package for selecting optimal cutpoints in diagnostic tests. Journal of Statistical Software,
61(8):1–36, 2014. URL https://doi.org/10.18637/jss.v061.i08. [p525]

S. N. MacEachern. Dependent Dirichlet processes. Unpublished manuscript, Department of Statistics, The
Ohio State University, pages 1–40, 2000. [p533]

M. Maechler. nor1mix: Normal aka Gaussian (1-d) Mixture Models (S3 Classes and Methods), 2019. URL
https://CRAN.R-project.org/package=nor1mix. R package version 1.3-0. [p552]

C. E. Metz. Basic principles of ROC analysis. Seminars in Nuclear Medicine, 8(4):283 – 298, 1978. URL
https://doi.org/10.1016/S0001-2998(78)80014-2. [p525]

J. C. Pardo-Fernández, M. X. Rodríguez-Álvarez, and I. van Keilegom. A review on ROC curves in the
presence of covariates. REVSTAT–Statistical Journal, 12(1):21–41, 2014. [p525, 530]

M. S. Pepe. Three approaches to regression analysis of receiver operating characteristic curves for
continuous test results. Biometrics, 54(1):124–135, 1998. URL https://doi.org/10.2307/2534001.
[p525, 526]

M. S. Pepe. The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford Statistical
Sciences Series. Oxford University Press, New York, 2003. [p525, 527, 528, 530]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://doi.org/10.1002/sim.3366
https://doi.org/10.1002/cjs.11145
https://doi.org/10.18637/jss.v027.i05
https://doi.org/10.1016/j.acra.2012.09.009
https://doi.org/10.1214/aos/1033066197
https://doi.org/10.1214/aos/1033066197
https://doi.org/10.1146/annurev-statistics-040720-022432
https://doi.org/10.1146/annurev-statistics-040720-022432
https://arxiv.org/abs/1806.00473
https://arxiv.org/abs/1806.00473
https://doi.org/10.1214/13-BA825
https://doi.org/10.1214/13-BA825
https://doi.org/10.1111/biom.12686
https://doi.org/10.1111/biom.12686
https://doi.org/10.1198/016214501750332758
https://doi.org/10.1198/106186002411
https://doi.org/10.1093/biomet/asp002
https://doi.org/10.1093/biomet/asp002
https://CRAN.R-project.org/package=moments
https://doi.org/10.18637/jss.v061.i08
https://CRAN.R-project.org/package=nor1mix
https://doi.org/10.1016/S0001-2998(78)80014-2
https://doi.org/10.2307/2534001


CONTRIBUTED RESEARCH ARTICLE 554

S. Pérez Fernández, P. Martínez Camblor, P. Filzmoser, and N. Corral Blanco. nsROC: An R package for
non-standard ROC curve analysis. The R Journal, 10(2), 2018. URL https://doi.org/10.32614/RJ-
2018-043. [p525]

S. Perez Jaume, K. Skaltsa, N. Pallarès, and J. L. Carrasco. ThresholdROC: Optimum threshold
estimation tools for continuous diagnostic tests in R. Journal of Statistical Software, 82(4):1–21, 2017.
URL https://doi.org/10.18637/jss.v082.i04. [p525]

M. Plummer, N. Best, K. Cowles, and K. Vines. Coda: Convergence diagnosis and output analysis for
MCMC. R News, 6(1):7–11, 2006. URL https://journal.r-project.org/archive/. [p538]

X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C. Sanchez, and M. Müller. proc: An open-
source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12:77, 2011.
URL https://doi.org/10.1186/1471-2105-12-77. [p525]

M. X. Rodriguez-Alvarez and J. Roca-Pardinas. npROCRegression: Kernel-Based Nonparametric ROC Re-
gression Modelling, 2017. URL https://CRAN.R-project.org/package=npROCRegression. R package
version 1.0-5. [p525]

M. X. Rodríguez-Álvarez, J. Roca-Pardiñas, and C. Cadarso-Suárez. ROC curve and covariates:
Extending induced methodology to the non-parametric framework. Statistics and Computing, 21(4):
483–499, 2011a. URL https://doi.org/10.1007/s11222-010-9184-1. [p525, 526, 535, 542]

M. X. Rodríguez-Álvarez, J. Roca-Pardiñas, and C. Cadarso-Suárez. A new flexible direct ROC
regression model: Application to the detection of cardiovascular risk factors by anthropometric
measures. Computational Statistics & Data Analysis, 55(12):3257–3270, 2011b. URL https://doi.org/
10.1016/j.csda.2011.06.008. [p525, 535, 542]

M. X. Rodríguez-Álvarez, P. G. Tahoces, C. Cadarso-Suárez, and M. J. Lado. Comparative study of
ROC regression techniques – applications for the computer-aided diagnostic system in breast cancer
detection. Computational Statistics & Data Analysis, 55(1):888–902, 2011c. URL https://doi.org/10.
1016/j.csda.2010.07.018. [p525]

P. S. Rosenberg. Hazard function estimation using B-splines. Biometrics, 51(3):874–887, 1995. URL
https://doi.org/10.2307/2532989. [p533]

D. Sarkar. Lattice: Multivariate Data Visualization with R. Springer-Verlag, New York, 2008. URL
http://lmdvr.r-forge.r-project.org. ISBN 978-0-387-75968-5. [p552]

D. E. Shapiro. The interpretation of diagnostic tests. Statistical Methods in Medical Research, 8(2):113–134,
1999. URL https://doi.org/10.1016/s0004-9514(14)60228-2. [p528]

M. A. Tomé Martínez de Rituerto, M. A. Botana, C. Cadarso-Suárez, A. Rego-Iraeta, A. Fernández-
Mariño, J. A. Mato, I. Solache, and R. Perez-Fernandez. Prevalence of metabolic syndrome in
Galicia (NW Spain) on four alternative definitions and association with insulin resistance. Journal of
Endocrinological Investigation, 32(6):505–511, Jun 2009. URL https://doi.org/10.1007/BF03346497.
[p535]

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New York, fourth edition,
2002. URL http://www.stats.ox.ac.uk/pub/MASS4. ISBN 0-387-95457-0. [p552]

X.-F. Wang. sROC: Nonparametric Smooth ROC Curves for Continuous Data, 2012. URL https://CRAN.R-
project.org/package=sROC. R package version 0.1-2. [p525]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. ISBN
978-3-319-24277-4. URL https://ggplot2.tidyverse.org. [p538]

W. J. Youden. Index for rating diagnostic tests. Cancer, 3(1):32–35, 1950. URL https://doi.org/10.
1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3. [p528]

X.-H. Zhou, D. K. McClish, and N. A. Obuchowski. Statistical Methods in Diagnostic Medicine. John
Wiley & Sons, New York, second edition, 2011. [p525]

K. H. Zou, W. J. Hall, and D. E. Shapiro. Smooth non-parametric receiver operating characteristic (ROC)
curves for continuous diagnostic tests. Statistics in Medicine, 16(19):2143–2156, 1997. URL https:
//doi.org/10.1002/(sici)1097-0258(19971015)16:19<2143::aid-sim655>3.0.co;2-3. [p526]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://doi.org/10.32614/RJ-2018-043
https://doi.org/10.32614/RJ-2018-043
https://doi.org/10.18637/jss.v082.i04
https://journal.r-project.org/archive/
https://doi.org/10.1186/1471-2105-12-77
https://CRAN.R-project.org/package=npROCRegression
https://doi.org/10.1007/s11222-010-9184-1
https://doi.org/10.1016/j.csda.2011.06.008
https://doi.org/10.1016/j.csda.2011.06.008
https://doi.org/10.1016/j.csda.2010.07.018
https://doi.org/10.1016/j.csda.2010.07.018
https://doi.org/10.2307/2532989
http://lmdvr.r-forge.r-project.org
https://doi.org/10.1016/s0004-9514(14)60228-2
https://doi.org/10.1007/BF03346497
http://www.stats.ox.ac.uk/pub/MASS4
https://CRAN.R-project.org/package=sROC
https://CRAN.R-project.org/package=sROC
https://ggplot2.tidyverse.org
https://doi.org/10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
https://doi.org/10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
https://doi.org/10.1002/(sici)1097-0258(19971015)16:19<2143::aid-sim655>3.0.co;2-3
https://doi.org/10.1002/(sici)1097-0258(19971015)16:19<2143::aid-sim655>3.0.co;2-3


CONTRIBUTED RESEARCH ARTICLE 555

María Xosé Rodríguez-Álvarez
BCAM - Basque Center for Applied Mathematics and IKERBASQUE, Basque Foundation for Science
Spain
ORCID: 0000-0002-1329-9238
mxrodriguez@bcamath.org

Vanda Inácio
School of Mathematics
University of Edinburgh
Scotland, UK
ORCID: 0000-0001-8084-1616
vanda.inacio@ed.ac.uk

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

mailto:mxrodriguez@bcamath.org
mailto:vanda.inacio@ed.ac.uk


CONTRIBUTED RESEARCH ARTICLE 556

Automating Reproducible, Collaborative
Clinical Trial Document Generation with
the listdown Package
by Michael Kane, Xun Jiang and Simon Urbanek

Abstract The conveyance of clinical trial explorations and analysis results from a statistician to a clinical
investigator is a critical component of the drug development and clinical research cycle. Automating
the process of generating documents for data descriptions, summaries, exploration, and analysis
allows the statistician to provide a more comprehensive view of the information captured by a clinical
trial, and efficient generation of these documents allows the statistican to focus more on the conceptual
development of a trial or trial analysis and less on the implementation of the summaries and results
on which decisions are made. This paper explores the use of the listdown package for automating
reproducible documents in clinical trials that facilitate the collaboration between statisticians and
clinicians as well as defining an analysis pipeline for document generation.

1 Background and Introduction

The conveyance of clinical trial explorations and analysis results from a statistician to a clinical
investigator is an often overlooked but critical component to the drug development and clinical
research cycle. Graphs, tables, and other analysis artifacts are at the nexus of these collaborations.
They facilitate identifying problems and bugs in the data preparation and processing stage, they help
to build an intuitive understanding of mechanisms of disease and their treatment, they elucidate
prognostic and predictive relationships, they provide insight that results in new hypotheses, and they
convince researchers of analyses testing hypotheses.

Despite their importance, the process of generating these artifacts is usually done in an ad-hoc
manner. This is partially because of the nuance and diversity of the hypotheses and scientific questions
being interrogated and, to a lesser degree, the variation in clinical data formatting. The usual process
usually has a statistician providing a standard set of artifacts, receiving feedback, and providing
updates based on feedback. Work performed for one trial is rarely leveraged on others, and as a result,
a large amount of work needs to be reproduced for each trial.

There are two glaring problems with this approach. First, each analysis of a trial requires a
substantial amount of error-prone work. While the variation between trials means some work needs
to be done for preparation, exploration, and analysis, many aspects of these trials could be better
automated resulting in greater efficiency and accuracy. Second, because this work is challenging, it
often occupies the majority of the statisticians’ effort. Less time is spent on trial design and analysis,
and then this portion is taken up by a clinician who often has less expertise with the statistical
aspects of the trial. As a result, the extra effort spent on processing data undermines statisticians’
role as a collaborator and relegates them to service provider. Need tools leveraging existing work
to more efficiently provide holistic views on trials will result in less effort and more accurate and
comprehensive trial design and analysis.

The richness of the R Core Team (2012) package ecosystem, particularly with its emphasis on
analysis, visualization, reproducibility, and dissemination makes the goal of creating these tools for
clinical trials feasible. Generation of tables is supported by packages including tableone (Yoshida
and Bartel, 2020), gt (Iannone et al., 2020), gtsummary (Sjoberg et al., 2020). Visualization is achieved
using package including ggplot2 (Wickham, 2016) and survminer (Kassambara et al., 2020). We can
even provide interactive presentations of data with DT (Xie et al., 2020), plotly (Sievert, 2020), and
trelliscopejs (Hafen and Schloerke, 2020).

It should also be realized that work building on these tools for clinical trial data is already in
process. The greport (Harrell Jr, 2020) package provides graphical summaries for clinical trials and
has been used in conjunction with rmarkdown (Allaire et al., 2020) to produce specific trial report
types with a specified format.
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2 Using listdown for programmatic, collaborative clinical trial document
generation

The listdown package (Kane et al., 2020) was recently released to automate the process of generating
reproducible (RMarkdown) documents. Objects derived from a summary, exploration, or analysis
are stored hierarchically in an R list, which defines the structure of the document. These objects are
referred to as computational components since they are derived from computation, as opposed to prose,
which makes up the narrative components of a document.

The computational components capture and structure the objects to be presented. Describing how
the objects will be presented and how the document will be rendered is handled through the creation
of a listdown object. The separation between how computational components are created and how
they are shown to a user provides two advantages. First, it decouples the data processing and analysis
from its exploration and visualization. For compute-intensive analyses, this separation is critical for
avoiding redundant computations for small changes in the presentation. It also discourages putting
compute-intensive code into RMarkdown documents. Second, it provides the flexibility to quickly
change how a computational component is visualized or summarized or even how a document is
rendered. This makes transitioning from an interactive .html document to a static .pdf document
significantly easier than substituting functions and parameters in an R Markdown document.

The package has been found to be particularly useful in the reporting and research of clinical
trial data. In particular, the package has been used for server collaborations focusing on either
the analysis of past trial data to formulate a new trial or in trial monitoring where trial telemetry
(enrollment, responses, etc.) is reported, and initial analyses are conveyed to a clinician. The associated
presentations require very little context since clinicians often have as good an understanding of the
data collected as that of the statistician’s meaning narrative components are not needed. At the same
time, a large number of hierarchical, heterogeneous artifacts (tables and multiple types of plots) can be
automated where manual creation of RMarkdown documents would be inconvenient and inefficient.

The rest of this document describes concepts implemented in the listdown package for automated,
reproducible document generation and shows its use with a simplified, synthetic clinical trial data set
whose variables are typical of a non-small cell lung cancer trial. The data set comes from the forceps
(Kane, 2020) package. As of the time this document was written, the package is under development
and is not available on CRAN. However, it can be installed as follows.

devtools::install_github("kaneplusplus/forceps")

The following section uses the trial data to construct a pipeline for document generation. We note that
both the data and the pipeline are simple when compared to most analyses of this type. However, it is
sufficient to illustrate accompanying concepts, and both the analyses and concepts translate readily to
real-world applications. A final section discusses the use of the package and its current direction.

3 Constructing a pipeline for document generation

The process of analyzing data can be described using the classic waterfall model of Benington (1983)
where the output (the analysis presentation or service) is dependent on a sequence of tasks that
come before it. This dependency structure means that if a problem is detected in a given stage of the
production of the analysis, all downstream parts must be rerun to reflect the change. A graphical
depiction of the waterfall model, specific to data analyses (clinical or otherwise) is shown in Figure 1.
Note that data exploration and visualization are an integral part of all stages of the production and are
often the means for identifying issues and refining analyses.

As explained in the previous section, we are going to implement a simple analysis pipeline. The
data acquisition and preprocessing steps are handled by importing data sets from the forceps package
and using some of the functions implemented in the package to create a single trial data set, thereby
de-emphasizing these components in the pipeline. While these steps are critical, the emphasis of this
paper is the incorporation of the listdown package into the later stages.

Data acquisision and preprocessing

Data acquisition refers to the portion of the analysis pipeline where the data is retrieved from some
managed data store for integration into the pipeline. These data sets may be retrieved as tables from a
database, case reports, Analysis Data Model (ADaM) data formatted according to the Clinical Data
Interchange Standards Consortium (CDISC) (CDI, 2020), Electronic Health Records, or other clinical
Real World Data (RWD) formats. These data are then transformed to a format appropriate for analysis.
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Figure 1: The data analysis waterfall.

In our simple example, this is accomplished by loading data corresponding to trial outcomes,
patient adverse events, patient biomarkers, and patient demography and transforming them into a
single data set with one row per patient and one variable per column using the forceps and dplyr
(Wickham et al., 2020) packages. The data also includes longitudinal adverse event information, which
will is stored as a nested data frame in the ae_long column of the resulting data set.

library(forceps)
library(dplyr)

data(lc_adsl, lc_adverse_events, lc_biomarkers, lc_demography)

lc_trial <- consolidate(
list(adsl = lc_adsl,

adverse_events = lc_adverse_events %>%
cohort(on = "usubjid", name = "ae_long"),

biomarkers = lc_biomarkers,
demography = lc_demography %>%
select(-chemo_stop)

),
on = "usubjid")

lc_trial

#> # A tibble: 558 x 18
#> usubjid best_response pfs_days pfs_censor os_days os_censor chemo_stop arm
#> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 1003 Stable Disease 101 1 233 1 adverse e~ stan~
#> 2 1005 Complete Resp~ 78 0 184 1 adverse e~ stan~
#> 3 1006 Progressive D~ 253 1 333 1 treatment~ stan~
#> 4 1009 Partial Respo~ 130 0 643 0 <NA> trea~
#> 5 1014 Complete Resp~ 41 1 116 1 adverse e~ trea~
#> 6 1018 Partial Respo~ 194 1 423 1 treatment~ stan~
#> 7 1023 Stable Disease 49 1 337 1 adverse e~ stan~
#> 8 1025 Stable Disease 95 1 589 1 adverse e~ stan~
#> 9 1030 Complete Resp~ 351 1 688 1 adverse e~ stan~
#> 10 1033 Complete Resp~ 33 1 125 1 treatment~ stan~
#> # ... with 548 more rows, and 10 more variables: ae_count <int>,
#> # ae_long <list>, egfr_mutation <chr>, smoking <chr>, ecog <chr>,
#> # prior_resp <chr>, site_id <int>, sex <chr>, refractory <lgl>, age <dbl>
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Analysis defining and structuring the computational components

The next step is to define the computational components as a hierarchical, named list of objects that
will be presented. These objects are generally derived from the exploratory, descriptive, and analysis
stages and are presented as visualizations and tables. This example will focus on the exploratory and
descriptive portions. We will start by defining a new function class_and_tag(), which takes an object
and prepends a class designation to the objects along with optionally associating the object with a set
of attributes. This extra information will be used later in order to dispatch to the proper functions
responsible for presenting the objects in a resulting R Markdown document. If no such information is
given, then the object will be presented as it usually would in the document. It should also be noted
that class_and_tag() is provided for convenience here and will be available in subsequent package
versions.

The next step is to define the computational components that will be presented. Our simple
example will contain three sections: Outcome Information, Adverse Events, Biomarkers. The Adverse
Events and Biomarkers sections will each show summary tables of one of the variables from those data.
The Outcome Information section will be composed of two subsections, with the first (Best Response)
providing a summary of the best response by the arm and the second (Overall Survival) showing a
survival plot by arm of the overall survival. The call to ld_cc_dendro() at the end of the example
provides of dendrogram of the hierarchical structure.

library(listdown)

trial_summary <- list(
`Outcome Information` = list(
`Best Response` = lc_trial %>%
select(best_response, arm) %>%
class_and_tag("summary_table", by = "arm"),

`Overall Survival` = lc_trial %>%
select(os_days, os_censor, arm) %>%
class_and_tag("survival_plot",

time = "os_days",
censor = "os_censor",
x = "arm")),

`Adverse Events` = lc_trial %>%
select(best_response) %>%
class_and_tag("summary_table"),

`Biomarkers` = list(
`EGFR` = lc_trial %>%

select(egfr_mutation) %>%
class_and_tag("summary_table")

)
)

ld_cc_dendro(trial_summary)

#>
#> trial_summary
#> |-- Outcome Information
#> |-- Best Response
#> | o-- object of type(s):summary_table tbl_df tbl data.frame
#> o-- Overall Survival
#> o-- object of type(s):survival_plot tbl_df tbl data.frame
#> |-- Adverse Events
#> | o-- object of type(s):summary_table tbl_df tbl data.frame
#> o-- Biomarkers
#> o-- EGFR
#> o-- object of type(s):summary_table tbl_df tbl data.frame

Communicating results

The objects have been constructed and they have been structured. The next step is to define how
they will be presented. This is done by creating two functions make_summary and make_survival_plot.
The former takes a data.frame and uses the gtsummary package to summarize the results. If the
data.frame includes an attribute named by and denoting a valid variable in the data set, then the
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summary is created conditionally on that variable. The latter function also takes a data.frame and
uses attributes to denote variables on which a Kaplan-Meier plot can be constructed using the survival
(Terry M. Therneau and Patricia M. Grambsch, 2000) and survminer packages. The functions are
written to a file called decorators.r and will be used by the R Markdown document to render the
final document.

library(gtsummary)
library(survival)
library(survminer)
library(dplyr)

make_summary <- function(x) {
by <- attributes(x)$by
tbl_summary(x, by = by)

}

make_survival_plot <- function(.x) {
att <- attributes(.x)
x <- ifelse(is.null(att$x), "1", att$x)
form <- sprintf("Surv(%s, %s) ~ %s", att$time, att$censor, x) %>%
as.formula()

fit <- surv_fit(form, data = as.data.frame(.x))
ggsurvplot(fit, data = as.data.frame(.x))

}

The next step is to connect the computational components to the functions that will present them
using the listdown() function. First, the computational components are stored in the trial_summary
object are written to the disk. The resulting R Markdown document will read it in based on the
load_cc_expr argument. Along with reading in the data, initialization in the R Markdown document
will include sourcing the decorators.r file previously written to disk. This is handled with the
init_expr argument. The decorators argument takes a list where the name specifies the class and
the list element corresponds to a function that will present objects of the specified class. For example,
summary_table objects are sent to the make_summary() function for presentation. This allows us to
connect objects to their appropriate function to process and present them. Finally, echo and message
chunk options are set to FALSE so that the code and associated messages will not appear in the final
rendered document. The last line of code below displays the first 12 lines of R Markdown code chunks
as they will appear in the corresponding document.

saveRDS(trial_summary, "cc.rds")

ld <- listdown(load_cc_expr = readRDS("cc.rds"),
init_expr = source("decorators.r"),
decorator = list(summary_table = make_summary,

survival_plot = make_survival_plot),
echo = FALSE,
message = FALSE)

ld_make_chunks(ld)[1:12]

#> [1] ""
#> [2] "```{r echo = FALSE, message = FALSE}"
#> [3] "source(\"decorators.r\")"
#> [4] ""
#> [5] "cc_list <- readRDS(\"cc.rds\")"
#> [6] "```"
#> [7] ""
#> [8] "# Outcome Information"
#> [9] ""
#> [10] "## Best Response"
#> [11] ""
#> [12] "```{r echo = FALSE, message = FALSE}"

The last step creates the R Markdown header, writes it along with the R code chunks to a file
named "simple-data-trial-summary.rmd" and knits the file with the knitr package (Xie, 2020) to a
pdf document, per the output argument of the ld_rmarkdown_header() function. md_header is a yml
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object making it easy to control how the document is rendered. The code to generate the document
along with the resulting R Markdown and output file constitute a reproducible workflow that can be
quickly iterated upon and adapted for different types of explorations, summaries, and analyses.

library(knitr)

md_header <- ld_rmarkdown_header("Fake Data Trial Summary",
output = "pdf_document")

ld_write_file(
rmd_header = as.character(md_header),
ld = ld_make_chunks(ld),
file_name = "simple-data-trial-summary.rmd")

knit("simple-data-trial-summary.rmd")

4 Direction

The listdown package has been successfully used for collaborations on several clinical trial anal-
yses. The package works particularly well when creating large, navigable sets of summaries and
visualizations. Current work focuses on two areas. First is the construction of standard decorators.
By packaging decorators and associated functionality, presentations can be made rich as they are
developed over time. This standardization also makes it easier to leverage work in configuring chunks
so that they can be made more aesthetic by default. In addition, we have been working on abstract
and formalize the notion of document composition. In the example presented, the aggregation of
the header and R code chunks into a file was sufficient for generating a document. However, the
composition of other outputs is also supported. For example, the top-level names of the trial summary
could just as easily designate tabs on a web page or other target. The notion of a composer would allow
a user to target a greater variety of output types, better suiting the application under consideration
and the target audience for the presentation.
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Towards a Grammar for Processing
Clinical Trial Data
by Michael J. Kane

Abstract The goal of this paper is to help define a path toward a grammar for processing clinical
trials by a) defining a format in which we would like to represent data from standardized clinical
trial data b) describing a standard set of operations to transform clinical trial data into this format,
and c) to identify a set of verbs and other functionality to facilitate data processing and encourage
reproducibility in the processing of these data. It provides a background on standard clinical trial data
and goes through a simple preprocessing example illustrating the value of the proposed approach
through the use of the forceps package, which is currently being used for data of this kind.

1 Introduction: On the use of historical clinical data

There are few areas of data science research that provide more promise to improve human quality-of-
life and treat a disease than the development of methods and analysis in clinical trials. While adjacent,
data-focused areas of biomedicine and health related research have recently seen increased attention,
especially the analysis of real-world evidence (RWE) and electronic health records (EHR) in particular,
clinical trial data maintains several distinct quality advantages, enumerated here.

1. Features and measurements are selected for their relevance. Unlike EHR’s or other similar data,
variables collected for a clinical trial are included because they are potentially relevant to the
disease under consideration or the treatment whose efficacy is being analyzed. This makes
the variable selection process considerably easier than that where data collection has not been
designed for a targeted analysis of this type.

2. Data collection procedures are carefully prescribed. Clinical trial data is uniform in both which
variables are collected and how they are collected. This ensures data quality across trial sites
ensuring that variables are relatively complete as well as consistent.

3. Inclusion/Exclusion criteria define the population. Since RWE studies are observational, the
populations they consider are not always well-understood due to bias in the collection process.
On the other hand, clinical trial data sets are generally controlled and randomized, with well-
documented inclusion and exclusion criteria.

Along with maintaining higher quality clinical trial data is more available and more easily acces-
sible when compared to real-world data sources, which often require affiliations with appropriate
research institutions as well as infrastructure and appropriate staff, including data managers, to
extract data. By contrast, modern clinical trial data organizations allow users to quickly search and
download thousands of trials, including anonymized patient-level information. These data sets tend to
include control-arm data, which can be used to understand prognostic disease populations construct
historical controls for existing trials. However, some also include treatment data, which can be used to
characterize predictive patient subtypes for a given treatment, understand safety profiles for classes
of drugs, and aid in the design of new trials. We note that, for oncology, Project Data Sphere (PDS,
2020) and outside of oncology, Immport (Imm, 2020) have been invaluable in our own experience by
facilitating these types of analyses.

Clinical trial analysis data sets

During a clinical trial, patient-level data is collected in case report forms (CRFs). The format and data
collected in these forms are prescribed in the trial design. These forms are the basis for the construction
of analysis data sets and other documents that will be submitted to governing bodies, including
the Food and Drug Association (FDA) and European Medicines Agency (EMA), for approval if the
sponsor (party funding the trial) decides it is appropriate. The Clinical Data Interchange Standards
Consortium (CDISC) (CDI, 2020) develops standards dealing with medical research data, including the
submission of trial results. Adhering to these standards is necessary for a successful trial submission.

There are several data sets included with a submission that tend to be useful for analysis. This
paper focuses on the Analysis Data Model (ADaM) data, which provides patient-level data, which has
been validated and used for data derivation and analysis. An ADaM data set is itself composed of
several data sets, including a Subject-Level Analysis Data Set (ADSL) holding analysis and treatment
information. Other information, including baseline characteristics, demographic data, visit informa-
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tion, etc., are held in the and Basic Data Structure (BDS) formatted data sets. Finally, adverse events
are held in the Analysis Data Sets for Adverse Events (ADAE).

Challenges to analyzing these data sets

ADaM data for a clinical trial is generally made available as a set of SAS7BDAT (Shotwell et al., 2013)
files. While neither the FDA nor the EMA require this format for submission nor do they requires
the use of SAS (SAS Institute, 2020) for analysis, there is a heavy bias toward the data format and
computing platform. This is partially because they are validated and approved by governing bodies
and because a large effort has gone into their use in submissions. Packages like sas7bdat (Shotwell,
2014) and, more recently, haven (Wickham and Miller, 2020) have gone a long way to make these data
sets easily accessible to R (R Core Team, 2012) users working with clinical trial data.

Despite the effort that has gone into defining a structure for the data as well as the tools imple-
mented to aid in their analysis, the data sets themselves are not particularly easy to analyze for two
reasons. First, the standard is not “tidy” as defined by Wickham et al. (2014). In particular, it is not
required that each variable forms a column. In fact, multiple variables may be stored in one column,
with another column acting as a key as to which variable’s value is given. This case is often seen in
the ADSL data set where a single column may primary and secondary endpoints. For data sets like
these, the value variable is held in the Analysis Value (AVAL) if the corresponding variable is numeric,
Analysis Value Character (AVALC) if the variable is a string, the Parameter Character Description
(PARAMCD) column giving a shorted variable name, and the Parameter column providing a text
description of the variable. As an example, consider the adakiep.xpt data set, which is provided as
an example on the CDISC website and whose data is included in the supplementary material.

library(readr)

adakiep <- read_csv("adakiep.csv")
adakiep

#> # A tibble: 24 x 8
#> USUBJID PARAM PARAMCD AVALC ADY ADT SRCDOM SRCSEQ
#> <chr> <chr> <chr> <chr> <dbl> <date> <chr> <dbl>
#> 1 XYZ-001-001 Death DEATH Y 85 2013-11-02 DS 1
#> 2 XYZ-001-001 Dialysis DIALYS~ Y 80 2013-10-29 PR 2
#> 3 XYZ-001-001 eGFR 25 Percent Dec~ EGFRDEC N 85 2013-11-02 <NA> NA
#> 4 XYZ-001-001 Composite AKI Endpo~ AKIEP Y 80 2013-10-29 <NA> NA
#> 5 XYZ-001-002 Death DEATH Y 82 2015-03-20 DS 1
#> 6 XYZ-001-002 Dialysis DIALYS~ Y 73 2015-03-11 PR 2
#> 7 XYZ-001-002 eGFR 25 Percent Dec~ EGFRDEC N 82 2015-03-20 <NA> NA
#> 8 XYZ-001-002 Composite AKI Endpo~ AKIEP Y 73 2015-03-11 <NA> NA
#> 9 XYZ-001-003 Death DEATH N 94 2010-10-12 DS 1
#> 10 XYZ-001-003 Dialysis DIALYS~ Y 64 2010-09-12 PR 2
#> # ... with 14 more rows

The data set includes minimal information about the trial. However, we can infer that it is from
a study focusing on kidney disease. There are four distinct endpoints, death, whether dialysis was
needed, whether a 25% decrease in estimated glomerular filtration rate, indicating a decrease in kidney
function. For analysis, these data will need to be re-arranged so that each endpoint has it’s own
column along with another column per endpoint indicating the trial day where the measurement was
taken (from the ADY column).

The task of transforming these types of data into into appropriate analysis is complicated by the
fact that there may be other files with relevant information with similar layout or layouts slightly
more complicated if they include longitudinal information, for example. The rest of this paper focuses
on shaping these types of data so that they can be quickly understood; they are amenable to many
different types of analyses at the individual patient level; and they can be reformatted for an even
larger class of analyses through a minimal set of verbs, including cohorting, which is introduced
in this paper and is implemented in the forceps package (Kane, 2020). The package is currently in
development and has not been released to CRAN. However, it has been tagged for prerelease on
Github and can be installed with the following code.

devtools::install_github("kaneplusplus/forceps@v0.0.5")

The next section specifies the target data shape, which can be thought of as a restriction on the tidy
format. The following section specifies the steps needed to prepare clinical trial data so that it conforms
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to this restriction and includes an anonymized trial example. The final section provides a roadmap
if near-term development as well as directions for enhancements and integration of the larger R
ecosystem.

2 A tidy representation for a consolidated analysis data set

Clinical trial data is collected to be used in an analysis that determines whether or not a treatment for
a disease provides a benefit when compared to those receiving either a placebo or the standard of care.
“Benefit” is quantified by one or more endpoints, defined before the trial starts (in the design), which
are compared across arms (treatment and placebo) at the conclusion of the trial using a statistical
test. These data provide a wealth of information, and their usefulness extends well beyond the
scope of the trial. For example, they can also be used to understand prognostic characteristics of the
disease-population; they can be used to create a “historical control’ ’ for another trial; they can be used
to identify patients’ characteristics associated with better outcomes, etc.

As shown in the previous section, while ADaM-formatted data is structured, the structure does
not lend itself to analysis without first performing some data transformations. We propose that the
result of these transformations is a single data set with the following characteristics.

1. Each row corresponds to a single patient.
2. A variable with one value per patient should be included as a column variable.
3. Longitudinal, time series, or repeated measures data should be stored as an embedded data.frame

per subject.

Data conforming to these characteristics provide several advantages to ADaM data sets. First, they
are oriented towards trial analysis. Essentially, trials compare response rates between treatment
and control arms. Having those values coded as their own variables in a single data set minimizes
the complexity and effort that would otherwise go into extracting data from multiple files, cleaning
them and joining them. Second, it minimizes the reshaping effort for other types of analyses. For
example, response rates are often analyzed by the site at which patient measurements were taken
in order to check for certain types of enrollment heterogeneity. The described patient-centric format
can be transformed into a site-centric format by nesting or grouping on a site variable followed
by the extraction of site-specific features and analyses, which can then be compared across sites.
Transforming between these formats requires a single operation. Likewise, the patient-centric format
can be transformed to a patient-longitudinal format by unnesting on the embedded variable holding
the relevant longitudinal information. Third and finally, creating a single patient-centric data set
minimizes the chance of inconsistent analyses. Primary and secondary analyses often use similar
variables and may require similar preprocessing. If these preprocessing steps are performed separately
for parallel analyses, then the probability that at least one of them contains an error in these steps is
greater than when a validated patient-centric data set is created. It also makes it easier to provide
provenance for an analysis if they are dependent on the same preprocessed data.

3 Processing ADaM data to reach the tidy representation

This section provides an example of how to use the functionality provided in the forceps package, in
the order that the operations take place. The data set is provided with the package, and the variable
names are taken from several example lung cancer studies. The data set has been significantly reduced
in size, and some values and variable names have been preprocessed. This allows the example to
remain easy to follow. It also allows us to illustrate the formation of a patient-centric data set in a
single pass. In practice, this is often an iterative process, requiring several revisions as bugs are found,
and hypotheses change.

The data sets used are as follows, and the task will be to create a patient-centered data set as
described above.

1. lc_adverse_events - adverse events longitudinal data.
2. lc_biomarkers - patient biomarkers.
3. lc_demography - patient demographic information.
4. lc_adsl - response data.

Creating the data dictionary

SAS ADaM formatted data sets generally include extra information about variables, including a
short description of each of the variables and possibly formatting information. The haven package

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 566

keeps this as attributes of each of the columns of a tibble that is read from these files. The forceps
package is capable of extracting this meta-information to create a tibble that can be used as a data
dictionary using the consolidated_describe_data() function, shown below. In practice, we have
found it helpful as a starting for a fuller description of the data and often add columns to further
categorize individual variables for analyses.

library(forceps)

data(lc_adverse_events)
data(lc_biomarkers)
data(lc_demography)
data(lc_adsl)

consolidated_describe_data(lc_adverse_events,
lc_biomarkers,
lc_demography,
lc_adsl)

#> # A tibble: 27 x 5
#> var_name type label format_sas data_source
#> <chr> <chr> <chr> <chr> <chr>
#> 1 usubjid double Randomization Code <NA> lc_adverse_even~
#> 2 ae charact~ AE Preferred Term character lc_adverse_even~
#> 3 ae_type charact~ System Organ Class 1 character lc_adverse_even~
#> 4 grade integer Adverse Event Grade? numeric lc_adverse_even~
#> 5 ae_day double Days From First Dose (num~ <NA> lc_adverse_even~
#> 6 ae_duration double Adverse Event Duration numeric lc_adverse_even~
#> 7 ae_treat logical Was the Adverse Event Tre~ logical lc_adverse_even~
#> 8 ae_count integer Total Patient Adverse Eve~ integer lc_adverse_even~
#> 9 usubjid double Randomization Code <NA> lc_biomarkers
#> 10 egfr_mutation charact~ EGFR Mutation +ve/-ve Res~ character lc_biomarkers
#> # ... with 17 more rows

Cohorting

The data dictionary (or data description) provides a summary of the variable types and information
held by variables in each of the data sets. Some data sets will include repeated, longitudinal, or
time series information about individual patients, like lc_adverese_events in our example. Con-
solidating data sets like these into a single, patient-centric data set generally involves three distinct
operations. The first can be thought of as pivot_wider() operations that take columns composed of
multiple variables and spread them across new columns in the data set. The second takes the data
set and nest()’s the data so that the the resulting data set contains time-varying data embedded in a
data.frame variable and those variables that are repeated appear once per patient in the new variables.
This verb, which is referred to as cohort() in the package, takes the variable to cohort on (the usubjid
in the example below), checks for values that are repeated by the subject identifier (ae_count in the
example below) and those that are not, and handles the nesting appropriately. A final operation may
be applied to the patient-level embedded data.frame objects to extract other features that will be used
in subsequent analyses.

library(dplyr)

data(lc_adverse_events)

lc_adverse_events %>% head()

#> # A tibble: 6 x 8
#> usubjid ae ae_type grade ae_day ae_duration ae_treat ae_count
#> <dbl> <chr> <chr> <int> <dbl> <dbl> <lgl> <int>
#> 1 1003 BURNING ~ NERVOUS SYSTEM D~ 1 27 4 FALSE 15
#> 2 1003 CONSTIPA~ GASTROINTESTINAL~ 2 4 4 TRUE 15
#> 3 1003 DEPRESSI~ PSYCHIATRIC DISO~ 2 66 NA FALSE 15
#> 4 1003 BACK PAIN MUSCULOSKELETAL ~ 2 27 NA TRUE 15
#> 5 1003 DYSURIA RENAL AND URINAR~ 2 1 3 TRUE 15
#> 6 1003 SKIN EXF~ SKIN AND SUBCUTA~ 1 5 26 FALSE 15
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lc_adverse_events <- lc_adverse_events %>%
cohort(on = "usubjid", name = "ae_long")

lc_adverse_events %>% head()

#> # A tibble: 6 x 3
#> usubjid ae_count ae_long
#> <dbl> <int> <list>
#> 1 1003 15 <tibble [15 x 6]>
#> 2 1005 19 <tibble [19 x 6]>
#> 3 1006 11 <tibble [11 x 6]>
#> 4 1009 12 <tibble [12 x 6]>
#> 5 1014 5 <tibble [5 x 6]>
#> 6 1018 10 <tibble [10 x 6]>

Identifying conflicts and redundancies

After cohorting, each of the data sets is in the specified format, and we are almost ready to com-
bine them. It is important to first check to see if there are variables that are repeated across the
individual data sets and detect conflicts. While ADaM data sets should be free of conflicts and redun-
dancies, we have observed multiple cases where this is not true. In order to identify these issues, the
duplicate_vars() function is provided. The function checks the column names of each of the data sets
with those of other column names. The object returned is a named list where the name corresponds
to the variable that is repeated. Each list element returns a tibble, joined by the on parameter with
columns corresponding to the on variable, the duplicated variable, the data sets where the duplicated
variable appears. The example below shows that the chemo_stop variable appears in the demography
and adsl data sets. Furthermore, we can see that the values in each of the data sets are different by
looking at the correspondence between the demography and adsl columns. To fix this and move on,
we will remove the variable from the demography data set.

data(lc_adsl)
data(lc_biomarkers)
data(lc_demography)
data_list <- list(demography = lc_demography,

biomarkers = lc_biomarkers,
adverse_events = lc_adverse_events,
adsl = lc_adsl)

duplicated_vars(data_list, on = "usubjid")

#> $chemo_stop
#> # A tibble: 558 x 4
#> usubjid var demography adsl
#> <dbl> <chr> <chr> <chr>
#> 1 1003 chemo_stop patient discontinued adverse events
#> 2 1005 chemo_stop treatment ineffective adverse events
#> 3 1006 chemo_stop <NA> treatment ineffective
#> 4 1009 chemo_stop treatment ineffective <NA>
#> 5 1014 chemo_stop <NA> adverse events
#> 6 1018 chemo_stop treatment ineffective treatment ineffective
#> 7 1023 chemo_stop <NA> adverse events
#> 8 1025 chemo_stop adverse events adverse events
#> 9 1030 chemo_stop adverse events adverse events
#> 10 1033 chemo_stop adverse events treatment ineffective
#> # ... with 548 more rows

data_list$demography <- data_list$demography %>%
select(-chemo_stop)

Consolidating

The last step is to consolidate the data sets into a single one. This is accomplished by reducing
the data_list using full joins, along with some extra checking. The consolidate() function wraps
this functionality. The result, conforming to the provided format, which can easily be used in the
exploration and analysis stage.
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consolidate(data_list, on = "usubjid")

#> # A tibble: 558 x 18
#> usubjid site_id sex refractory age egfr_mutation smoking ecog prior_resp
#> <dbl> <int> <chr> <lgl> <dbl> <chr> <chr> <chr> <chr>
#> 1 1003 1 male FALSE 51 negative former~ ambu~ complete ~
#> 2 1005 4 fema~ TRUE 44 negative former~ ambu~ partial r~
#> 3 1006 2 male TRUE 22 negative former~ ambu~ complete ~
#> 4 1009 8 male FALSE 44 <NA> unknown ambu~ complete ~
#> 5 1014 6 male TRUE 76 <NA> former~ ambu~ partial r~
#> 6 1018 10 fema~ TRUE 35 positive former~ ambu~ complete ~
#> 7 1023 6 fema~ TRUE 73 <NA> former~ ambu~ complete ~
#> 8 1025 7 male FALSE 71 <NA> never ~ ambu~ partial r~
#> 9 1030 5 fema~ TRUE 20 <NA> unknown ambu~ partial r~
#> 10 1033 6 fema~ TRUE 55 <NA> unknown ambu~ stable di~
#> # ... with 548 more rows, and 9 more variables: ae_count <int>, ae_long <list>,
#> # best_response <chr>, pfs_days <dbl>, pfs_censor <dbl>, os_days <dbl>,
#> # os_censor <dbl>, chemo_stop <chr>, arm <chr>

4 Direction: An integrated approach to processing clinical data

As stated before, the goal of this paper is to help define a path toward a grammar for processing
clinical trials by a) defining a format in which we would like to represent data from standardized
clinical trial data b) describing a standard set of operations to transform clinical trial data into this
format, and c) to identify a set of verbs and other functionality to facilitate data processing of this
kind and encourage reproducibility of these steps. Admittedly, this only serves to mitigate the process
of preparing these types of data for exploration and analysis. Clinical trial data generally contains
many more variables than what was presented, and each of these data sets comes with its own set of
“quirks” and other challenges. However, it does serve to make the data preparation better defined and
propose a path toward standardization of both the processed data set format as well as the operations
to achieve that goal.

Along with further development towards those ends, there is a plethora of development that
can be done to provide an integrated data processing experience. For example, the define.xml file,
which appears alongside ADaM data sets, gives better descriptions of the variables as well as the
variable values. Tools to integrate these data into the construction of the data dictionary would
go a long way towards orienting researchers with the data contained and help them more quickly
formulate analyses. Packages like lumberjack (van der Loo, 2020) could enhance and augment data
preprocessing steps by keeping better track of when data are being removed and how they are being
manipulated. The artifacts accumulated could then be used by packages such as ggconsort (Higgins,
2020) to provide consort diagrams of how patients progress through the trial and how data progresses
through preprocessing. In the longer term, these advancements can provide better data provenance,
more reproducible processing, quicker debugging of problems in the processing stage, and give rise to
more effective and convenient tools for summarizing trial data.
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Reproducible Summary Tables with the
gtsummary Package
by Daniel D. Sjoberg, Karissa Whiting, Michael Curry, Jessica A. Lavery, Joseph Larmarange

Abstract The gtsummary package provides an elegant and flexible way to create publication-ready
summary tables in R. A critical part of the work of statisticians, data scientists, and analysts is
summarizing data sets and regression models in R and publishing or sharing polished summary tables.
The gtsummary package was created to streamline these everyday analysis tasks by allowing users
to easily create reproducible summaries of data sets, regression models, survey data, and survival
data with a simple interface and very little code. The package follows a tidy framework, making it
easy to integrate with standard data workflows, and offers many table customization features through
function arguments, helper functions, and custom themes.

1 Introduction

Table summaries are a fundamental tool in an analyst’s toolbox that help us understand and commu-
nicate patterns in our data. The ability to easily create and export polished and reproducible tables is
essential. The gtsummary (Sjoberg et al., 2020) package provides an elegant and flexible framework
to create publication-ready analytical and summary tables in R. This package works to close the gap
between a reproducible RMarkdown report and the final report. Specifically, gtsummary allows the
user to fully customize and format summary tables with code, eliminating the need to modify any
tables by hand after the table has been exported. Removing the need to modify tables after the table
has been created eliminates an error-prone step in our workflow and increases the reproducibility of
our analyses and reports.

Using gtsummary, analysts can easily summarize data frames, present and compare descriptive
statistics between groups, summarize regression models, and report statistics inline in RMarkdown
reports. After identifying these basic structures of most tables presented in the medical literature (and
other fields), we wrote gtsummary to ease the creation of fully-formatted, ready-to-publish tables.

Additionally, gtsummary leverages other analysis and tidying R packages to create a complete
analysis and reporting framework. For example, we take advantage of the existing broom (Robinson
et al., 2020) tidiers to prepare regression results for tbl_regression() and use gt (Iannone et al., 2020)
to print gtsummary tables to various output formats (e.g., HTML, PDF, Word, or RTF). Furthermore, gt-
summary functions are designed to work within a "tidy" framework, utilizing the magrittr (Bache and
Wickham, 2020) pipe operator and tidyselect (Henry and Wickham, 2020) functions used throughout
the tidyverse (Wickham et al., 2019).

While other R packages are available to present data and regression model summary tables, such
as skimr, stargazer, finalfit, and tableone, gtsummary is unique in that it is a one-stop-shop for
most types of statistical tables and offers diverse features to customize the content of tables to a high
degree. The default gtsummary table is suitable to be published in a scientific journal with little
or no additional formatting. For example, gtsummary has specific internal algorithms to identify
variable data types, so there is no need for users to specify whether a variable should be displayed
with categorical or continuous summaries, which yields summary tables with minimal code.

Along with descriptive summaries, gtsummary summarizes statistical models, survey data, sur-
vival data and builds cross-tabulations. After data are summarized in a table, gtsummary allows users
to combine tables, either side-by-side (with tbl_merge()) , or on top of each other (with tbl_stack()).
The table merging and stacking abilities allows analysts to easily synthesize and compare output from
several tables and share information in a compact format. All tables in this manuscript were created
using gtsummary v1.4.1.

2 Data Summaries

To showcase gtsummary functions, we will use a simulated clinical trial data set containing baseline
characteristics of 200 patients who received Drug A or Drug B, as well as the outcomes of tumor
response and death. Each variable in the data frame has been assigned an attribute label with the
labelled package (Larmarange, 2020), e.g., trial %>% set_variable_labels(age = "Age"), that will
be shown in the summary tables. These labels are displayed in the gtsummary tables by default, and
had labels not been assigned, the variable name would have been shown.
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colname label class values

trt Chemotherapy Treatment character Drug A, Drug B
age Age numeric 6, 9, 10, 17, ...
marker Marker Level (ng/mL) numeric 0.003, 0.005, 0.013, 0.015, ...
stage T Stage factor T1, T2, T3, T4
grade Grade factor I, II, III
response Tumor Response integer 0, 1
death Patient Died integer 0, 1
ttdeath Months to Death/Censor numeric 3.53, 5.33, 6.32, 7.27, ...

Table 1. Example data frame, trial

tbl_summary()

The default output from tbl_summary() is meant to be publication-ready. The tbl_summary() function
can take, at minimum, a data frame as the only input, and returns descriptive statistics for each column
in the data frame. This is often the first table of clinical manuscripts and describes the characteristics of
the study cohort. A simple example is shown below. Notably, by specifying the by= argument, you can
stratify the summary table. In the example below, we have split the table by the treatment a patient
received.

trial %>%
select(age, grade, response, trt) %>%
tbl_summary(by = trt)

The function is highly customizable, and it is initiated with sensible default settings. Specifically,
tbl_summary() detects variable types of input data and calculates descriptive statistics accordingly. For
example, variables coded as 0/1, TRUE/FALSE, and Yes/No are presented dichotomously. Additionally,
NA values are recognized as missing and listed as unknown, and if a data set is labeled, the label
attributes are utilized.

Default settings may be customized using the tbl_summary() function arguments.

Argument Description

label= specify the variable labels printed in table
type= specify the variable type (e.g., continuous, categorical, etc.)
statistic= change the summary statistics presented
digits= number of digits the summary statistics will be rounded to
missing= whether to display a row with the number of missing observations
missing_text= text label for the missing number row
sort= change the sorting of categorical levels by frequency
percent= print column, row, or cell percentages
include= list of variables to include in summary table

Table 2. tbl_summary() function arguments

For continuous variables, tables display one row of statistics per variable by default. This can be
customized, and in the example below, the age variable is cast to "continuous2" type, meaning the
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continuous summary statistics will appear on two or more rows in the table. This allows the number
of non-missing observations and the mean to be displayed on separate lines.

In the example below, the "age" variable’s label is updated to "Patient Age". Default summary
statistics for both continuous and categorical variables are updated using the statistic= argument.
gtsummary uses glue (Hester, 2020) syntax to construct the statistics displayed in the table. Function
names appearing in curly brackets will be replaced by the evaluated value. The digits= argument is
used to increase the number of decimal places to which the statistics are rounded, and the missing row
is omitted with missing = "no".

trial %>%
select(age, grade, response, trt) %>%
tbl_summary(
by = trt,
type = age ~ "continuous2",
label = age ~ "Patient Age",
statistic = list(age ~ c("{N_nonmiss}", "{mean} ({sd})"),

c(grade, response) ~ "{n} / {N} ({p}%)"),
digits = c(grade, response) ~ c(0, 0, 1),
missing = "no"

)

A note about notation: Throughout the gtsummary package, you will find function arguments
that accept a list of formulas (or a single formula) as the input. In the example above, the label for the
age variable was updated using label = age ∼ "Patient Age"—equivalently, label = list(age
∼ "Patient Age"). To select groups of variables, utilize the select helpers from the tidyselect and
gtsummary packages. The all_continuous() selector is a convenient way to select all continuous
variables. In the example above, it could have been used to change the summary statistics for all
continuous variables—all_continuous() ∼ c("{N_nonmiss}","{mean} ({sd})"). Similarly, users
may utilize all_categorical() (from gtsummary) or any of the tidyselect helpers used throughout
the tidyverse packages, such as starts_with(), contains(), etc.

In addition to summary statistics, the gtsummary package has several functions to add additional
information or statistics to tbl_summary() tables.

Function Description

add_p() add p-values to the output comparing values across groups
add_overall() add a column with overall summary statistics
add_n() add a column with N (or N missing) for each variable
add_difference() add column for difference between two group, confidence interval, and p-value
add_stat_label() add label for the summary statistics shown in each row
add_stat() generic function to add a column with user-defined values
add_q() add a column of q-values to control for multiple comparisons

Table 3. tbl_summary() functions to add information

In the example below, descriptive statistics are shown by the treatment received and overall, as
well as a p-value comparing the values between the treatments. Default statistical tests are chosen
based on data type, and the statistical test performed can be customized in the add_p() function.
p-value formatting can be adjusted using the pvalue_fun= argument, which accepts both a proper
function, as well the formula shortcut notation used throughout the tidyverse packages.
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trial %>%
select(age, grade, response, trt) %>%
tbl_summary(by = trt) %>%
add_overall() %>%
add_p(test = all_continuous() ~ "t.test",

pvalue_fun = ~style_pvalue(., digits = 2))

tbl_svysummary()

The tbl_svysummary() function is analogous to tbl_summary(), except a survey (Lumley, 2020) object
is supplied rather than a data frame. The summary statistics presented take into account the survey
weights, as do any p-values presented.

# convert trial data frame to survey object
svy_trial <- survey::svydesign(data = trial, ids = ~ 1, weights = ~ 1)

tbl_svysummary_1 <-
svy_trial %>%
tbl_svysummary(by = trt, include = c(trt, age, grade)) %>%
add_p()

tbl_cross()

The tbl_cross() function is a wrapper for tbl_summary() and creates a simple, publication-ready
cross tabulation.
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trial %>%
tbl_cross(row = stage, col = trt, percent = "cell") %>%
add_p(source_note = TRUE)

tbl_survfit()

The tbl_survfit() function parses and tabulates survival::survfit() objects presenting survival
percentile estimates and survival probabilities at specified times.

library(survival)

list(survfit(Surv(ttdeath, death) ~ trt, trial),
survfit(Surv(ttdeath, death) ~ grade, trial)) %>%

tbl_survfit(times = c(12, 24),
label_header = "**{time} Month**") %>%

add_p()

Customization

The gtsummary package includes functions specifically made to modify and format the summary
tables. These functions work with any table constructed with gtsummary. The most common uses
are changing the column headers and footnotes or modifying the look of tables through bolding and
italicization.
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Function Description

modify_header() update column headers
modify_footnote() update column footnote
modify_spanning_header() update spanning headers
modify_caption() update table caption/title
bold_labels() bold variable labels
bold_levels() bold variable levels
italicize_labels() italicize variable labels
italicize_levels() italicize variable levels
bold_p() bold significant p-values

Table 4. Functions to style and modify gtsummary tables

The gtsummary package utilizes the gt package to print the summary tables. The gt package
exports approximately one hundred functions to customize and style tables. When you need to add
additional details or styling not available within gtsummary, use the as_gt() function to convert the
gtsummary object to gt and continue customization.

The example below is a common table reported in clinical trials and observational research where
two treatments are compared. The treatment differences were added with the add_difference()
function. The table includes customization using both gtsummary and gt functions. The gtsummary
functions are utilized to bold the variable labels, update the column headers, and add a spanning
header. Additional gt customization was utilized to add table captions and source notes.

trial %>%
select(marker, response, trt) %>%
tbl_summary(by = trt,

missing = "no",
statistic = marker ~ "{mean} ({sd})") %>%

add_difference() %>%
add_n() %>%
add_stat_label() %>%
bold_labels() %>%
modify_header(list(label ~ "**Variable**", all_stat_cols() ~ "**{level}**")) %>%
modify_spanning_header(all_stat_cols() ~ "**Randomization Assignment**") %>%
as_gt() %>%
gt::tab_header(
title = gt::md("**Table 1. Treatment Differences**"),
subtitle = gt::md("_Highly Confidential_")

) %>%
gt::tab_source_note("Data updated June 26, 2015")

3 Model Summaries

Regression modeling is one of the most common tools of medical research. The gtsummary package
has two functions to help analysts prepare tabular summaries of regression models: tbl_regression()
and tbl_uvregression().
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tbl_regression()

The tbl_regression() function takes a regression model object in R and returns a formatted table
of regression model results. Like tbl_summary(), tbl_regression() creates highly customizable
analytic tables with sensible defaults. Common regression models, such as logistic regression and Cox
proportional hazards regression, are automatically identified, and the tables headers are pre-filled
with appropriate column headers (i.e., Odds Ratio and Hazard Ratio).

In the example below, the logistic regression model is summarized with tbl_regression(). Note
that a reference row for grade has been added, and the variable labels have been carried through into
the table. Using exponentiate = TRUE, we exponentiate the regression coefficients, yielding the odds
ratios. The helper function add_global_p() was used to replace the p-values for each term with the
global p-value for grade.

glm(response ~ age + grade, trial, family = binomial) %>%
tbl_regression(exponentiate = TRUE) %>%
add_global_p()

The tbl_regression() function leverages the huge effort behind the broom, parameters (Lüdecke
et al., 2020), and broom.helpers (Larmarange and Sjoberg, 2021) packages to perform the initial
formatting of the regression object. Because tbl_regression() utilizes these packages, there are many
model types that are supported out of the box, such as lm(), glm(), lme4::lmer(), lme4::glmer(),
geepack::geeglm(), survival::coxph(), survival::survreg(), survival::clogit(), nnet::multinom(),
rstanarm::stan_glm(), models built with the mice package (van Buuren and Groothuis-Oudshoorn,
2011), and many more. A custom tidier may be specified as well, which is helpful when you need to
present non-standard modifications to your model results such as Wald confidence intervals or results
with modified variance-covariance standard errors.

tbl_uvregression()

The tbl_uvregression() function is a wrapper for tbl_regression() that is useful when you need a
series of univariate regression models. The user passes a data frame to tbl_uvregression(), indicates
what the outcome is, what regression model to run, and the function will return a formatted table of
stacked univariate regression models.

trial %>%
select(response, age, grade) %>%
tbl_uvregression(
y = response,
method = glm,
method.args = list(family = binomial),
exponentiate = TRUE,
pvalue_fun = ~style_pvalue(., digits = 2)

) %>%
add_nevent() %>%
add_global_p()
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4 Inline Reporting

Reproducible reports are an important part of good analytic practices. We often need to report the
results from a table in the text of an R markdown report. The inline_text() function reports statistics
from gtsummary tables inline in an R markdown document.

Imagine you need to report the results for age from the univariate table above. Typically, the
odds ratio, confidence interval, and p-value would be hard-coded into a report, which can lead to
reproducibility issues if the data is updated and the hard-coded statistics are not amended. A simple
call to the inline_text() function will dynamically add the model results to an RMarkdown report.

The odds ratio for age was `r inline_text(uvreg, variable = age)`.

Here is how the line will appear in your report.

The odds ratio for age was 1.02 (95% CI 1.00, 1.04; p=0.091).

The default pattern to display for a regression table is "{estimate} ({conf.level*100}% CI
{conf.low},{conf.high}; {p.value})" (again using glue syntax), and can be modified with the
inline_text(pattern=) argument.

5 Merging and Stacking

The gtsummary tables shown above are often ready for publication as they are; however, it is common
that more complex tables need to be constructed. This can be achieved by merging or stacking
gtsummary tables using the tbl_merge() and tbl_stack() functions. For example, in cancer research
we often report models predicting a tumor’s response to treatment and risk of death side-by-side in
publications. This type of table is simple to construct using tbl_merge(). First, build a table for each
regression model using tbl_regression(), then merge the two tables with tbl_merge(). Any number
of gtsummary tables can be merged with this function.

tbl1 <-
glm(response ~ age + grade, trial, family = binomial) %>%
tbl_regression(exponentiate = TRUE)

tbl2 <-
coxph(Surv(ttdeath, death) ~ age + grade, trial) %>%
tbl_regression(exponentiate = TRUE)

tbl_merge_1 <-
tbl_merge(
tbls = list(tbl1, tbl2),
tab_spanner = c("**Tumor Response**", "**Time to Death**")

)
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Similarly, any number of gtsummary tables may be stacked using the tbl_stack() function.

6 Themes

We love themes. The default styling (e.g., statistics displayed in tbl_summary(), how p-values are
rounded, decimal separator, and more) follow the reporting guidelines from European Urology, The
Journal of Urology, Urology, and the British Journal of Urology International (Assel et al., 2019).
However, you will likely submit to another journal, or your personal preferences differ from the
defaults. The gtsummary package is unique from other table building packages with the ability to set
fine-grained customization defaults with themes. Themes were created to make these customizations
easy to navigate and reuse across documents or projects. With themes, users can control default
settings for existing functions (e.g., always present means instead of medians in tbl_summary()), as
well as other changes that are not modifiable with function arguments. Several themes are available to
follow various journals’ reporting guidelines, reduce cell padding and font size, and language themes
to translate gtsummary tables to more than 14 languages.

For example, using the theme for The Journal of the American Medical Association (JAMA), large
p-values are rounded to two decimal places, confidence intervals are shown as "lb to ub" instead of
"lb,ub", and the confidence interval is displayed in the same column as the model coefficients.

theme_gtsummary_journal("jama")

glm(response ~ age + grade, trial, family = binomial) %>%
tbl_regression(exponentiate = TRUE)

The language theme can be used to translate the table to another language and allows users to
specify the decimal and big mark symbols. For example, theme_gtsummary_language(language =
"es",decimal.mark = ",",big.mark = ".") will translate the output to Spanish and format numeric
results as 1.000,00 instead of 1,000.00 (the default formatting).

A custom theme was used to construct the gtsummary tables shown in this manuscript to match
the R Journal font and reduce the default cell padding. Themes are an evolving feature, and we
welcome additions of new journals’ reporting guidelines or other themes useful to users. A full
glossary of customizable theme elements is available in the package’s themes vignette (http://www.
danieldsjoberg.com/gtsummary/articles/themes.html).
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7 Print Engines

Tables printed with gtsummary can be seamlessly integrated into RMarkdown documents and knitted
into various output types using a number of print engines. The package was written to be a companion
to the gt package from RStudio and is optimized to leverage the advanced customization features
of this print engine, but offers compatibility with a variety of popular printing methods, including
knitr::kable() (Xie, 2020), flextable (Gohel, 2020), huxtable (Hugh-Jones, 2020), and kableExtra
(Zhu, 2020). While gt is used as the default for most outputs, you can easily use your print engine
of choice with the conversion helper functions provided in the package (e.g., as_flex_table()). It is
possible to get results in HTML, PDF (via LATEX), RTF, Microsoft Word, PowerPoint, Excel, and others,
utilizing the various print engines. The package is designed to interact with these print engines behind
the scenes to reduce the burden on users, and you generally only need to be aware of them if you want
to add advanced customizations.

8 Summary

The functions in the gtsummary package were designed to reduce the burden of reporting and to work
together to easily construct both simple and complex tables. It is our hope that the user-friendly syntax
and publication-ready tables will aid analysts in preparing reproducible and high-quality findings.
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Regularized Transformation Models: The
tramnet Package
by Lucas Kook and Torsten Hothorn

Abstract The tramnet package implements regularized linear transformation models by combining the
flexible class of transformation models from tram with constrained convex optimization implemented
in CVXR. Regularized transformation models unify many existing and novel regularized regression
models under one theoretical and computational framework. Regularization strategies implemented
for transformation models in tramnet include the Lasso, ridge regression, and the elastic net and
follow the parameterization in glmnet. Several functionalities for optimizing the hyperparameters,
including model-based optimization based on the mlrMBO package, are implemented. A multitude
of S3 methods is deployed for visualization, handling, and simulation purposes. This work aims at
illustrating all facets of tramnet in realistic settings and comparing regularized transformation models
with existing implementations of similar models.

1 Introduction

A plethora of R packages exists to estimate generalized linear regression models via penalized maxi-
mum likelihood, such as penalized (Goeman, 2010) and glmnet (Friedman et al., 2010). Both packages
come with an extension to fit a penalized form of the Cox proportional hazard model. The tramnet
package aims at unifying the above-mentioned and several novel models using the theoretical and
computational framework of transformation models. Novel models in this class include Continuous
Outcome Logistic Regression (COLR), as introduced by Lohse et al. (2017) and Box-Cox type regression
models with a transformed conditionally normal response (Box and Cox, 1964; Hothorn, 2020c).

The disciplined convex optimization package CVXR (Fu et al., 2020) is applied to solve the con-
strained convex optimization problems that arise when fitting regularized transformation models.
Transformation models are introduced in Section Transformation models. For a more theoretical trea-
tise, we refer to Hothorn et al. (2014, 2018); Hothorn (2020b). Convex optimization and domain-specific
languages are briefly discussed in Section Constrained convex optimization, followed by a treatment
of model-based optimization for hyperparameter tuning (Section Model-based optimization).

Transformation models

In stark contrast to penalized generalized linear models, regularized transformation models aim at
estimating the response’s whole conditional distribution instead of focusing on a single moment,
e.g., the conditional mean. This conditional distribution function of a response Y is decomposed
into an a priori chosen absolute continuous and log-concave error distribution F and a conditional
transformation function h(y|x, s) that depends on the measured covariates x and stratum variables
s and is monotone increasing in y. Although the model class is more flexible, packages tram and
tramnet focus on stratified linear transformation models of the form

P (Y ≤ y|X = x, S = s) = F (h(y|s, x)) = F
(

h(y|s)− x⊤β
)

. (1)

Here, the baseline transformation is allowed to vary with stratum variables s, while covariate effects β
are restricted to be shifts common to all baseline transformations h(y|s).

In order for the model to represent a valid cumulative distribution function, F (h(y|s, x)) has to be
monotone increasing in y, and thus, in h for all possible strata s and all possible configurations of the
covariates x. To ensure monotonicity, h is parameterized in terms of a basis expansion using Bernstein
polynomials as implemented in the basefun package (Hothorn, 2020b). Hence, h is of the form

h(y) = aBs,p(y)⊤ϑ,

where aBs,p(y) denotes the vector of basis functions in y of order p and ϑ are the coefficients for each
basis function. Conveniently, aBs,p(y)⊤ϑ is monotone increasing in y as long as

ϑi ≤ ϑi+1, i = 0, . . . , p − 1 (2)
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holds. For the concrete parameterization of stratified linear transformation models, the reader is
referred to Hothorn (2020c).

Many contemporary models can be understood as linear transformation models, such as the
normal linear regression model, logistic regression for binary, ordered, and continuous responses,
as well as exponential, Weibull and Rayleigh regression, and the Cox model in survival analysis.
Thus, by appropriately choosing and parameterizing F and h, one can understand all those models in
the same maximum likelihood-based framework. One can formulate the corresponding likelihood
contributions not only for exact observations but under any form of random censoring and truncation
for continuous and count or ordered categorical responses.

Given a univariate response Y and a set of covariates X = x and strata S = s, one can specify the
following cumulative distribution function and density valid for any linear transformation model:

FY|X=x(y|s, x) = F
(

h(y | s)− x⊤β
)

,

fY|X=x(y|s, x) = F′
(

h(y | s)− x⊤β
)
· h′(y | s).

From here, the log-likelihood contributions for exact, right, left, and interval-censored responses can
be derived as

ℓ(ϑ, β; yi, si, xi) =



log
(

F′
(

h (yi | si)− x⊤i β
))

+ log (h′(yi | si)) yi exact

log
(

F
(

h(ȳ | si)− x⊤i β
))

yi ∈ (−∞, ȳ] left

log
(

1 − F
(

h(
¯
y | si)− x⊤i β

))
yi ∈ (

¯
y, ∞) right

log
(

F
(

h(ȳ | si)− x⊤i β
)
− F

(
h(

¯
y | si)− x⊤i β

))
yi ∈ (

¯
y, ȳ] interval.

The joint log-likelihood of several observations {(yi, xi, si)}n
i=1 is obtained by summing over the

individual log-likelihood contributions ℓi under the assumption that the individual samples are
independent and identically distributed, the case exclusively dealt with by tramnet.

Regularization

The aim of tramnet is to enable the estimation of regularized stratified linear transformation models.
This is achieved by optimizing a penalized form of the log-likelihood introduced in the last section.
The penalized log-likelihood,

ℓ̃(ϑ, β, λ, α; y, s, x) = ℓ(ϑ, β; y, s, x)− λ

(
α ∥β∥1 +

1
2
(1 − α) ∥β∥2

2

)
,

consists of the unpenalized log-likelihood and an additional penalty term. Note that only the shift
parameters β are penalized, whereas the coefficients for the baseline transformation ϑ remain unpe-
nalized. The parameterization of the penalty is chosen to be the same as in glmnet, consisting of a
global penalization parameter λ, and a mixing parameter α controlling the amount of L1 compared to
L2 penalization.

The two penalties and any combination thereof have unique properties and may be useful under
different circumstances. A pure L1 penalty was first introduced by Tibshirani (1996) in an OLS
framework and was dubbed the Lasso (Least Absolute Shrinkage and Selection Operator) due to its
property of shrinking regression coefficients exactly to 0 for large enough λ. A pure Lasso penalty can
be obtained in a regularized transformation model by specifying α = 1. Applying an L2 penalty in
an OLS problem was introduced more than five decades earlier by Tikhonov (1943) and later termed
ridge regression (Hoerl and Kennard, 1970). In contrast to Lasso, ridge regression leads to shrunken
regression coefficients but does not perform automatic variable selection. Zou and Hastie (2005) picked
up on both approaches, discussed their advantages, disadvantages, and overall characteristics and
combined them into the elastic net penalty, a convex combination of an L1 and L2 penalty controlled
by the mixing parameter α. Some of these properties will be illustrated for different models and a
real-world data set in Sections Censoring and likelihood forms and Hyperparameter tuning.
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Constrained convex optimization

Special algorithms were developed to optimize regularized objective functions, most prominently
the LARS and LARS-EN algorithm (Efron et al., 2004) and variants thereof for the penalized Cox
model (Goeman, 2010). However, the aim of tramnet is to solve the objective functions arising in
regularized transformation models in a single computational framework. Due to the log-concavity
of all choices for F in this package and h(y|x, s) being monotone increasing in y, the resulting log-
likelihood contributions for any form of censoring and truncation are concave and can thus be solved
by constrained convex optimization.

The fairly recent development of CVXR allows the specification of constrained convex optimization
problems in terms of a domain-specific language, yielding an intuitive and highly flexible framework
for constrained optimization. Because checking the convexity of an arbitrarily complex expression
is extremely hard, CVXR makes use of a library of smaller expressions, called atoms, with known
monotonicity and curvature and tries to decompose the objective at hand using a set of rules from
disciplined convex optimization (DCP, Grant et al., 2006). Thus, a complex expression’s curvature can
be more easily determined.

More formally, convex optimization aims at solving a problem of the form

minimize
ϑ

g(ϑ)

subject to gi(ϑ) ≤ 0, i = 1, . . . , K,
Aϑ = b,

where ϑ ∈ Rp is the parameter vector, g(ϑ) is the objective function to be optimized, gi(ϑ) specify
the inequality constraints, and A ∈ Rn×p and b ∈ Rp parameterize any equality constraints on
ϑ. Importantly, the objective function and all inequality constraint functions are convex (Boyd and
Vandenberghe, 2004).

The likelihood ∑i ℓ(ϑ, β; yi, si, xi) for transformation models of the form (1) are convex for error
distributions with log-concave density because log-convexity of −F′ ensures the existence and unique-
ness of the most likely transformation ĥ and the convexity of −ℓ(h; y, x). Because the penalty term
is convex in β, it can be added to the negative log-likelihood while conserving convexity. However,
monotonicity of h imposes inequality constraints on the parameters of the baseline transformation,
as illustrated in equation (2). The elegance of domain-specific language-based optimizers comes
to play when adding these and potential other inequality or equality constraints to the objective
function, which will be showcased in Section Additional constraints. Thus, the optimization routines
implemented in package CVXR can be applied for computing maximum likelihood estimates of the
parameters of model (1).

Model-based optimization

The predictive capabilities of regularized regression models heavily depend on the hyperparameters α
and λ. Hyperparameter tuning can be addressed by a multitude of methods with varying computa-
tional complexity, advantages, and disadvantages. Naive or random grid search for more than one
tuning parameter are computationally demanding, especially if the objective function is expensive
to evaluate. Model-based optimization circumvents this issue by fitting a surrogate model, usually
a Gaussian process, to the objective function. The objective function is evaluated at an initial, e.g., ,
a random latin hypercube, design, to which the Gaussian process is subsequently fit. The surrogate
model then proposes the next set of hyperparameters at which to evaluate the objective function by
some infill criterion (Horn and Bischl, 2016). Bischl et al. (2017) implement model-based optimization
for multi-objective blackbox functions in the mlrMBO package. The objective function can, in theory,
be vector-valued and the tuning parameter spaces may be categorical. In tramnet, the objective func-
tion is the cross-validated log-likelihood optimized using a Kriging surrogate model with expected
improvement as the infill criterion. Model-based optimization for hyperparameter tuning is illustrated
in Section Prostate cancer data analysis.

Basic usage

The initial step is fitting a potentially stratified transformation model of the form

R> m1 <- tram(y | s ~ 1, ...)

omitting all explanatory variables. This sets up the basis expansion for the transformation function,
whose regression coefficients will not be penalized, as mentioned in Section 2.1.2. Additionally,
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Model Class Censoring Type

Exact Left Right Interval

BoxCox ✓ ✗ ✗ ✗
Colr ✓ ✓ ✓ ✗
Coxph ✓ ✗ ✓ ✗
Lehmann ✓ ✓ ✗ ✗

Table 1: Combinations of possible model classes and censoring types in the tramnet package. Due to
missing optimization rules in CVXR, not every combination of error distribution and censoring type
yield solvable objective functions. This will change with coming updates in the CVXR package.

tramnet() needs a model matrix including the predictors, whose regression coefficients ought to
be penalized. For numerical reasons, it is useful to provide a scaled model matrix instead of the
original data, such that every parameter is equally affected by the regularization. Lastly, tramnet()
will need the tuning parameters α ∈ [0, 1] and λ ∈ R+, with α representing a mixing parameter and λ
controlling the extent of regularization. Setting λ = 0 will result in an unpenalized model, regardless
of the value of α.

R> x <- model.matrix(~ 0 + x, ...)
R> x_scaled <- scale(x)
R> mt <- tramnet(model = m1, x = x_scaled, lambda, alpha, ...)

S3 methods accompanying the "tramnet" class will be discussed in Section S3 Methods.

Censoring and likelihood forms

Specific combinations of F and the form of censoring yield log-log-concave log-likelihoods. Under
these circumstances, tramnet is not yet able to solve the resulting optimization problem. Table 1
indicates which model class can be fitted under what type of censoring in the current version of
tramnet.

2 Prostate cancer data analysis

The regularized normal linear and extensions to transformed normal regression models will be
illustrated using the Prostate data set (Stamey et al., 1989), which was used by Zou and Hastie (2005)
to highlight properties of the elastic net.

R> data("Prostate", package = "lasso2")
R> Prostate$psa <- exp(Prostate$lpsa)
R> Prostate[, 1:8] <- scale(Prostate[, 1:8])

The data set contains 97 observations and 9 covariates. In the original paper, the authors chose the
log-transformed prostate specific antigen concentration (lpsa) as the response and used the eight
remaining predictors log cancer volume (lcavol), log prostate weight (lweight), age of the patient
(age), log benign prostatic hyperplasia amount (lbph), seminal vesicle invasion (svi coded as 1 for yes,
0 for no), log capsular penetration (lcp), Gleason score (gleason), and percentage Gleason score 4 or 5
(pgg45) as covariates.

Linear and Box-Cox type regression models

Zou and Hastie (2005) imposed an assumption on the conditional distribution of the response by
log-transforming and fitting a linear model. In the following, it is shown that the impact of this
assumption may be assessed by estimating the baseline transformation from the data, followed by
a comparison with the log-transformation applied by Zou and Hastie (2005). The linear models in
lpsa and log(psa) are compared to transformation models with basis expansions in both log(psa) and
psa, while specifying conditional normality of the transformed response. Additionally, the models
are compared to an alternative implementation of regularized normal linear regression in penalized.
Five different models will be used to illustrate important facets of transformation models, including
parameterization and interpretation. The models are summarized in Table 2 and will be elaborated
on throughout this section. The comparison is based on unpenalized models first. Later, the section
highlights the penalized models together with hyperparameter tuning.
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Name Code Model for FY|X=x(y|x)

mp penalized(response = lpsa, penalized = x) Φ
(
ϑ1 + ϑ2 log(y)− x⊤β

)
mt Lm(lpsa ∼ .) Φ

(
ϑ1 + ϑ2 log(y)− x⊤β

)
mtp BoxCox(psa ∼ ., log_first = TRUE, order = 1) Φ

(
aBs,1(log(y))⊤ϑ − x⊤β

)
mt1 BoxCox(psa ∼ ., log_first = TRUE, order = 7) Φ

(
aBs,7(log(y))⊤ϑ − x⊤β

)
mt2 BoxCox(psa ∼ ., log_first = FALSE, order = 11) Φ

(
aBs,11(y)⊤ϑ − x⊤β

)
Table 2: Summary of the five models illustrated in Section Prostate cancer data analysis, including their
name throughout the manuscript, the R code to fit them, and the mathematical formulation of their
conditional cumulative distribution function. For comparison, mp is included as an ordinary linear
model, which is equivalent to model mt in terms of log-likelihood, but differs in the parameterization
of the transformation function h and thus yields scaled coefficient estimates (cf. Table 3). Model mtp is
a linear model parameterized in terms of a Bernstein basis of maximum order 1. This will yield the
same coefficient estimates as mt, but a log-likelihood that is comparable to models mt1 and mt2, whose
transformation functions are parameterized in terms of higher-order Bernstein bases. The log_first
argument specifies whether the basis expansion is calculated on the log-transformed or untransformed
response.

R> fm_Pr <- psa ~ lcavol + lweight + age + lbph + svi + lcp + gleason + pgg45
R> fm_Pr1 <- update(fm_Pr, ~ 0 + .)
R> x <- model.matrix(fm_Pr1, data = Prostate)

The normal linear regression model is implemented in tram’s Lm() function. Lm()’s parameterization
differs from the usual linear model, hence caution has to be taken when interpreting the resulting
regression coefficients β. In order to compare the results to an equivalent, already existing implemen-
tation, the same model is fitted using penalized.

R> m0 <- Lm(lpsa ~ 1, data = Prostate)
R> mt <- tramnet(m0, x = x, alpha = 0, lambda = 0)
R> mp <- penalized(response = Prostate$lpsa, penalized = x,
+ lambda1 = 0, lambda2 = 0)

A linear model of the form

Y = α̃ + x⊤ β̃ + ε, ε ∼ N(0, σ2)

can be understood as a transformation model through reparameterization as

P(Y ≤ y|X = x) = Φ
(

ϑ1 + ϑ2y − x⊤β
)

.

Here, ϑ1 = −α̃/σ is a reparameterized intercept term, ϑ2 = 1/σ is the slope of the baseline trans-
formation, and the regression coefficients β = β̃/σ represent scaled shift terms, influencing only
the intercept. To recover the usual parameterization, tramnet::coef.Lm() offers the as.lm = TRUE
argument.

R> cfx_tramnet <- coef(mt, as.lm = TRUE)

The transformation function for the linear model is depicted in Figure 1 (pink line). Because a linear
baseline transformation imposes restrictive assumptions on the response’s conditional distribution, it
is advantageous to replace the linear baseline transformation by a more flexible one. In the case of the
Box-Cox type regression model, the linear baseline transformation h(y) = ϑ1 + ϑ2 log y is replaced by
the basis expansion h(y) = aBs,7(log y)⊤ϑ.

R> ord <- 7 # flexible baseline transformation
R> m01 <- BoxCox(psa ~ 1, data = Prostate, order = ord,
+ extrapolate = TRUE, log_first = TRUE)
R> mt1 <- tramnet(m01, x = x, alpha = 0, lambda = 0)

The Box-Cox type regression model is then estimated with the BoxCox() function while specifying the
appropriate maximum order of the Bernstein polynomial. Because the more flexible transformation
slightly deviates from being linear, the normal linear model yields a smaller log-likelihood (cf. Table 3).
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To make sure that this improvement is not due to the increased number of parameters and hence
overfitting, the models’ predictive capacities could be compared via cross-validation.

These results hold for the pre-specified log transformation of the response and a basis expansion
thereof. Instead of prespecifying the log-transformation, its “logarithmic nature” can be estimated
from the data. Afterward, one can compare the deviation from a log-linear baseline transformation
graphically and by inspecting the predictive performance of the model in terms of out-of-sample
log-likelihood.

R> m02 <- BoxCox(psa ~ 1, order = 11, data = Prostate, extrapolate = TRUE)
R> mt2 <- tramnet(m02, x = x, lambda = 0, alpha = 0)

Indeed, the baseline transformation in Figure 1 is similar to the basis expansion in the log-transformed
response upon visual inspection. Because mt is estimated using the log-transformed response and mt1
and mt2 are based on the original scale of the response, the resulting model log-likelihoods are not
comparable. To overcome this issue, one can fit a Box-Cox type model with maximum order 1, as this
results in a linear but alternatively parameterized baseline transformation.

R> m0p <- BoxCox(psa ~ 1, order = 1, data = Prostate, log_first = TRUE)
R> mtp <- tramnet(m0p, x = x, lambda = 0, alpha = 0)

Figure 1 plots the three distinct baseline transformations resulting from models mt, mt1, and mt2. The
initial assumption to model the prostate-specific antigen concentration linearly on the log-scale seems
to be valid when comparing the three transformation functions. The linear transformation in lpsa
used in mt, and the basis expansion in log(psa) (mt1) are almost indistinguishable and yield very
similar coefficient estimates, as well as log-likelihoods (cf. Table 3, mtp vs. mt1). The basis expansion
in psa (mt2) is expected to be less stable due to the highly skewed untransformed response. This is
reflected in Figure 1, where the baseline transformation deviates from being linear towards the bounds
of the response’s support. However, the log-linear behavior of h was clearly captured by this model
and further supported the initial assumption of conditional log-normality of the response. For the
same reasons, the resulting log-likelihood of mt2 is smaller than for mt1 (Table 3). Taken together, this
exemplary analysis highlights the flexibility and usefulness of transformation models to judge crucial
modeling assumptions.

log(psa)

h
(y

)

−6

−4

−2

0

2

0 1 2 3 4 5

mt
mt1
mt2

Figure 1: Comparison of different choices for the baseline transformation of the response (prostate-
specific antigen concentration) in the Prostate data. The original analysis prespecified a log-
transformation of the response and then assumed conditional normality on this scale. Hence the
baseline transformation of mt is of the form: h(lpsa) = ϑ1 + ϑ2 · lpsa. Now, one can allow a more
flexible transformation function in log(psa) to judge any deviations of h(log(psa)) from linearity,
leading to a baseline transformation in terms of basis functions: aBs,7(log(psa))⊤ϑ in mt1. Lastly,
instead of presuming a log-transformation, one could estimate the baseline transformation from the
raw response (psa), i.e., h(psa) = aBs,11(psa)⊤ϑ in mt2. In this case, a higher-order basis expansion was
chosen to account for the skewness of the raw response. Notably, all three baseline transformations are
fairly comparable. The basis expansion in psa deviates from being log-linear towards the boundaries
of the response’s support, as there are only a few observations.
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Model Coefficient estimates logLik

lcavol lweight age lbph svi lcp gleason pgg45

mp 0.69 0.23 -0.15 0.16 0.32 -0.15 0.03 0.13 -99.5
mt 1.03 0.33 -0.22 0.23 0.47 -0.22 0.05 0.19 -99.5
mtp 1.03 0.33 -0.22 0.23 0.47 -0.22 0.05 0.19 -339.9
mt1 1.03 0.34 -0.21 0.22 0.48 -0.23 0.04 0.22 -338.0
mt2 0.97 0.32 -0.19 0.22 0.48 -0.21 0.07 0.21 -343.5

Table 3: Comparison of the three transformation models on the Prostate data. Coefficient estimates
are shown for each model, together with the in-sample log-likelihood in the last column. The first
three models, mp, mt, and mtp use a linear baseline transformation in lpsa and log(psa), respectively.
The mp model was fit using penalized and gave the scaled version of the regression coefficients in
mt, but the same log-likelihood. At the same time, mt and mtp differ only in their response variable
and its subsequent log-transformation in mtp, yielding the same coefficient estimates but a different
log-likelihood. Models mt1 and mt2 allow a flexible basis expansion in log(psa) and psa, respectively.
Model mt1, allowing for a flexible basis expansion in lpsa, fits the data the best. However, the resulting
coefficient estimates are similar for all models.

Hyperparameter tuning

This section features cross-validation, model-based optimization, and profiling functions for hyperpa-
rameter tuning, whose appropriate values are highly problem-dependent and hard to know in advance.
tramnet implements naive grid search and model-based optimization in the functions cvl_tramnet()
and tramnet_mbo(), respectively. In the framework of regularized transformation models, it is very
natural to choose the out-of-sample log-likelihood as the objective function because the notion of a
mean square loss does not make sense for survival, let alone censored outcomes. The out-of-sample
log-likelihood is, in fact, the log score, which is a proper scoring rule (Gneiting and Raftery, 2007).

R> m0 <- BoxCox(lpsa ~ 1, data = Prostate, order = 7, extrapolate = TRUE)
R> mt <- tramnet(m01, x = x, alpha = 1, lambda = 0)

tramnet offers cross-validation in cvl_tramnet(), comparable to the optL1(), and optL2() functions
in penalized, which takes a sequence of values for λ and α and performs a simple – and arguably
slow – grid search. Per default, it computes 2-fold cross-validation. The user is encouraged, however,
to judge the resulting bias-variance trade-off accordingly.

R> lambdas <- c(0, 10^seq(-4, log10(15), length.out = 4))
R> cvlt <- cvl_tramnet(object = mt, fold = 2, lambda = lambdas, alpha = 1)

In order to compare cross-validation across multiple packages and functions, it is also possible to
supply the folds for each row in the design matrix as a numeric vector, as for example returned by
penalized::optL1().

R> pen_cvl <- optL1(response = lpsa, penalized = x, lambda2 = 0, data = Prostate,
+ fold = 2)
R> cvlt <- cvl_tramnet(object = mt, lambda = lambdas, alpha = 1,
+ folds = pen_cvl$fold)

The resulting object is of class "cvl_tramnet" and contains a table for the cross-validated log-likelihoods
for each fold and the sum thereof, the ‘optimal’ tuning parameter constellation, which resulted in the
largest cross-validated log-likelihood, tables for the cross-validated regularization paths, the folds and
lastly the full fit based on the ‘optimal’ tuning parameters. Additionally, the resulting object can be
used to visualize the log-likelihood and coefficient trajectories. These trajectories highly depend on the
chosen folds, and the user is referred to the full profiling functions discussed in Section Regularization
paths.

Model-based optimization

In contrast to naive grid search, model-based optimization comprises more elegant methods for
hyperparameter tuning. tramnet offers the mbo_tramnet() and mbo_recommended() functions. The
former implements Kriging-based hyperparameter tuning for the elastic net, the Lasso, and ridge
regression. mbo_tramnet() takes a "tramnet" object as input and computes the cross-validated log-
likelihood based on the provided fold or folds argument. The initial design is a random latin
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hypercube design with n_design rows per parameter. The number of sequential fits of the surrogate
models is specified through n_iter, and the range of the tuning parameters can be specified by
max/min arguments. The default infill criterion is expected improvement. However, Bischl et al. (2017)
encourage the use of the lower confidence bound over expected improvement, which can be achieved
in mbo_tramnet() by specifying opt_crit = makeMBOInfillCritCB(). 10-fold cross-validation is used
to compute the objective function for the initial design and each iteration. The recommended model is
then extracted using mbo_recommended().

R> tmbo <- mbo_tramnet(mt, obj_type = "elnet", fold = 10)
R> mtmbo <- mbo_recommended(tmbo, m0, x)

Unlike in the previous section, one can directly optimize the tuning parameters in an elastic net
problem instead of optimizing over one hyperparameter at a time or having to specify Lasso or ridge
regression a priori. The output of mbo_tramnet() is quite verbose and can be shortened by using the
helper function print_mbo().

R> print_mbo(tmbo)

## Recommended parameters:
## lmb=1.04e-05; alp=0.751
## Objective: y = 710

Interpreting the output, model-based optimization suggests an unpenalized model with α = 0.75
and λ = 0. This result stresses the advantages of model-based optimization over naive or random
grid search in terms of complexity and computational efficiency. In the end, the proposed model is
unpenalized and thus does not introduce sparsity in the regression coefficients.

R> coef(mtmbo)

## lcavol lweight age lbph svi lcp gleason pgg45
## 1.0312 0.3380 -0.2068 0.2198 0.4801 -0.2329 0.0437 0.2157

R> summary(mtmbo)$sparsity
## [1] "8 regression coefficients, 8 of which are non-zero"

Regularization paths

As discussed before, it may be useful to inspect the full regularization paths over the tuning param-
eters λ and α. Akin to the functions profL1() and profL2() in package penalized, tramnet offers
prof_lambda() and prof_alpha(). Since these functions take a fitted model of class "tramnet" as
input, which is internally updated, it is crucial to correctly specify the other tuning parameter in the
model fitting step. In the example to come, mt was fit using α = 1 and λ = 0, resulting in a Lasso
penalty only when profiling over λ. The resulting profile is depicted in Figure 2.

R> pfl <- prof_lambda(mt)

prof_lambda() takes min_lambda, max_lambda, and nprof as arguments and internally generates an
equi-spaced sequence from min_lambda to max_lambda on the log scale of length nprof. By default,
this sequence ranges from 0 to 15 and is of length 5.

R> plot_path(pfl, plot_logLik = FALSE, las = 1, col = coll)

Additional constraints

In some applications, the specification of additional constraints on the shift parameters β are of interest.
Most commonly, either positivity or negativity for some or all regression coefficients is aimed at.
In tramnet, additional inequality constraints can be specified via the constraints argument, which
are internally handled as constraints[[1]] %*% beta > constraints[[2]]. Hence, to specify the
constraint of strictly positive regression coefficients, one would supply an identity matrix of dimension
p for the left-hand side and the zero p-vector for the right-hand side, as done in the following example.

R> m0 <- BoxCox(lpsa ~ 1, data = Prostate, extrapolate = TRUE)
R> mt <- tramnet(m0, x, alpha = 0, lambda = 0, constraints = list(diag(8),
+ rep(0, 8)))
R> coef(mt)
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Figure 2: Full regularization paths for the tuning parameter λ using the default values of plot_path().

## lcavol lweight lbph svi gleason pgg45
## 0.9111 0.2996 0.1684 0.3969 0.0133 0.1125

The coefficients with a negative sign in the model without additional positivity constraints now shrink
to zero, with the other coefficient estimates changing as well.

R> summary(mt)$sparsity

## [1] "8 regression coefficients, 6 of which are non-zero"

One can compare this model to the implementation in tram, where it is also possible to specify linear
inequality constraints on the regression coefficients β. Here, it is sufficient to specify constraints =
c("age >= 0","lcp >= 0") for the two non-positive coefficient estimates.

R> m <- BoxCox(lpsa ~ . - psa, data = Prostate, extrapolate = TRUE,
+ constraints = c("age >= 0", "lcp >= 0"))
R> max(abs(coef(m) - coef(mt, tol = 0)))

## [1] 1.28e-05

Indeed, both optimizers arrive at virtually the same coefficient estimates.

3 S3 Methods

Building on the S3 infrastructure of the packages mlt and tram, this package provides correspond-
ing methods for the following generics: coef(), logLik(), plot(), predict(), simulate(), and
residuals(). The methods’ additional "tramnet"-specific arguments will be briefly discussed in
this section.

coef.tramnet() suppresses the baseline transformation’s coefficient estimates ϑ̂ by default and
considers shift parameter estimates β̂ below 10−6 as 0 to stress the selected variables only. This
threshold can be controlled by the tol argument. Hence, coef(mt,with_baseline = TRUE,tol = 0)
returns all coefficients.

R> coef(mtmbo, with_baseline = TRUE, tol = 0)

## Bs1(lpsa) Bs2(lpsa) Bs3(lpsa) Bs4(lpsa) Bs5(lpsa) Bs6(lpsa) Bs7(lpsa)
## -1.9775 -1.5055 -1.0335 -0.2778 -0.2778 1.0723 1.5150
## Bs8(lpsa) lcavol lweight age lbph svi lcp
## 1.9576 1.0312 0.3380 -0.2068 0.2198 0.4801 -0.2329
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## gleason pgg45
## 0.0437 0.2157

The logLik.tramnet() method allows the log-likelihoods re-computation under new data (i.e., out-of-
sample) and different coefficients (parm) and weights (w), as illustrated below.

R> logLik(mtmbo)

## 'log Lik.' -97.7 (df=NA)

R> cfx <- coef(mtmbo, with_baseline = TRUE, tol = 0)
R> cfx[5:8] <- 0.5
R> logLik(mtmbo, parm = cfx)

## 'log Lik.' -561 (df=NA)

R> logLik(mtmbo, newdata = Prostate[1:10,])

## 'log Lik.' -14.3 (df=NA)

R> logLik(mtmbo, w = runif(n = nrow(mtmbo$x)))

## 'log Lik.' -41.8 (df=NA)

In the spirit of mlt’s plotting methods for classes "mlt" and "ctm", plot.tramnet() offers diverse
plotting options for objects of class "tramnet". The specification of new data and the type of plot is
illustrated in the following code chunk and Figure 3.

R> par(mfrow = c(3, 2)); K <- 1e3
R> plot(mtmbo, type = "distribution", K = K, main = "A") # A, default
R> plot(mtmbo, type = "survivor", K = K, main = "B") # B
R> plot(mtmbo, type = "trafo", K = K, main = "C") # C
R> plot(mtmbo, type = "density", K = K, main = "D") # D
R> plot(mtmbo, type = "hazard", K = K, main = "E") # E
R> plot(mtmbo, type = "trafo", newdata = Prostate[1, ], col = 1, K = K, main = "F") # F

The predict.tramnet() method works in the same way as predict.mlt() and as such supports
the types trafo,distribution,survivor,density,logdensity,hazard,loghazard,cumhazard, and
quantile. For type = "quantile", the corresponding probabilities (prob) have to be supplied as an
argument to evaluate the quantile function.

R> predict(mtmbo, type = "quantile", prob = 0.2, newdata = Prostate[1:5,])

## prob [,1] [,2] [,3] [,4] [,5]
## 0.2 3.4 3.55 3.74 3.72 2.68

Another method offered by this package implements parametric bootstrap-based sampling. In particu-
lar, simulate.tramnet() calls the simulate.ctm() function after converting the "tramnet" object to a
"ctm" object.

R> simulate(mtmbo, nsim = 1, newdata = Prostate[1:5,], seed = 1)

## [1] 3.56 3.97 4.57 5.48 2.69

Lastly, residuals.tramnet() computes the generalized residual r defined as the score contribution
for sample i with respect to a newly introduced intercept parameter γ, which is restricted to be zero.
In particular,

r =
∂ℓ (ϑ, β, γ; y, s, x)

∂γ

∣∣∣∣
γ=0

yields the generalized residual with respect to γ for the model

FY(y|s, x) = F
(

h(y | s)− x⊤β − γ
)

.
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Figure 3: Illustration of plot.tramnet()’s versatility in visualizing the response’s estimated condi-
tional distribution on various scales, including cdf, survivor, transformation scale and pdf. Note that,
by default, the plot is produced for each row in the design matrix. In unstratified linear transformation
models, this leads to shifted versions of the same curve on the transformation function’s scale. A:
Estimated conditional distribution function for every observation. B: Estimated conditional survivor
function for every observation. The conditional survivor function is defined as S(y|x) = 1 − FY(y|x).
C: Conditional most likely transformation for every observation. Note that every conditional transfor-
mation function is a shifted version of the same curve. D: The conditional density for every observation
can be calculated using fY(y|x) = F′(a(y)⊤ϑ − x⊤β)a′(y)⊤ϑ. E: A distribution function is fully char-
acterized by its hazard function λ(y|x) = fY(y|x)/S(y|x), which is depicted in this panel. F: The
newdata argument can be used to plot the predicted most likely transformation for the provided data,
in this case, the first row of the Prostate data.

R> residuals(mtmbo)[1:5]

## [1] -6.50 -6.36 -6.60 -6.57 -4.17
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In residual analysis and boosting, it is common practice to check for associations between residuals
and covariates that are not included in the model. In the prostate cancer example, one could investigate
whether the variables age and lcp should be included in the model. To illustrate this particular case,
a nonparametric independence_test() from package coin can be used (Hothorn et al., 2008). First,
the uncoditional transformation model m0 is fitted. Afterward, the tramnet models excluding age and
lcp are estimated, and their residuals extracted using the residuals.tramnet() method. Lastly, an
independence test using a maximum statistic (teststat = "max") and a Monte Carlo-based approxi-
mation of the null distribution based on resampling 106 times (distribution = approximate(1e6))
yields the results printed below.

R> library("coin")
R> m0 <- BoxCox(lpsa ~ 1, data = Prostate, extrapolate = TRUE)
R> x_no_age_lcp <- x[, !colnames(x) %in% c("age", "lcp")]
R> mt_no_age_lcp <- tramnet(m0, x_no_age_lcp, alpha = 0, lambda = 0)
R> r <- residuals(mt_no_age_lcp)
R> it <- independence_test(r ~ age + lcp, data = Prostate,
+ teststat = "max", distribution = approximate(1e6))
R> pvalue(it, "single-step")

## age 0.023748
## lcp <0.000001

Because there is substantial evidence against the independence of the models’ residuals to either lcp or
age, we can conclude that it is worthwhile to include age and lcp in the model. Packages trtf (Hothorn,
2019b) and tbm (Hothorn, 2020a, 2019a) make use of this definition of a residual for estimating and
boosting transformation models, trees, and random forests. For more theoretical insight, the reader is
referred to the above mentioned publications.
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BayesSPsurv: An R Package to Estimate
Bayesian (Spatial) Split-Population
Survival Models
by Brandon Bolte, Nicolás Schmidt, Sergio Béjar, Nguyen Huynh, Bumba Mukherjee

Abstract Survival data often include a fraction of units that are susceptible to an event of interest
as well as a fraction of “immune” units. In many applications, spatial clustering in unobserved risk
factors across nearby units can also affect their survival rates and odds of becoming immune. To
address these methodological challenges, this article introduces our BayesSPsurv R-package, which
fits parametric Bayesian Spatial split-population survival (cure) models that can account for spatial
autocorrelation in both subpopulations of the user’s time-to-event data. Spatial autocorrelation is
modeled with spatially weighted frailties, which are estimated using a conditionally autoregressive
prior. The user can also fit parametric cure models with or without nonspatial i.i.d. frailties, and
each model can incorporate time-varying covariates. BayesSPsurv also includes various functions to
conduct pre-estimation spatial autocorrelation tests, visualize results, and assess model performance,
all of which are illustrated using data on post-civil war peace survival.

1 Introduction

Conventional survival models have been applied to analyze time-to-event data across several academic
disciplines, but these models rely on two core assumptions that are not always tenable. The first is
that all units, including right-censored observations, will eventually experience the event of interest.
In many applications, however, some fraction of subjects that are “immune” or “cured” may never
experience the event (Maller and Zhou, 1996; Peng and Taylor, 2014; Beger et al., 2017). A clinical
study of obesity on human death rates can employ a standard survival model because all subjects will
eventually die, but a study on vaccine effectiveness will likely assume that some fraction of the treated
population will become immune while others may respond differently and remain uncured. To account
for both subpopulations, scholars have developed a class of split-population (SP) survival models
that probabilistically separate the immune fraction from the units that are susceptible to the event of
interest and then estimate the conditional hazard of survival among the latter units (Cai et al., 2012;
Beger et al., 2018; Box-Steffensmeier and Zorn, 1999; Box-Steffensmeier and Jones, 2004). The second
assumption of conventional survival models is that each observation is conditionally independent
after controlling for covariates. This assumption is violated if spatially clustered units share common
unobserved features that influence their baseline risk of experiencing an event (Darmofal, 2009; Taylor
and Rowlingson, 2017). If spatial autocorrelation matters for process survival and/or the probability
of being immune to an event, ignoring it can lead to biased parameter estimates.

Although there are numerous methods for dealing with spatially autocorrelated time-to-event
data (e.g., Li and Ryan, 2002; Banerjee et al., 2003; Henderson et al., 2002; Zhou et al., 2020), these
spatial survival models do not differentiate between at-risk and immune observations. Conversely,
existing SP survival models either ignore spatial autocorrelation altogether or only account for it
in the survival stage (Banerjee and Carlin, 2004). We present the BayesSPsurv (Bolte et al., 2021b)
R-package (available at https://CRAN.R-project.org/package=BayesSPsurv), which has the power
to overcome these limitations as well as the flexibility for researchers to model spatial clustering in their
survival data however they choose to define it. In particular, BayesSPsurv allows the user to estimate
parametric Bayesian Spatial split-population survival (cure) models with spatial frailties in both the
model’s split and survival stages. These models account for spatial clustering in the immune and
at-risk fractions of the data. The package also includes functions and code for pre-estimation spatial
autocorrelation diagnostics, visualizing results, simulating multiple Markov chains, and implementing
Markov Chain Monte Carlo (MCMC) estimation routines for SP survival models with independent
(exchangeable) or no random effects. The user can also include time-varying covariates in either stage.
In the next section, we outline previous work on SP and spatial survival models, including existing
packages and their limitations. We then formally develop the Pooled, Exchangeable, and Spatial
Bayesian SP survival models before describing the various functions available in the BayesSPsurv
package. We demonstrate these functions using replication data from a published study on the survival
of post-civil war peace.
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2 Background and other R-packages

Scholars have identified at least two sources of conditional heterogeneity in survival data that hasve
been separately addressed. The first occurs when a subset of the units in the data are immune from
experiencing a “failure” event, which violates the assumption that even right-censored observations
experience the event of interest (Box-Steffensmeier and Zorn, 1999; Box-Steffensmeier and Jones, 2004;
Beger et al., 2017). Cure rate or split-population (SP) survival models account for this immune fraction
by first estimating the probability that right-censored units are immune from an event in a “split-stage”
and then the time until at-risk censored and non-censored units experience the event. Recent work
has extended these models to include i.i.d. frailties (Peng and Taylor, 2011), time-varying covariates
(Beger et al., 2017), and account for random right-censoring (Patilea and Van Keilegom, 2020). Split-
population survival models have been used to study phenomena, ranging from the survival of breast
cancer patients (Wang et al., 2005), criminal recidivism (Schmidt and Witte, 1989), the risk of coups
(Beger et al., 2017), and parasite-induced mortality in river salmon (Ray et al., 2014).

Separately, conventional survival models have been extended to account for spatial autocorrelation
among nearby units (Banerjee et al., 2003; Taylor and Rowlingson, 2017; Zhou et al., 2020). These
models relax the assumption of spatial independence by incorporating spatially weighted frailties
into the survival model’s baseline hazard function. This allows for the possibility that adjacent units
share unmodeled risk factors that influence their underlying propensities for experiencing a failure
event. Apart from recent advances in modeling spatial frailties in different survival frameworks
(e.g. Diva et al., 2008; Zhou et al., 2020), spatial survival models have been applied to analyze, for
example, geographically referenced data on leukemia survival (Henderson et al., 2002), position
announcements by U.S. House members (Darmofal, 2009), prostate cancer (Zhou et al., 2020), and fire
service response times (Taylor and Rowlingson, 2017). Despite these considerable methodological
developments, far less attention has been dedicated to accounting for spatial autocorrelation in SP
survival settings. This is surprising because spatial autocorrelation between units may influence their
probability of being immune and the survival rate among the units at risk of experiencing the failure
event simultaneously. Banerjee and Carlin (2004) develop Bayesian spatial cure models but focus on
modeling spatial autocorrelation in the survival stage using a conditionally autoregressive (CAR) prior.
In fact, these authors emphasize that future research must “include covariates and spatial random
effects as regressors in the cure rate portion of the model, instead of just the log-relative risk portion”
(274).

In line with these trends in the literature, some R packages fit standard and split-population
survival models but do not allow for the incorporation of spatial information. The survival package
(Therneau, 2020) fits parametric and semiparametric Cox survival models via MLE, whereas dynsurv
(Wang et al., 2020) fits the Cox Proportional Hazards (PH) model with dynamic coefficients using
MCMC methods. Conventional semi-parametric cure models can be estimated via MLE with the
smcure (Cai et al., 2012) or nltm (Garibotti et al., 2019) package. The flexsurvcure (Amdahl, 2020) pack-
age fits parametric mixture and non-mixture cure models for time-to-event data, and the spduration
package fits parametric SP survival models with time-varying covariates (Beger et al., 2018).

A small handful of packages allow the user to incorporate spatial information into their survival
models, but never in split-population settings. The BayesX package (Umlauf et al., 2019) and its
associated interface to R R2BayesX (Belitz et al., 2017) fit spatial survival models and structured
additive regression models with spatial frailties. The spBayesSurv package (Zhou and Hanson, 2020)
fits several Bayesian survival models with spatial frailties that can be formulated on a PH, proportional
odds, or AFT scale, all of which can include time-varying covariates. The spatsurv package also fits
Bayesian spatial survival models, including a PH model that permits users to incorporate Gaussian
process frailties (Taylor and Rowlingson, 2020). Beyond R, WinBUGS and GeoBUGs code has been
developed to fit, for instance, survival and non-mixture cure models with spatial frailties (Banerjee
et al., 2003, 2004; Thomas et al., 2004).

To our knowledge, our BayesSPsurv package is the first to allow users to fit parametric split-
population survival models with not just time-varying covariates but also spatial frailties in both
stages. The frailties in the parametric Bayesian spatial SP model are estimated using the CAR prior
approach (Besag et al., 1991; Bernardinelli et al., 1995; Banerjee et al., 2003; Banerjee and Carlin,
2004). BayesSPsurv also includes functions and routines coded in C++ to fit nonspatial parametric
SP survival models with exchangeable frailties in the model’s split and survival-stage equation and
without any frailties. Statistical inference of the models in BayesSPsurv is conducted via combined
MCMC techniques that require little input from users. Our package and supplemental code also
provide functions to implement spatial autocorrelation tests, produce country-level adjacency matrices,
generate and compare multiple Markov chains, assess convergence, and conduct model comparison.
Before outlining the functionality of the package in greater detail, we turn to briefly develop each of
the three included Bayesian split-population survival models.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=dynsurv
https://CRAN.R-project.org/package=smcure
https://CRAN.R-project.org/package=nltm
https://CRAN.R-project.org/package=flexsurvcure
https://CRAN.R-project.org/package=spduration
https://CRAN.R-project.org/package=BayesX
https://CRAN.R-project.org/package=R2BayesX
https://CRAN.R-project.org/package=spBayesSurv
https://CRAN.R-project.org/package=spatsurv
https://CRAN.R-project.org/package=BayesSPsurv


CONTRIBUTED RESEARCH ARTICLE 597

3 The Bayesian (Spatial) split-population survival model

Model development

Define i = {1, 2, ...N} for the units that may fail or experience an event of interest in a continuous-
time survival dataset. Let f (t) and F(t) represent the probability density function and cumulative
distribution function. The survival distribution is S(t) = 1 − F(t), and the hazard rate is h(t) = f (t)

S(t) .

Some units will fail during the time period under observation (C̃i = 1), while others do not and are
“censored” (C̃i = 0). The general likelihood of the conventional survival model in which all units
eventually experience the event of interest is

N
∏
i=1

[ f (ti)]
C̃i [S (t)]1−C̃i . (1)

Suppose that the survival data includes two subpopulations: an “at-risk ” fraction that can fail and an
“immune” fraction that will not experience the (failure) event of interest (Maller and Zhou, 1996; Yin
and Ibrahim, 2005; Beger et al., 2017). When presented with this data generation process, researchers
typically employ split-population survival (cure) models with or without unit-specific frailties to
simultaneously estimate the probability of observations being in the immune fraction and the effect of
covariates on the hazard of survival among the at-risk fraction (Maller and Zhou, 1996; Lu, 2010; Peng
and Taylor, 2014).

To understand these models in more detail, consider the split-population survival model for the
duration t that splits the sample into an at-risk and an immune fraction. Let αi = Pr(Yi = 1) be the
probability with which units enter the immune fraction. αi can be estimated via a binary response
function and is defined for the logit case as:

αi =
exp (Ziγ + Vi)

1 + exp (Ziγ + Vi)
, (2)

where Zi are p2-dimensional covariates, γ the parameter vector in Rp2 , and Vi ∼ N(0, σ2) are the
nonspatial i.i.d unit-specific frailties (random effects). Equation 2 is the split-population model’s split-
stage equation, where the unit-specific frailties Vi, which are each independent of other individual
random effects, account for unobserved heterogeneity that influences probability αi. Let Wi ∼ N(0, σ2)
denote the nonspatial i.i.d unit-specific frailties that capture the possibility that some units are at
different risks of experiencing the event of interest due to unobserved factors. The proportional
hazards function of the SP survival model with nonspatial, unit-specific frailties is

h (ti|Xiβ, Wi) = h0 (ti)ωi exp (Xiβ) = h0 (ti) exp (Xiβ + Wi) , (3)

where h0(ti) is the baseline hazard (e.g., Weibull, log-logistic), log ωi = Wi, Xi is the p1-dimensional
covariates, and β the parameter vector in Rp1 . We focus on incorporating unit-specific frailty terms
generally because they are most commonly used in the social sciences. However, our approach
could plausibly be extended to a shared frailty framework if the researcher believes that the frailties
occur in clusters such that within-cluster frailties are correlated while frailties between clusters are
independent.

Suppose, however, that the survival data with the two aforementioned subpopulations should
be fit with time-varying covariates. We can re-define this data with unique “entry time” duration as
t0 and “exit time” as duration t for each period at which an observation is observed. Let t0ij denote
unit i’s elapsed time since inception until the beginning of time period j, tij the elapsed time since that
unit’s inception until the end of period j, and C̃ij = 1 if that unit fails or is censored (C̃ij = 0) at tij. The

probability of survival up until period j is now S(t0) = 1 − F(t0) where F (t0) =
∫ t0

0 f (t0). In this
case, both subpopulations contribute to the log-likelihood of the split-population survival model with
nonspatial i.i.d frailties as:

ln L = ∑N
i=1

{
C̃ij ln

[(
1 − αij

) f (tij |Xij β,Wi)
S(t0ij |Xij β,Wi)

]
+

(
1 − C̃ij

)
ln

[
αi + (1 − αi)

S(tij |Xij β,Wi)
S(t0ij |Xij β,Wi)

]}
, (4)

where the “split-stage” equation is αij =
exp(Zijγ +Vi)

1+exp(Zijγ +Vi)
. Vi and Wi are the nonspatial frailties. The

model’s survival stage estimates the probability of survival prior to the event of interest conditional
upon being at-risk for that event given covariates Xij and the baseline hazard function. If Vi = Wi = 0,
then (4) defines the log-likelihood of the "Pooled" SP survival model (without unit-specific frailties)
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with time-varying covariates (Ibrahim et al., 2001; Lu, 2010). However, if unobserved unit-specific
heterogeneity influences the probability of immunity or survival time, it can be accounted for with the
split and survival-stage frailty terms (Vi and Wi). In a Bayesian split-population survival framework,
these frailties are incorporated into each stage of the model using the exchangeable normal prior,

Wi ∼ N (0, 1/τ) and Vi ∼ N (0, 1/τ) , (5)

with τ as the precision parameter (Banerjee et al., 2003; Banerjee and Carlin, 2004). The prior in (5) is
induced by treating each specified unit as exchangeable rather than assigning weights corresponding
to each unit’s spatial relationship to one another (Bernardinelli and Montomoli, 1992; Darmofal, 2009).
This Exchangeable split-population survival model is appropriate if each unit’s frailty is presumed to
be independent of other individual random effects. Geographically, for instance, this means that the
influence of each unit-specific frailty on that unit’s probability of being immune or its risk propensity
is completely unrelated to the neighboring units’ frailties unobserved effects.

Suppose, however, that independence among the frailties cannot be assumed—that is, that the
frailties exhibit spatial autocorrelation or clustering that influences each units’ propensity for being
immune to an event of interest and their survival time if they are not immune. In a Bayesian split-
population survival model, the assumption of spatial independence is relaxed by assigning spatial
weights to the unit-specific frailties in the model’s split and survival stage and then statistically
incorporating these spatially weighted frailties via the conditionally autoregressive (CAR) prior
approach (Besag et al., 1991; Banerjee et al., 2003). The CAR prior accounts for spatially autocorrelated
frailties by allowing the frailties to be spatially autocorrelated across geographically adjacent units.

To understand how the CAR prior is applied, first note that spatial data often take the form of a
lattice in which a continuous spatial surface is divided into a grid of units such as counties, districts, or
countries. The spatially weighted frailties are constructed by defining the relevant spatial relationship
among adjacent units (this could, for example, be geographic distance or contiguity) in an adjacency
matrix A with elements aii′ . Each element aii′ in A is given a weight of 1 if units i and i′ are “neighbors,”
and 0 if they are not. Once these spatial weights are defined via the matrix A, this information is then
incorporated into the CAR prior, which permits us to model spatially dependent frailties between
these contiguous units. To employ the CAR prior approach in a Bayesian SP survival framework,
the frailties Vi are collected into the vector V = {V1, ...., VN}, and Wi into W = {W1,....,WN}. Separate
CAR priors are then employed for V and W, which implies the following model structure:

V|λ ∼ CAR (λ) and W|λ ∼ CAR (λ) . (6)

λ is the precision parameter (Besag et al., 1991; Banerjee and Carlin, 2004). The CAR(λ) prior for V
and W has a joint distribution in each case that has been formally characterized by scholars (Banerjee
et al., 2003, 126).

The resulting conditional distributions of the spatial frailties for V and W are

Vi|Vi′ ̸=i ∼ N
(
Vi, 1/ (λmi)

)
, Wi|Wi′ ̸=i ∼ N

(
Wi, 1/ (λmi)

)
. (7)

Wi = m−1
i ∑i′ adj i Wi′ and Vi = m−1

i ∑i′ adj i Vi′ . Wi and Vi are the averages of the neighboring Wi′ ̸=i
and Vi′ ̸=i, respectively, where i′ adj i denotes that i′ is adjacent to i given A, and mi is the number
of these adjacencies (Bernardinelli and Montomoli, 1992, 989; Thomas et al., 2004; Banerjee et al.,
2003). Incorporating the spatial information in A in this way accounts for the possibility that spatially
proximate units share common unmodeled factors that influence their probability of being immune
or their survival time before experiencing the event of interest. Using this CAR prior approach to
address spatial autocorrelation, the Spatial split-population survival model’s log-likelihood is defined

by substituting V = {Vi} and W = {Wi} in equation 4 (where αij =
exp(Zijγ ,V)

1+exp(Zijγ ,V)
is the split-stage

equation).

The log-likelihood of the Pooled (non-frailty), Exchangeable (nonspatial frailty), and Spatial split-
population (SP) survival models are compatible with any survival distribution. The BayesSPsurv
package, however, supports MCMC estimation of these models for the Weibull and log-logistic
distributions. Our empirical application below focuses on the Weibull survival distribution. The
density, survival, and hazard rate in the Weibull case are

f
(

tij|ρ, θ
)
= ρθ

(
θtij

)ρ−1
exp

(
−

(
θtij

)ρ)
S
(

tij|ρ, θ
)
= exp

(
−

(
θtij

)ρ)
and h

(
tij|ρ, θ

)
= ρθ

(
θtij

)ρ−1
,

(8)
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where θ = exp
(

Xijβ, W
)

for the Spatial, θ = exp
(

Xijβ + Wi

)
for the Exchangeable, and θ =

exp
(

Xijβ
)

for the Pooled split-population Weibull model. The density, survival function and the
hazard rate for the log-logistic case is defined in Bolte et al. (2021a).

Bayesian inference

Following standard practice for Bayesian inference (Carlin and Louis, 2000), we assign the multivariate
normal (MVN) prior to β = {β1, ..., βp1} and γ = {γ1, ..., γp2}, and the Gamma prior for ρ with shape
and scale parameters aρ and bρ for each of the three Bayesian split-population survival models in the
BayesSPsurv package.

ρ ∼ Gamma
(
aρ, bρ

)
, β ∼ MVNp1

(
µβ, Σβ

)
, γ ∼ MVNp2 (µγ, Σγ)

Σβ ∼ IW
(

Sβ, νβ

)
; Σγ ∼ IW (Sγ, νγ) ,

(9)

where aρ, bρ, Sβ, νβ, Sγ, νγ are the hyperparameters. We use Bayesian hierarchical modeling to
estimate Σβ and Σγ employing the Inverse-Wishart (IW) distribution when using the MVN (a weakly
informative) prior. For Bayesian MCMC estimation of the Spatial SP survival (Weibull) model, we
assign the hyperprior p(λ) to λ given the CAR prior approach. Specifically, we assign the Gamma
hyperprior λ ∼ Gamma(aλ, bλ) for λ (Banerjee and Carlin, 2004; Darmofal, 2009).1 To estimate the
Exchangeable SP Weibull model, we assign the (multivariate) normal prior for the model’s split
and survival-stage frailties (Vi, Wi), and the priors defined in (9) for β, γ,and ρ. To identify the
Exchangeable and Spatial SP models’ intercepts, we impose the constraint that the frailties sum to
zero (∑i Vi = 0 and ∑i Wi = 0).

The joint posterior distribution of the Bayesian Spatial SP survival model with time-varying
covariates—our main model of interest—is

π
(

β, γ, ρ, W, V, λ, Σβ, Σγ|C, X, Z, t, t0, γ
)

∝ L (β, γ, ρ, W, V|C, X, Z, t, t0)

π (W|λ)π (V|λ)π
(

β|µβ, Σβ

)
π (γ|µγ, Σγ)π (ρ)π (λ)π

(
Σβ

)
π (Σγ) ,

(10)

where L (β, γ, ρ, W, V|C, X, Z, t, t0) is defined in (4) with V = {V1, ...., VN} and W = {W1,....,WN}. The
density, survival function, and hazard rate for this likelihood is given by the Weibull (or log-logistic)
distribution in our R-package. π (W|λ) and π (V|λ) are defined via their respective conditional

distributions in (7). π
(

β|µβ, Σβ

)
, π (γ|µγ, Σγ), and π (ρ) are from (9), π

(
Σβ

)
and π (Σγ) are from

(10). π (λ) is the Gamma hyperprior for the Spatial SP survival model. From (10), we can define the
joint posterior distribution of the time-varying (i) Exchangeable SP survival model by incorporating
the frailties Vi and Wi (instead of W, V, and their CAR priors) given by (5) and (ii) Pooled SP survival
model by excluding frailty terms.

The three split-population survival models in BayesSPsurv are each estimated with an MCMC
algorithm for Bayesian inference. Because closed-forms for the posterior distributions of β, γ and ρ are
not available, these parameters in each model are updated in the MCMC algorithm via slice-sampling
(with stepout and shrinkage) from their respective full conditional distribution. The closed form of

the full conditional distributions (e.g., π
(

Σβ|β
)

and π (Σγ|γ)) and details about slice-sampling is

provided in Bolte et al. (2021a).2 Further, because the closed-forms for the posterior distributions
of λ, W, and V are not available for the Spatial split-population survival model, our MCMC algo-
rithm incorporates Gibbs Sampling for estimating λ. Our MCMC update scheme then employs
the Metropolis-Hastings algorithm for estimating V given λ and then uses the Metropolis-Hastings
algorithm to estimate W given λ.3 In the Exchangeable SP survival model, the nonspatial i.i.d frailties
Vi and Wi are updated via Metropolis-Hastings, while the Pooled SP model excludes frailty terms. The
MCMC update scheme to fit each model in BayesSPsurv are described in detail in Bolte et al. (2021a).

1We specify the vague prior (aλ, bλ) = (0.001, 1/0.001) = (0.001, 1000) as done for ρ.
2For more information on slice-sampling, see Neal (2003).
3The closed-form of the full conditional distribution of π(λ|W, V) used for the MCMC update scheme is

formally characterized in Bolte et al. (2021a).
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4 Using the BayesSPsurv R package

Each of the three Bayesian SP survival models in BayesSPsurv incorporates a cure rate fraction and
assumes that the time-to-event baseline hazard follows a Weibull or log-logistic distribution (which
the user specifies). Users can also incorporate time-varying covariates in either stage. BayesSPsurv
contains compiled C++ code using the package Rcpp (Eddelbuettel et al., 2020) to maximize com-
putational efficiency when estimating the included Bayesian SP survival models. In addition to the
pre-estimation spatial autocorrelation (Join Count and Global Moran’s I) tests described below, the
BayesSPsurv package also permits users to calculate the deviance information criterion (DIC) and
log-likelihood statistics from the Spatial, Exchangeable, and Pooled SP survival models’ MCMC output.
The DIC is a measure of model fit that also penalizes the effective number of parameters. Like the
Akaike Information Criterion, models with smaller values are preferable to those with larger values.
Users can also conduct MCMC diagnostics with various extant packages designed to handle mcmc
objects such as coda (Plummer et al., 2020).

Function Description

spatialSPsurv() Fits Bayesian Spatial SP survival model
exchangeSPsurv() Fits Bayesian Exchangeable SP survival model
pooledSPsurv() Fits Bayesian Pooled SP survival model
plot_JoinCount() Implement and plot Join Count statistics
plot_Moran.I() Implement and plot global Moran’s I statistics
spatial_SA() Generate spatial weights (adjacency) matrix
SPstats() Calculate DIC and log-likelihood from fitted models

Table 1: Functions in the BayesSPsurv package.

Loading the package, dataset, and assessing spatial autocorrelation

To demonstrate the utility and various functions in BayesSPsurv, we use replication data from Walter’s
(2015) global study on post-civil war peace duration (denoted in the package as Walter_2015_JCR).
Walter’s (2015) panel data consist of 1,237 observations from 46 countries observed between 1962 and
2009. As discussed in Bolte et al. (2021a), her data are well-suited for SP survival analysis because
they include two underlying populations: an “at-risk” fraction of countries in which civil wars can
potentially recur, and an “immune” fraction of countries in which civil conflict recurrence is structurally
improbable. The Walter_2015_JCR data are a subset of Walter’s (2015) most important variables,
including lgdpl for log per capita income, unpko for the presence of UN peacekeeping operations, the
binary variable victory, coded as 1 when one side in the civil war wins the conflict militarily, and
the dummy variable comprehensive, coded as 1 when the combatants sign a comprehensive peace
agreement. The dataset also includes the binary indicator renewed_war, coded as 1 for the year in
which a civil war recurs and 0 otherwise. This variable will serve as our failure event.

First, however, we load the BayesSPsurv package along with the dataset and then use the
add_duration() function from the spduration package to add several variables that allow us to
capture the survival characteristics of the data (Beger et al., 2017). unitID indicates the unique unit
identifier (in this case, a unique id for each civil conflict), and timeID specifies the temporal variable.

library(BayesSPsurv)
data(Walter_2015_JCR)
walter <- spduration::add_duration(Walter_2015_JCR,"renewed_war",

unitID = "id", tID = "year",
freq = "year", ongoing = FALSE)

str(walter)
'data.frame': 1237 obs. of 21 variables:
$ year : num 2002 2003 2004 2005 2003 ...
$ lastyear : num 0 0 0 1 0 0 0 0 0 0 ...
$ renewed_war : num 0 0 0 1 0 0 0 0 0 0 ...
$ fhcompor1 : num -1.17 -1.17 -1.08 -1 -1.08 ...
$ lgdpl : num 5.75 6.29 6.36 6.4 8 ...
...
$ failure : num 0 0 0 1 0 0 0 0 0 0 ...
$ ongoing : num 0 0 0 0 0 0 0 0 0 0 ...
$ end.spell : num 0 0 0 1 0 0 0 0 0 0 ...

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=coda
https://CRAN.R-project.org/package=BayesSPsurv
https://CRAN.R-project.org/package=spduration


CONTRIBUTED RESEARCH ARTICLE 601

$ cured : num 0 0 0 0 1 1 1 1 1 1 ...
$ atrisk : num 1 1 1 1 0 0 0 0 0 0 ...
$ censor : num 0 0 0 0 0 0 0 0 0 0 ...
$ duration : num 1 2 3 4 1 2 3 4 5 6 ...
$ t.0 : num 0 1 2 3 0 1 2 3 4 5 ...

These new variables include duration, a cumulative count of the years of post-war peace survived, and
the dummy variable atrisk, coded as 1 for all observations that eventually experience war recurrence
in the sample period. Altogether the data include 77 post-civil war peace spells and 24 instances of
civil war recurrence.

If the preferred frailty unit is at the country-level, users can take advantage of the spatial_SA()
function in the BayesSPsurv package to generate their binary spatial weights matrix. In most cases,
analysts define spatial clustering in terms of geographic proximity. This often requires the researcher
to define some maximum distance threshold below which two units are considered “neighbors.”
spatial_SA() allows users to specify their own distance threshold. For this example, we use the
spatial_SA() function to generate an adjacency matrix of countries in the data whereby “proximity”
(aii′ = 1) is defined as having capitals that are within 800 km of each other (and aii′ = 0 otherwise).
We simply specify the unique identifier for each country (ccode) and our distance threshold of 800 km.
The spatial_SA() function will produce a 1 × N vector with identifying information (e.g., country ID)
for each observation that matches the rows and columns of the matrix. The result is a list object called
walter that includes both the original data frame and the associated adjacency matrix.

walter <- BayesSPsurv::spatial_SA(data = walter, var_ccode = "ccode", threshold = 800L)
walter[[2]][1:6,1:6]

42 90 92 93 135 155
42 0 0 0 0 0 0
90 0 0 1 1 0 0
92 0 1 0 1 0 0
93 0 1 1 0 0 0
135 0 0 0 0 0 0
155 0 0 0 0 0 0

Note that spatial adjacency between units does not need to be defined geographically; users can
conceptualize “space” as any form of the dyadic relationship between units, but typically spatial
clustering is substantively captured with some measure of geographic distance. Users can also create
their own adjacency matrix from scratch to incorporate into the Bayesian estimation routine if their
units of analysis are something other than countries.

Having generated a matrix that records the spatial relationship of all pairs of units, we may now be
interested in assessing the presence and degree of spatial autocorrelation in the data with respect to our
outcomes of interest. The BayesSPsurv package provides two functions to conduct these preliminary
tests on country-level data. The first is the plot_JoinCount() function, which generates an adjacency
matrix with a user-defined distance threshold (as above), implements the join count test for each
cross-section in the data, and then automatically plots the test statistics with user-specified confidence
intervals across each observed year. The join count test is a widely used correlational statistic for
evaluating whether the expected count of categorically distinct adjacent units is greater than what we
would expect by chance alone (Cliff and Ord, 1981). More formally, if we assume two categories, Black
and White, then the join count test statistic is

Z (BW) =
BW − E (BW)√

σ2
BW

, (11)

where BW and E(BW) are the observed and expected counts of adjacent Black and White units,
respectively, and σ2

BW = E
(

BW2)− E (BW)2. We use this test as a preliminary exercise to determine
whether countries that never experience conflict recurrence in the sample exhibit spatial autocorrelation.
Note that plot_JoinCount also has an argument specifying the minimum number of units that must
be in a cross-section for the test statistic to be calculated. In our case, there were fewer than 12 countries
in every year prior to 1975 in the data, and none were geographically proximate. By specifying n=12,
we are simply dropping years prior to 1975. The following code produces the plot in Figure 1a.

plot_JoinCount(data = walter[[1]], var_cured = "cured", var_id = "ccode",
var_time = "year", n = 12)

Negative values indicate clustering (positive spatial autocorrelation), and positive values indicate spa-
tial dispersion. Figure 1a clearly depicts spatially correlated patterns of potential “peace consolidation,”
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Figure 1: Pre-estimation Spatial Autocorrelation Tests

though the direction of the autocorrelation varies over time.

The second function, plot_Moran.I(), implements the Global Moran’s I test, which assesses the
direction and degree of spatial autocorrelation in continuous or ordinal data (Moran, 1950; Paradis et al.,
2020). We use this test to examine whether the duration of post-civil war peace among geographically
proximate countries exhibits spatial autocorrelation (or dispersion). Like the previous function,
plot_Moran.I() plots the Moran’s I values based on user-defined adjacencies and, in this case, 90%
confidence intervals for each year.

plot_Moran.I(data = walter[[1]], var_duration = "duration", var_id = "ccode",
var_time = "year", n = 12)

Figure 1b reveals that the spatial relationship of post-war peace survival oscillates between positive
autocorrelation (in the 1970s, early 1990s, and late 2000s) and spatial dispersion (in much of the 1980s
and late 1990s). Taken together, the Join Count and Moran’s I tests suggest that unobserved heteroge-
neous risk factors that transcend the borders of a single state may lead to spatial autocorrelation in
both the consolidation and duration of post-war peace in Walter’s (2015) data. This suggests that a
Spatial SP survival model is an appropriate method of analysis, particularly if proximate countries
share common unobservable risk factors that affect their odds of being immune to war recurrence or
the time it takes for renewed war to occur.

Applying the Bayesian Spatial SP survival model

The spatialSPsurv() function fits the Bayesian Spatial SP survival model, which includes spatially
autocorrelated frailties in the model’s split and survival stage and can incorporate time-varying
covariates. We illustrate the features of the spatialSPsurv() function by fitting the Bayesian Spatial
Weibull cure model on Walter’s (2015) data on post-war peace.4 The log-logistic results are reported in
Bolte et al. (2021a). We include the lgdpl variable in the estimated model’s split-stage equation, which
estimates the probability of units being in the “consolidated” post-war peace group (the “immune”
fraction), though it is important to note that atrisk is used here as the dependent variable. We estimate
the probability of post-war survival among the at-risk fraction as a function of UN peacekeeping
(unpko), outright military victory in the previous war (victory), the resolution of the previous war via
peace agreement (comprehensive), and, again, GDP/capita (lgdpl). The spatial relationship of each
country is incorporated into the model via the spatial weights matrix generated from the spatial_SA()
function described earlier.

The Spatial SP survival model is fit via Bayesian methods for inference. The MVN prior is used for
the model’s split-stage (γ) and survival-stage (β) parameters (with the following hyperparameters
sβ = Ip1, vβ = p1, sγ = Ip2, vγ = p2). The Gamma prior is used for the hazard’s shape parameter
ρ (with hyperparameters aρ = 1, bρ = 1), and separate CAR priors—with the Gamma hyperprior
assigned to λ for CAR (λ)5 —incorporate the spatially autocorrelated frailties in the model’s split-stage

4The results for all models were calculated in R version 4.0.3. on a PC with a 6-core i7 processor.
5With vague prior (aλ, bλ) = (0.001, 1/0.001) = (0.001, 1000) as done for ρ
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(V) and survival stage (W). Estimation proceeds via the MCMC algorithm described in the previous
section. To this end, we specify the MCMC sampler as follows: the argument N = 15,000 sets the
number of MCMC iterations to 15,000, burn = 5,000 discards the first 5,000 states of the Markov chain,
thin = 15 specifies the number of steps that are employed to prevent autocorrelation, and m = 10
limits the steps in the slice sampling to 10. The argument w = c(1,1,1) specifies the default values of
the size of the slice sampling for γ, β, and ρ.

For simplicity, we retain the default 0 as the initial value for all parameters with the ini.beta,
ini.gamma, ini.W, and ini.V arguments. We incorporate separate proposal variances, namely prop.varV
= 1e-05 and prop.varW = 1e-05, for the split and survival stage frailties (V, W) and then assign
separate Metropolis-Hastings proposal steps for estimating these parameters to optimize the accep-
tance rates. To specify the covariates in the model, duration ~ precedes the survival-stage covariates,
while immune ~ precedes the split-stage variables. Y0 indicates the time elapsed since inception until
time t - 1, while LY is a dummy that captures the last observation year due to censoring or failure.
A = walter[[2]] calls the spatial weights matrix from our list object. S= 'sp_id' (generated by
spatial_SA()) gives the unit identifier in the spatial weights matrix that matches the units in the data
frame. The argument form is used to specify the parametric survival distribution (which can be either
“Weibull” or “loglog”).

Importantly, the model functions in the BayesSPsurv package generate single chains for each
parameter, but we provide a routine for estimating multiple chains in parallel on the GitHub repository
for the package (https://github.com/Nicolas-Schmidt/BayesSPsurv). We first discuss the results
and diagnostics for the single-chain results using the above MCMC specification and then illustrate
the multiple-chain results and diagnostics for the Spatial SP survival model.

set.seed(123456)
model <- spatialSPsurv(duration = duration ~ victory + comprehensive + lgdpl + unpko ,

immune = atrisk ~ lgdpl,
Y0 = 't.0',
LY = 'lastyear',
S = 'sp_id' ,
data = walter[[1]],
N = 15000,
burn = 5000,
thin = 15,
w = c(1,1,1),
m = 10,
ini.beta = 0,
ini.gamma = 0,
ini.W = 0,
ini.V= 0,
form = "Weibull",
prop.varV = 1e-05,
prop.varW = 1e-05,
A = walter[[2]])

The function automatically provides a progress bar for users to track the percent of the computation
that has been completed. The elapsed run time for the Spatial SP Weibull specification being examined
here was just under 23 minutes (calculated with system.time()). Once completed, the generic print()
function displays the results6:

print(model)

Call:
spatialSPsurv(duration = duration ~ victory + comprehensive +

lgdpl + unpko, immune = atrisk ~ lgdpl, Y0 = "t.0",
LY = "lastyear", S = "sp_id", A = walter[[2]],
data = walter[[1]], N = 15000, burn = 5000, thin = 15, w = c(1,

1, 1), m = 10, ini.beta = 0, ini.gamma = 0, ini.W = 0,
ini.V = 0, form = "Weibull", prop.varV = 1e-05, prop.varW = 1e-05)

Iterations = 1:666
Thinning interval = 1
Number of chains = 1

695% Bayesian Credible Intervals are reported in Bolte et al. (2021a).
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Sample size per chain = 666

Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Duration equation:
Mean SD Naive SE Time-series SE

(Intercept) 0.3434823 1.0681878 0.041391437 0.078812901
victory 0.1028612 0.5321456 0.020620224 0.020620224
comprehensive 0.2036460 0.6178274 0.023940326 0.023940326
lgdpl 0.4831914 0.1424928 0.005521485 0.009230762
unpko 0.3057078 0.7695278 0.029818596 0.029818596

Immune equation:
Mean SD Naive SE Time-series SE

(Intercept) -0.4306327 4.545655 0.1761405 0.3648687
lgdpl -2.4722920 3.113144 0.1206319 0.1646276

The posterior mean estimates suggest that peace agreements, military victory, and peacekeeping
units may increase the survival of post-civil war peace, though none of these parameters are highly
reliable given their 95% BCIs, as reported in (Bolte et al., 2021a). However, lgdpl appears to reliably
increase the survival of peace among at-risk cases while also reliably decreasing the probability of
peace “consolidation” in the split-stage. Calling the SPstats() function calculates the Deviance
Information Criterion (DIC) and log-likelihood (LL) statistics from the estimated model, where
DIC = −2 × (L − P), L is the log-likelihood of the data given the posterior means of the covariate
parameters, and P is the effective number of parameters in the model.

SPstats(model)

$DIC
[1] -1726.128

$Loglik
[1] 5301.714

The spatialSPsurv() function produces an object of class "mcmc", which is compatible with
all standard summary and diagnostic methods for the single Markov chains in the coda package
(Plummer et al., 2020). For instance, we can test for convergence with both the Geweke (1992) test
using the geweke.diag() function and the Heidelberger and Welch (1983) stationarity test via the
heidel.diag() function in coda. We report the Heidelberger and Welch (1983) stationarity test results
in Bolte et al. (2021a) to save space. In this case, the Geweke tests indicate little evidence against
convergence for each split-stage and survival-stage covariate, because the test statistics are reasonably
close to zero.

geweke.diag(model$gammas)

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

(Intercept) lgdpl
-1.3755 0.4429

geweke.diag(model$betas)

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

(Intercept) victory comprehensive lgdpl unpko
-0.8248 -0.4271 1.8237 0.3601 -0.9471

geweke.diag(model$rho)

Fraction in 1st window = 0.1
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Fraction in 2nd window = 0.5

var1
0.3544

coda’s plot() function can then be used to display trace and posterior density plots for the single
Markov chains of the model’s split-stage γ, survival-stage β, and ρ parameters (which we do not
report here to save space). Users may also wish to validate MCMC convergence using multiple chains
with different initial values for each parameter rather than only examining single-chain diagnostics. A
routine for generating multiple chains in parallel using the doParallel (Wallig et al., 2020) and doRNG
(Gaujoux, 2020) packages is available on the BayesSPsurv GitHub repository, though single chains
with different starting values can also be run sequentially. The user can then collect them into a single
mcmc.list object and easily plot the trace and density plots of the multiple chains. Using the code on
GitHub, the Spatial SP survival model was re-run four times (to generate four chains) with 0, 1, 10,
and 50 as the initial starting values for each of the estimated parameters (β, γ, W, and V). The trace
and density plots for the multiple chains are reported below (we excluded the β intercept for aesthetic
reasons), and the total run time was approximately 28 minutes for all four chains to be generated
simultaneously.

par(mfrow=c(2,2))
plot(gammas, density = FALSE, auto.layout = FALSE, col =c (28,26,27,29))
plot(gammas, trace = FALSE, auto.layout = FALSE)

par(mfrow=c(2,4))
plot(betas[,2:5], density= FALSE, auto.layout = FALSE, col = c(28,26,27,29))
plot(betas[,2:5], trace= FALSE, auto.layout = FALSE)

Figure 2: Posterior Densities of Bayesian Spatial Split-stage Parameters (γ)

The trace plots for the Spatial SP Weibull model’s β and γ reveal decent mixing between the first
three chains, though the fourth chain appears to take longer to converge. This is unsurprising given its
extreme initial value. We can assess the convergence of the multiple chains using the Gelman-Rubin
diagnostic, which compares the within-chain variance to the between-chain variance (Gelman and
Rubin, 1992). If the difference in these variances is large, then the multiple chains likely have not
converged to a proper stationary distribution. We can easily calculate the potential scale reduction
factor (PSRF) with the gelman.diag() function in coda, which should be approximately 1 if all chains
have converged to a common distribution.
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Figure 3: Posterior Densities of Bayesian Spatial Survival-stage Parameters (β)

Potential scale reduction factors:

Point est. Upper C.I.
(Intercept) 1.19 1.38
victory 1.17 1.20
comprehensive 1.17 1.19
lgdpl 1.32 2.40
unpko 1.11 1.14

Multivariate psrf

1.05

Potential scale reduction factors:

Point est. Upper C.I.
(Intercept) 1.05 1.07
lgdpl 1.14 1.33

Multivariate psrf

1.05

The multivariate PSRF is less than 1.1 in both stages, but the point estimates for all parameters are still
insufficiently far from 1, suggesting that extending the chains would likely improve the accuracy of
the estimates.

One way to substantively interpret the spatial frailties is to display a map and determine whether
adjacent units share similar frailty values (e.g., Darmofal, 2009). The following code from the coun-
trycode (Arel-Bundock, 2020) and rworldmap (South, 2016) packages permits users to create choro-
pleth maps of the spatial frailty posterior means. Figures 4a-4b display the single-chain split-stage
(V) and survival-stage (W) frailties from our Spatial SP Weibull model (the code generates Figure 4a;
Figure 4b simply uses W in place of V.

library(rworldmap)
library(countrycode)
library(classInt)

spv <- matrix(apply(model$V, 2, mean), ncol = 1, nrow = ncol(model$V))
ISO3 <- countrycode(colnames(model$V) ,'gwn','iso3c')
spv <- data.frame(ccode = colnames(model$V), ISO3 = ISO3, spv = spv)
map <- joinCountryData2Map(spv, joinCode = "ISO3", nameJoinColumn = "ISO3")
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classInt <- classIntervals(map[["spv"]], n = 6, style = "quantile")
mapParams <- mapCountryData(map,

nameColumnToPlot = "spv",
addLegend = FALSE,
catMethod = classInt[["brks"]],
colourPalette = palette(RColorBrewer::brewer.pal(6,"RdBu")),
mapTitle = "")

do.call(addMapLegend, c(mapParams, legendLabels = "all", legendWidth = 0.5,
legendIntervals = "data", legendMar = 2))

(a) Split-stage (V) (b) Survival-stage (W)

Figure 4: Spatial Frailty Posterior Means

Note that in certain regions, there are distinct spatial bands in the (i) split-stage frailties, which range
from -0.633 to 0.381 with a corresponding standard deviation of 0.34 and (ii) survival-stage frailties
that range from -0.391 to 0.766 with a corresponding standard deviation of 0.32. These spatial bands
reveal geographic clustering in both consolidation and duration of post-war peace since similar frailty
values often occur near one another.

Applying the Bayesian Exchangeable and Pooled SP survival models

The BayesSPsurv package can also be used to estimate Bayesian Exchangeable and Pooled SP survival
models. The Exchangeable model incorporates frailties that are assumed to be statistically independent
in both stages, while the Pooled model excludes frailties altogether. We again use Walter’s (2015)
data on post-civil war peace to illustrate these models. Beginning with the Exchangeable Weibull SP
survival model, we again assign the MVN prior to the model’s γ and β parameters, the Gamma prior to
ρ, and the same default settings for the hyperparameters (sβ = Ip1, vβ = p1, sγ = Ip2, vγ = p2, aρ = 1,
bρ = 1). We also incorporate separate proposal variance variables for the nonspatial i.i.d frailties
(Vi,Wi) and assign separate Metropolis-Hastings steps to estimate these parameters. Further, we use
almost the same MCMC sampler specification as before. However, rather than incorporating spatial
information via an adjacency matrix, we let id_WV=country to define the country-level nonspatial
frailties.

set.seed(123456)
country <- countrycode(unique(walter[[1]]$ccode),'gwn','iso3c')
model1 <- exchangeSPsurv(duration = duration ~ victory + comprehensive + lgdpl + unpko,

immune = atrisk ~ lgdpl,
Y0 = 't.0',
LY = 'lastyear',
S = 'sp_id' ,
data = walter[[1]],
N = 15000,
burn = 5000,
thin = 15,
w = c(1,1,1),
m = 10,
ini.beta = 0,
ini.gamma = 0,
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ini.W = 0,
ini.V= 0,
form = "Weibull",
prop.varV = 1e-05,
prop.varW = 1e-05,
id_WV=country)

Again, users can assess either single or multiple (parallel) Markov chains with different starting
parameter values when fitting the Exchangeable SP survival model. We report the single-chain results
here for simplicity. The run time for the above specification was approximately 16 minutes and 30
seconds. The single-chain results and model fit statistics are obtained with the print() and SPstats()
functions.

print(model1)

Call:
exchangeSPsurv(duration = duration ~ victory + comprehensive +

lgdpl + unpko, immune = atrisk ~ lgdpl, Y0 = "t.0",
LY = "lastyear", S = "sp_id", data = walter[[1]],
N = 15000, burn = 5000, thin = 15, w = c(1, 1, 1), m = 10,
ini.beta = 0, ini.gamma = 0, ini.W = 0, ini.V = 0, form = "Weibull",
prop.varV = 1e-05, prop.varW = 1e-05, id_WV = country)

Iterations = 1:666
Thinning interval = 1
Number of chains = 1
Sample size per chain = 666

Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Duration equation:
Mean SD Naive SE Time-series SE

(Intercept) 0.31054460 1.0938158 0.042384501 0.08335381
victory 0.14520456 0.5328378 0.020647044 0.02064704
comprehensive 0.09721372 0.6374526 0.024700786 0.02470079
lgdpl 0.48473536 0.1455731 0.005640844 0.01061988
unpko 0.44731384 0.7421925 0.028759376 0.02875938

Immune equation:
Mean SD Naive SE Time-series SE

(Intercept) -0.8993176 5.924550 0.2295716 0.4969172
lgdpl -3.7286951 5.846367 0.2265421 0.5271203

SPstats(model1)
$DIC
[1] 3549.075

$Loglik
[1] 7506.608

Based on these results, lgdpl is still a highly reliable predictor of longer peace duration among
conflicts at risk of recurrence, while the other survival stage covariates remain positive but statistically
unreliable. In contrast to the spatial frailty model, however, the effect of lgdpl on the probability of
peace consolidation is now statistically unreliable. Users interested in displaying and interpreting the
exchangeable frailties can do so in a variety of ways, but if these results are being compared to those
of a spatial frailty model, we recommend mapping the exchangeable frailty values and comparing
the clustering (or lack thereof) of the i.i.d. frailty terms to those produced from the spatial model
(Darmofal, 2009).

Finally, the pooledSPsurv() function fits the Pooled Bayesian SP survival model. For this applica-
tion, we again assign the MVN prior to the model’s γ and β parameters, the Gamma prior to ρ, and
the same default settings for the hyperparameters described earlier.
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set.seed(123456)
model2 <- pooledSPsurv(duration = duration ~ victory + comprehensive + lgdpl + unpko,

immune = atrisk ~ lgdpl,
Y0 = 't.0',
LY = 'lastyear',
data = walter[[1]],
N = 15000,
burn = 5000,
thin = 15,
w = c(1,1,1),
m = 10,
ini.beta = 0,
ini.gamma = 0,
form = "Weibull")

Note that the MCMC sampler is almost identical to that of the previous two models, but we now
exclude the separate Metropolis-Hastings proposal step for the frailities in the MCMC algorithm as
well as the initial values for the frailty estimates since this is a non-frailty model. The run time for the
Pooled model was approximately 10 minutes. The single-chain output is again easily displayed.

print(model2)

Call:
pooledSPsurv(duration = duration ~ victory + comprehensive +

lgdpl + unpko, immune = atrisk ~ lgdpl, Y0 = "t.0",
LY = "lastyear", data = walter[[1]], N = 15000, burn = 5000,
thin = 15, w = c(1, 1, 1), m = 10, ini.beta = 0, ini.gamma = 0,
form = "Weibull")

Iterations = 1:666
Thinning interval = 1
Number of chains = 1
Sample size per chain = 666

Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Duration equation:
Mean SD Naive SE Time-series SE

(Intercept) 0.3014335 1.0572594 0.040967971 0.07197438
victory 0.1060453 0.5485730 0.021256770 0.02125677
comprehensive 0.1900127 0.6054421 0.023460406 0.02481878
lgdpl 0.4647260 0.1552465 0.006015679 0.01166616
unpko 0.2692275 0.7740804 0.029995006 0.02999501

Immune equation:
Mean SD Naive SE Time-series SE

(Intercept) -1.213902 9.617551 0.3726725 1.3195278
lgdpl -2.896038 4.939374 0.1913968 0.5267751

SPstats(model2)

$DIC
[1] 1804.527

$Loglik
[1] 6229.248

For both the Exchangeable and Pooled SP survival models, users can again employ the code
and routines available in our GitHub repository to view the trace plots from the single or multiple
Markov chains associated with the posterior densities for the γ, β, and ρ parameters and conduct
any relevant convergence diagnostics. The plots and convergence test statistics for the models
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presented here are reported in Bolte et al. (2021a) to save space. Additional information is available at
https://github.com/Nicolas-Schmidt/BayesSPsurv.

5 Conclusion

Survival data often include two populations with different underlying risk propensities: the immune
fraction of right-censored units that will never experience the event of interest and the at-risk fraction
of units that have or will. Numerous R-packages such as smcure, nltm, and spduration have been
developed to fit parametric or semi-parametric cure models for nonspatial survival data, but none of
these packages allow the user to account for spatial autocorrelation in both stages. A separate set of
packages allows the user to include spatially weighted frailties in conventional survival models (Taylor
and Rowlingson, 2017; Zhou et al., 2020), but spatial autocorrelation may also influence the probability
of immunity from an event of interest. The BayesSPsurv package addresses this lacuna by offering a
suite of functions to fit Bayesian SP survival models. Specifically, users can estimate Bayesian Pooled,
Exchangeable, and Spatial frailty SP survival models with time-varying covariates, specify their own
spatial weights matrices, and easily examine diagnostic statistics. The applied potential of the Spatial
SP survival model, in particular, is considerable, as researchers studying anything from the survival of
cancer patients to the survival of political regimes may have a methodological need to model spatial
autocorrelation in the immune fraction.

Future work can build upon the spatial and nonspatial cure models presented here to develop
estimation routines for survival data with multiple stages, competing risks, or recurrent events.
Moreover, although BayesSPsurv is the first to allow spatially autocorrelated frailties in both stages,
future work can extend the frailty models in our package by employing a similar approach as Yin
(2005) to incorporate shared frailties with factor loadings to account for any correlation between the
frailty terms (W and V) in either stage. Subsequent iterations of the package will include alternative
baseline hazards based on penalized splines or nonparametric Gaussian processes as well as the option
to use a semiparametric Cox model with exchangeable or spatial frailties. Implementing these future
developments with an external MCMC sampling dependency built on C++ subroutines like STAN
would be useful, given the Hamiltonian Monte Carlo algorithm’s efficiency in sampling from high
dimensional posterior distributions. We also plan to extend BayesSPsurv to accommodate left and
interval censoring and delayed entry.
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stratamatch: Prognostic Score Stratification
Using a Pilot Design
by Rachael C. Aikens, Joseph Rigdon, Justin Lee, Michael Baiocchi, Andrew B. Goldstone, Peter Chiu,
Y. Joseph Woo, and Jonathan H. Chen

Abstract Optimal propensity score matching has emerged as one of the most ubiquitous approaches
for causal inference studies on observational data. However, outstanding critiques of the statistical
properties of propensity score matching have cast doubt on the statistical efficiency of this technique,
and the poor scalability of optimal matching to large data sets makes this approach inconvenient
if not infeasible for sample sizes that are increasingly commonplace in modern observational data.
The stratamatch package provides implementation support and diagnostics for ‘stratified matching
designs,’ an approach that addresses both of these issues with optimal propensity score matching for
large-sample observational studies. First, stratifying the data enables more computationally efficient
matching of large data sets. Second, stratamatch implements a ‘pilot design’ approach in order to
stratify by a prognostic score, which may increase the precision of the effect estimate and increase
power in sensitivity analyses of unmeasured confounding.

1 Introduction

To make causal inference from observational data, researchers must address concerns that effect
estimates may be biased due to confounding factors – baseline characteristics of the individuals in the
study that influence both their selection of treatment and their probable outcome. Matching methods
seek to account for this self-selection by grouping treated and control individuals with similar baseline
characteristics. One of the most common such methods, propensity score matching, pairs individuals
who appear to have had similar probabilities of receiving the treatment according to their baseline
characteristics (Rosenbaum and Rubin, 1983), with the goal of coercing the data set into a form that
resembles a fully-randomized controlled trial (King and Nielsen, 2019; Rosenbaum et al., 2010; Hernán
and Robins, 2016). However, propensity score matching can only address bias due to measured baseline
covariates, necessitating sensitivity analyses to interrogate the potential of bias due to unmeasured
confounding (Rosenbaum, 2005b; Rosenbaum et al., 2010).

In their provocative article “Why Propensity Should Not Be Used for Matching,” King and Nielson
argue that the fully randomized controlled trial – the design emulated by propensity score matching
– is less statistically efficient than the block-randomized controlled experiment (King and Nielsen,
2019). In block-randomized designs, individuals are stratified by prognostically important covariates
(e.g., for a clinical trial: sex, age group, smoking status) prior to randomization in order to reduce the
heterogeneity between the treatment and control groups. In the experimental context, these efforts to
reduce heterogeneity between compared groups help to increase the precision of the treatment effect
estimate. In observational settings, reducing this type of heterogeneity not only improves precision
but increases the robustness of the study’s conclusions to being explained away by the possibility of
unobserved confounding (Rosenbaum, 2005a; Aikens et al., 2020). The stratified matching design –
in which observations are stratified prior to matching within strata – attempts to emulate the block-
randomized controlled trial design in the observational context in order to secure these statistical
benefits over pure propensity score matching. In addition, since the computation required for optimal
matching can be quite time-consuming for studies of more than a few thousand observations, stratified
matching designs could greatly improve the scalability of optimal matching. While the worst-case
computational complexity of optimal matching is unfavorable, the process of matching a stratified
data set with a constant stratum size scales much more effectively with sample size (for a summary of
empirical run-times, see section 2.5.3).

While a variety of packages in R (R Core Team, 2019) exist for matching subjects in observational
studies, limited support exists for researchers seeking to implement a stratified matching design.
The popular MatchIt package (Ho et al., 2011) is a user-friendly option for common propensity
score matching designs and related approaches, optmatch (Hansen and Klopfer, 2006) and DOS2
(Rosenbaum, 2019) are a powerful combination for implementing a variety of more complicated
optimal matching schemes, and nearfar (Rigdon et al., 2018) implements a different form of matching
for the instrumental variable study. The primary goal of stratamatch is to make stratified matching
and prognostic score designs accessible to a wider variety of applied researchers and to suggest a suite
of diagnostic tools for the stratified observational study. In favorable settings, these designs could not
only increase the precision and robustness of inference but could facilitate the optimal matching of
sample sizes for which this technique was previously computationally impractical.
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This paper discusses the methodological contributions of stratamatch – in particular, the imple-
mentation of a novel pilot design approach suggested by Aikens et al. (2020) (section 2.2) – and
summarizes the package implementation (Section 2.3) with illustrative examples (Section 2.4). While
stratamatch may substantially improve the scalability of optimal matching for some large data sets,
the main objective of the package is not to implement a computationally complex task but to make
sophisticated study design tools and concepts accessible to a wide variety of researchers.

2 Study design

A prognostic score stratification pilot design

Stratifying a data set based on baseline variation prior to matching reduces the heterogeneity between
matched sets with respect to that baseline variation. But what baseline characteristics should be used?
One option is to select prognostically important covariates by hand, based on expert knowledge.
However, in practice, this “manual” stratification process often produces strata that vary wildly in size
and composition. Some strata may be so small or so imbalanced in their composition of treated and
control individuals that it is difficult to find high-quality matches, or many observations are thrown
away. Other strata may be so large that matching within them is still computationally infeasible.

The auto_stratify function in stratamatch divides subjects into strata using a prognostic score
(see Hansen (2008)), which summarizes the baseline variation most important to the outcome. In
addition to producing strata of more regular size and composition, balancing treatment and control
groups based on the prognostic score may confer several statistical benefits: increasing precision
(Aikens et al., 2020; Leacy and Stuart, 2014), providing some protection against mis-specification of
the propensity score (Leacy and Stuart, 2014; Antonelli et al., 2018), and decreasing the susceptibility
of an observed effect to being explained away by unobserved confounding (Rosenbaum and Rubin,
1983; Aikens et al., 2020). However, fitting the prognostic score on the same data set raises concerns of
overfitting and may lead to biased effect estimates (Hansen, 2008; Abadie et al., 2018). For this reason,
(Aikens et al., 2020) suggest using a pilot design for estimating the prognostic score.

Central to the pilot design concept is maintaining separation between the design and analysis
phases of a study (see table 1, or for more information Goodman et al. (2017) and Rubin (2008)).
Using an observational pilot design, the researchers partition their data set into an analysis set and
a held-aside pilot set . Outcome information in the pilot set can be observed (e.g. to fit a prognostic
score), and the information gained can be used to inform the study design. Subsequently, in order to
preserve the separation of the study design from the study analysis, the individuals from the pilot set
are omitted from the main analysis (i.e., they are not reused in the analysis set). The primary insight of
the pilot design is that reserving all of the observations in a study for the analysis phase (i.e., in the
analysis set) is not always better. Rather, clever use of data in the design phase (i.e., in the pilot set)
may facilitate the design of stronger studies.

In the stratamatch approach, a random subsample of controls is extracted as a pilot set to fit a
prognostic model, and that model is then used to estimate prognostic scores on the mix of control and
treated individuals in the analysis set. The observations in the analysis set can then be stratified based
on the quantiles of the estimated prognostic score and matched by propensity score or Mahalanobis
distance within strata (see section 2.3).

When to use this approach

Aikens et al. (2020) describe the scenarios in which a prognostic score matching pilot design is most
useful. Briefly, the stratamatch approach is best for large data sets (i.e., thousands to millions of
observations), especially when the number of control observations is plentiful. This technique may be
particularly useful when modeling a prognostic score with the measured covariates is straightforward,
and when propensity score alone is likely to exclude certain aspects of variation highly associated with
outcome but unassociated with treatment assignment. While computational gains vary, stratification
tends to noticeably accelerate matching for sample sizes of 5,000 or more (see section 2.5.3).

Conversely, this technique is not recommended for small data sets in which each control ob-
servation is precious, especially when prognostic scores are likely to be difficult to estimate from
the measured covariates (see Aikens et al. (2020) for a lengthy discussion). Ideally, there should
be ample control observations available to fit a usable prognostic model and still leave sufficient
controls remaining to select high-quality matches for the treated individuals in the data set. While
some stratamatch designs may be useful for the estimation of other causal estimands, the statistical
properties of prognostic pilot designs for estimands other than the average treatment effect among the
treated have not yet been characterized (Aikens et al., 2020).

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 616

Term Description

Design phase Phase of a study in which the researcher considers what kinds of
data will provide the strongest information to address the question
at hand (e.g., randomization, sampling, matching, inverse probabil-
ity weighting). The goal of the design phase is to obtain data that
will provide strong inference.

Analysis phase Phase of a study in which the data that comes from the design phase
are summarized into statistics. Inference and sensitivity analyses
are performed.

Pilot Design An observational study approach in which some data is spent in the
design phase to improve the study design/preprocessing.

Pilot Set A subset of data extracted to be used in the design phase.
Analysis set The set of data reserved for inference in the analysis phase.
Propensity score Probability of assignment to the treatment group based on measured

baseline characteristics.
Prognostic score Expectation of the outcome in the absence of treatment based on

measured baseline characteristics.
Prognostic model A model (e.g., logistic regression) used to estimate prognostic scores.
Stratum A subset of observations in the analysis set to be matched together.

Table 1: Summary of relevant methodological terms as they apply to stratamatch.

3 Software

The stratamatch function, auto_stratify, implements the prognostic score stratification in the pilot
design described above. The most basic procedure does the following:

1. Partition the data set into a pilot data set and an analysis data set

2. Fit a model for the prognostic score from the observations in the pilot set

3. Estimate prognostic scores for the analysis set using the prognostic model

4. Stratify the analysis set based on prognostic score quantiles.

A call to auto_stratify produces an auto_strata object, which contains the analysis set, the pilot
set, and other information about the strata and prognostic scores. The stratamatch package implements
a set of diagnostic plots and tables that can be used to assess the quality of a stratification. Example
code, output, and diagnostics are provided in section 2.4. If the strata are satisfactory, the treatment
and control individuals within each stratum can then be matched. By default, the strata_match
function performs 1 : 1 propensity score matching within each stratum. Other matching scheme
possibilities are discussed in section 2.5.3).

4 Illustrations

Simulated example

This section demonstrates the basic functionality of stratamatch in simulated example. The function
make_sample_data generates a simple simulated data set so that users can explore the design options
implemented by stratamatch. Below, we generate a sample of 10,000 observations and print the first
few rows as an illustration.

library("stratamatch")
library("dplyr")
dat <- make_sample_data(n = 10000)
head(dat)

X1 X2 B1 B2 C1 treat outcome
1 0.93332697 1.0728339 1 0 a 1 0
2 -0.52503178 0.3449057 1 1 b 0 1
3 1.81443979 1.0361942 1 1 a 0 0
4 0.08304562 0.3017060 1 1 a 0 1
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5 0.39571880 0.5397257 0 0 c 0 0
6 -2.19366962 1.4523274 1 1 b 0 1

The user should suppose that the rows of dat are individuals in an observational study, and the
objective of the study is to estimate the effect of a binary treatment assignment (treat) on a binary
outcome (outcome). Columns 1-5 represent three types of measured baseline covariates: continuous
(X1 and X2), binary (B1 and B2), and categorical (C1). For this example, we assume strongly ignorable
treatment assignment - that is, roughly, there are no unmeasured confounding factors (Rosenbaum
and Rubin, 1983). (For sensitivity analyses for this assumption, see, for example, Rosenbaum (2005b)).

Automatic stratification

The command below uses auto_stratify to (1) partition 10% of the controls in dat into the pilot set
(2) fit a prognostic score model for outcome based on X1 and X2, (3) estimate prognostic scores on the
analysis set, and (4) return to us the analysis set, divided into strata of approximately 500 individuals,
based on prognostic score quantiles. All of these steps are completed automatically with this function
call, and the results are returned to us as a.strat.

a.strat <- auto_stratify(dat, treat = "treat", prognosis = outcome ~ X1 + X2,
+ pilot_fraction = 0.1, size = 500)

Constructing a pilot set by subsampling 10% of controls.
Fitting prognostic model via logistic regression: outcome ~ X1 + X2

The result returned by auto_stratify is an auto_strata object. Running print on this object
supplies basic information about how the stratification process has been completed.

print(a.strat)

auto_strata object from package stratamatch.

Function call:
auto_stratify(data = dat, treat = "treat", prognosis = outcome ~

X1 + X2, size = 500, pilot_fraction = 0.1)

Analysis set dimensions: 9234 X 8

Pilot set dimensions: 766 X 7

Prognostic Score Formula:
outcome ~ X1 + X2

Here, auto_stratify has partitioned away a pilot set of 766 control individuals to fit our desired
prognostic model, leaving 9,234 individuals in the analysis set. Using the prognostic model, prognostic
scores were estimated on the individuals in the analysis set, and these individuals were divided into
strata with a target size of 500. In order to record these stratification assignments, an eighth column,
stratum, has been appended to the analysis set. The number strata and range of strata sizes can be
obtained from summary(a.strat).

The analysis set and pilot set are accessible via a.strat$analysis_set and a.strat$pilot_set,
respectively. The strata_table (accessed via a.strat$strata_table) reports the strata sizes and the
prognostic score quantile bins that define each stratum.

Diagnostics

A major focus of the stratamatch package is suggesting diagnostics for the quality of stratification in
observational studies. The issue_table reports the total size and composition of each stratum.

a.strat$issue_table

# A tibble: 19 x 6
Stratum Treat Control Total Control_Proportion Potential_Issues
<int> <int> <int> <int> <dbl> <chr>

1 1 167 319 486 0.656 none
2 2 149 337 486 0.693 none
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3 3 160 326 486 0.671 none
4 4 132 354 486 0.728 none
5 5 123 363 486 0.747 none
6 6 122 364 486 0.749 none
7 7 146 340 486 0.700 none
8 8 109 377 486 0.776 none
9 9 131 355 486 0.730 none
10 10 132 354 486 0.728 none
11 11 111 375 486 0.772 none
12 12 108 378 486 0.778 none
13 13 112 374 486 0.770 none
14 14 122 364 486 0.749 none
15 15 100 386 486 0.794 none
16 16 109 377 486 0.776 none
17 17 114 372 486 0.765 none
18 18 107 379 486 0.780 none
19 19 85 401 486 0.825 Small treat:control ratio

The ‘Potential_Issues’ column is meant to quickly flag strata that may be problematically large,
small, or imbalanced in the ratio of treated and control samples. The "small treat:control ratio"
flag for stratum 19 indicates that the proportion of treated individuals is 0.2 or lower1. This is a
relatively common issue, which is often easily addressed (see section 2.6).

The stratamatch package implements four diagnostic plotting options:

1. Size-Ratio Plot: (Figure 1) Displays each stratum in the analysis set based on its size and the
percentage of control observations in order to identify potentially problematic strata.

2. Propensity Score Histogram: (Figure 1) Displays the distribution of estimated propensity scores
across the treatment and control groups within a single stratum or the entire analysis set. These
plots are used for assessing propensity score overlap.

3. Assignment-Control Plot: (Figure 2) Displays each individual based on estimated propensity
score and estimated prognostic score, based on visualizations from Aikens et al. (2020). As
above, these plots can display a single stratum or the entire analysis set. Assignment-control
plots are useful for checking the overlap and correlation of prognostic and propensity scores.

4. Residual Plots: (Not shown) Show the diagnostic plots for the prognostic model used to
estimate the prognostic scores. It is essentially a wrapper for plot.lm (see the documentation
for plot.lm in the base R package, stats). Note that since the pilot set alone is used to fit the
prognostic model, only the pilot set is used for these diagnostic plots.

The code below makes each of the plot types listed above, including two assignment-control plots:
one for the entire analysis set and one for a single stratum. The results are shown in figures 1 and 2, with
interpretation in the figure captions. For propensity score histograms and assignment-control plots, the
‘propensity’ argument is required, specifying how the propensity scores should be estimated. Below,
the propensity score is fit on the analysis set based on a regression of treatment assignment on ‘X1’, ‘X2’,
‘B1’, and ‘B2’ (for other input options, run help(plot.auto_strata) or help(plot.manual_strata)).

plot(a.strat, type = "SR")
plot(a.strat, type = "hist", propensity = treat ~ X2 + X1 + B1 + B2, stratum = 1)
plot(a.strat, type = "AC", propensity = treat ~ X2 + X1 + B1 + B2)
plot(a.strat, type = "AC", propensity = treat ~ X2 + X1 + B1 + B2, stratum = 1)
plot(a.strat, type = "residual")

In this example, the command a.strat$prognostic_model would supply the prognostic model (an
lm or glm object) for further diagnostics (e.g., with summary(a.strat$prognostic_model)). Assessment
of the prognostic model can indicate whether a sufficient number of observations has been partitioned
into the pilot set (see section 2.6). However, one benefit of a stratified matching design is that even an
imperfect prognostic model may yield robust inference if the resulting strata are of sufficient quality to
allow for a strong propensity match (see, for example, theory on stratified sampling (Lohr, 2019) or
commentary on doubly robust matching (Leacy and Stuart, 2014; Antonelli et al., 2018))

Matching

Once the data have been stratified, the user can optimally match individuals within each stratum.
The strata_match function supports optimal 1:1, 1:k, or full matching (Rosenbaum, 1991; Hansen and

1Note that the specific thresholds defining the potential issue flags (e.g., 20% treated individuals or fewer) are
not universal cutoffs but guidelines meant to draw researchers’ attention to possible irregularities.
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(a) A size ratio plot
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Figure 1: (A) A size-ratio plot, with each point representing a stratum. Yellow regions: treated to
control ratio is imbalanced. Orange: strata size is large enough that matching may be computationally
time-consuming. Red: strata are small enough that match quality may be poor. In a perfectly ideal
stratification, all strata would fall within the white rectangle. In practice, some stratification issues are
common and easily addressed; see section 2.6. (B) A histogram of estimated propensity scores for a
selected stratum. In an ideal scenario, there is ample overlap between treated and control individuals
within each stratum.
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(a) An assignment-control plot across all strata
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(b) An assignment-control plot for stratum 1

Figure 2: Assignment-control plots (Aikens et al., 2020) showing estimated propensity score versus
estimated prognostic score for each subject in the analysis set (A) or a selected stratum (B). In an ideal
scenario, there is ample overlap between treated and control individuals in terms of both prognosis
and propensity (for other cases, see section 2.6). Grey lines denote the prognostic score thresholds
defining the strata.
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Klopfer, 2006), based on a propensity score or Mahalanobis distance. The sample code below performs
1:1 propensity score matching. This function makes essential use of the optmatch package (Hansen
and Klopfer, 2006; Bertsekas and Tseng, 1988) to perform the matching within strata.

mymatch <- strata_match(a.strat, model = treat ~ X1 + X2 + B1 + B2)

Fitting propensity model: treat ~ X1 + X2 + B1 + B2

The result is an optimal 1 to 1 matching within prognostic score strata. Above, mymatch is an
optmatch class object, as described by the optmatch package (Hansen and Klopfer, 2006). For the
most part, mymatch can be treated as a factor giving match assignments for each row of the data
set. The command summary(mymatch) would display the number of pairs, the number of unmatched
individuals, and the effective sample size. For suggestions regarding other matching schemes for
stratified data, see 2.5.3.

A brief comment on estimation

The procedure for performing inference after matching – in particular the estimation of the standard
error of the effect estimate for the purposes of hypothesis tests and confidence intervals – is a topic
of some debate in the literature. We will not attempt to resolve this debate here, although interested
readers may find the commentary by Stuart (Stuart, 2010) to be an accessible starting place, and note
more recent work by Abadie and Speiss (Abadie and Spiess, 2021), and numerous other authors (for
example Abadie and Imbens (2006, 2011); Austin and Small (2014); Austin and Cafri (2020)). Below,
we describe two contrasting approaches that are most familiar to epidemiology and statistics, with
references to coding resources.

First, Rosenbuam (Rosenbaum, 2005b; Rosenbaum et al., 2010) motivates the use of permutation-
based tests followed by sensitivity analyses for unobserved confounding. Both of these are imple-
mented in sensitivitymw (Rosenbaum, 2014, 2015) for pairmatching and sensitivityfull (Rosenbaum,
2017, 2007) for full matching. In keeping with a randomization inference framework, these techniques
generally consider inference conditional on the matched sample and focus on uncertainty derived
from the randomization process emulated by the matching. Researchers with further information on
the sampling process that generated the observational data may thereafter combine this approach
with a sampling variation framework to estimate parameters and standard errors for a more general
target population (see the framework outlined by Tipton (2013) for the experimental setting).

A second common approach uses covariate adjustment. This framework is motivated importantly
by Ho et al. (2007), who make the case for matching as a preprocessing step to reduce the dependence
of parametric analyses on model selection. In keeping with the regression literature from the social
sciences, these approaches often begin by supposing that the complete observational data set is an
independent and identically distributed set of observations from some larger population, perhaps
according to some parametric data-generating model. Within this framework, there is still considerable
debate regarding correct standard error estimation. A thorough practical tutorial for the covariate
adjustment approach with code examples and some suggestions for standard error estimation is
featured in the recent MatchIt vignette, “Estimating Effects after Matching” (Greifer, 2020). Note that
the pilot design implemented by stratamatch removes control individuals at random from the data set
while retaining all treated individuals. Thus, while we recommend stratamatch for the estimation of
the average treatment effect among the treated, the characteristics of stratamatch designs for estimation
of other causal estimands (e.g., average treatment effect) have not yet been well characterized.

Real-data example: Life sustaining treatments for critical care patients

As an applied example, the stratamatch package contains a re-processed version of de-identified
medical data from Chavez et al. (2018). Briefly, the authors extracted demographic information,
common laboratory test results, comorbidity information, and treatment team assignments for 10,157
ICU patients from the Stanford University Hospital who met their inclusion criteria. During their stay,
each patient’s critical care preferences are summarized with a code status. The default – Full Code
status – indicates no limitations on resuscitative measures, while other codes (e.g. ‘Do not resuscitate’,
or ‘DNR’) indicate different limitations on the intensity and type of resuscitation the patient should
receive if they become pulseless or apneic (i.e., their heart stops or they stop breathing). This code
status is a product of complex dynamics between patient and provider. When a patient’s code status
does not reflect their goals of care, patients may have life-sustaining care inappropriately withheld, or
they may receive aggressive treatment that does not effectively increase their quality or quantity of
remaining life.
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In this example, suppose a researcher wants to study whether comparable patients under the
care of surgical teams vs. non-surgical teams are more likely to have their code status set to limit
resuscitation (i.e., any form of ‘DNR’). From this, we could infer tendencies that different treatment
teams have in counseling and decision-making about life-sustaining treatments for the critically ill.
However, the patient groups seen by surgical vs. non-surgical teams are necessarily different, because
patients are assigned to treatment teams based on their reason for being in the hospital and their
treatment history. Thus, a naive comparison of DNR order frequency between care team types would
be misleading. To better account for these potential differences, we employ a stratified pilot matching
design to compare “treated” (assigned to a surgical care team) individuals with “control” (assigned to
a non-surgical care team) ones that are similar in terms of their prognostic and propensity scores.

Automatic stratification

Patients must be first stratified by a prognostic score (i.e., their estimated probability of receiving a
DNR order if they are not assigned to a surgical care team) before being matched on a propensity
score (i.e., their estimated probability of assignment to a surgical care team). In the example below,
we use auto_stratify on the ICU_data to (1) partition 10% of controls into a pilot set, (2) build a
prognostic score model on that pilot set based on age (‘Birth.preTimeDays’), sex, and race/ethnicity
(3) estimate prognostic scores on the analysis set and (4) return a stratified data set with approximately
500 individuals per stratum.

ICU_astrat <- auto_stratify(data = ICU_data, treat = "surgicalTeam",
prognosis = DNR ~ Birth.preTimeDays + Female.pre + RaceAsian.pre +
RaceUnknown.pre + RaceOther.pre + RacePacificIslander.pre +
RaceBlack.pre + RaceNativeAmerican.pre + all_latinos,

pilot_fraction = 0.1, size = 500)

Constructing a pilot set by subsampling 10% of controls.
Fitting prognostic model via logistic regression: DNR ~ Birth.preTimeDays +

Female.pre + RaceAsian.pre + RaceUnknown.pre + RaceOther.pre +
RaceBlack.pre + RacePacificIslander.pre + RaceNativeAmerican.pre +
all_latinos

Next, we print the results.

print(ICU_astrat)

auto_strata object from package stratamatch.

Function call:
auto_stratify(data = ICU_data, treat = "surgicalTeam",

prognosis = DNR ~ Birth.preTimeDays + Female.pre + RaceAsian.pre +
RaceUnknown.pre + RaceOther.pre + RaceBlack.pre +
RacePacificIslander.pre + RaceNativeAmerican.pre + all_latinos,
size = 500, pilot_fraction = 0.1)

Analysis set dimensions: 9364 X 14

Pilot set dimensions: 793 X 13

Prognostic Score Formula:
DNR ~ Birth.preTimeDays + Female.pre + RaceAsian.pre + RaceUnknown.pre +

RaceOther.pre + RaceBlack.pre + RacePacificIslander.pre +
RaceNativeAmerican.pre + all_latinos

summary(ICU_astrat)

Number of strata: 19

Min size: 492 Max size: 494

Strata with Potential Issues: 2

We see here that auto_stratify partitioned the data into a pilot set of 793 “controls” (i.e., patients
not assigned to a surgical treatment team) and an analysis set of the 9,364 remaining individuals. The
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prognostic model was fit on the pilot set according to the formula we provided, regressing DNR code
assignment on age, sex, and race. This model was used to estimate the prognostic score (probability of
DNR code assignment based on demographics) for each of the 9,364 individuals in the analysis set.
Finally, each individual in the analysis set was assigned to a stratum based on this score. 19 strata,
each containing between 492 and 494 patients, were created. This stratum assignment information
was appended to the analysis set by adding a new 14th column, stratum.

Manual stratification

Rather than using a pilot design to build a prognostic score, researchers may wish to stratify the data
set based on discrete covariates (e.g., chosen by a domain expert). The manual_stratify function
supports these study designs. For example, the code below bins the 10,157 patients in the data set
purely based on race/ethnicity and sex. In contrast, the size-ratio plots for the automatic stratification
show a much smaller range of sizes and control proportions, with fewer – and more easily addressed –
potential issues.

ICU_mstrat <- manual_stratify(data = ICU_data,
strata_formula = surgicalTeam ~ Female.pre + RaceAsian.pre +
RaceUnknown.pre + RaceOther.pre + RaceBlack.pre +
RacePacificIslander.pre + RaceNativeAmerican.pre + all_latinos)

summary(ICU_mstrat)

Number of strata: 16

Min size: 17 Max size: 3314

Strata with Potential Issues: 9

The resulting manual_strata object has many of the same properties as an auto_strata object from
auto_stratify and can be matched in the same way with strata_match. However, manual_strata
objects do not have a pilot set prognostic score information, and accordingly assignment-control and
residual plots are not supported for these inputs.

This more traditional manual approach may be preferred in some cases for its simplicity and
because it obviates the need to sacrifice observations to fit a prognostic model. However, selecting a
binning scheme that results in favorable strata may be a time-consuming iterative process, as high-
lighted by the diagnostics in the following section. These issues underscore the potential usefulness of
the prognostic score stratification implemented by auto_stratify.

Diagnostics

Size-ratio plots for the manual and automatic stratification illustrate a common issue with manual
stratification: it is often difficult to select discrete covariates that result in appropriately sized and
balanced strata (Figure 3). This also is reflected by the number of strata with potential issues in
the manual stratification issue table below. For example, stratum 1 below (white males) contains
3,314 patients, while stratum 3 (Native American males) contains only 18 patients, only one of
whom was assigned to a surgical team. In exceedingly large strata, matching becomes increasingly
computationally intensive, while in exceedingly small and/or highly imbalanced strata, finding
high-quality matches can be difficult or infeasible (see section 2.5.3).

ICU_mstrat$issue_table

# A tibble: 16 x 6
Stratum Treat Control Total Control_Proportion Potential_Issues
<int> <int> <int> <int> <dbl> <chr>

1 1 761 2553 3314 0.770 none
2 2 212 672 884 0.760 none
3 3 1 17 18 0.944 Too few samples; Small treat:con...
4 4 13 67 80 0.838 Small treat:control ratio
5 5 56 205 261 0.785 none
6 6 65 286 351 0.815 Small treat:control ratio
7 7 29 226 255 0.886 Small treat:control ratio
8 8 174 563 737 0.764 none
9 9 508 1842 2350 0.784 none
10 10 158 470 628 0.748 none
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(a) Size-ratio plot for manual stratification
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(b) Size-ratio plot for automatic stratification

Figure 3: Size-ratio plots for (A) manual stratification on sex and race/ethnicity and (B) automatic
stratifications of the same data set of ICU patients. Manual stratification often results in highly variable
size and treat:control balance between strata, as reflected by the number of strata points in the shaded
zones.

11 11 4 13 17 0.765 Too few samples
12 12 15 54 69 0.783 Too few samples
13 13 37 194 231 0.840 Small treat:control ratio
14 14 46 195 241 0.809 Small treat:control ratio
15 15 16 173 189 0.915 Small treat:control ratio
16 16 131 401 532 0.754 none

The code below displays the assignment-control plot for one of the strata in the automatically
stratified data set (Figure 4).

plot(ICU_astrat, type = "AC",
propensity = surgicalTeam ~ Female.pre + Birth.preTimeDays +
RaceAsian.pre + RaceUnknown.pre + RaceOther.pre + RaceBlack.pre +
RacePacificIslander.pre + RaceNativeAmerican.pre + all_latinos,

stratum = 2)

The striae in this assignment-control plot appear when discrete characteristics (e.g. sex and
race/ethnicity) are highly weighted in the propensity or prognostic score, causing observations to
cluster together. Since this is relatively common, ‘jitter’ arguments can be used to add small amounts
of random noise to the coordinates of each point in order to avoid stacking.

Matching

After a suitable stratification is selected, observations can be matched within strata using strata_match.
Since every stratum from the automatic stratification in this example contains at least a 1:2 ratio of
patients who were assigned to surgical teams and those who were not, we can match 2 “control” (i.e.,
non-surgical team) patients to each “treated” (i.e., surgical team) subject in each stratum. In this step,
we match individuals who, based on their baseline covariates, appear equally likely to have been
assigned to a surgical team vs. not. The following performs the matching.

ICU_match <- strata_match(ICU_astrat,
model = surgicalTeam ~ Birth.preTimeDays + Female.pre +
RaceAsian.pre + RaceUnknown.pre + RaceOther.pre + RaceBlack.pre +
RacePacificIslander.pre + RaceNativeAmerican.pre + all_latinos,

k = 2)

Fitting propensity model: surgicalTeam ~ Birth.preTimeDays + Female.pre +
RaceAsian.pre + RaceUnknown.pre + RaceOther.pre + RaceBlack.pre +
RacePacificIslander.pre + RaceNativeAmerican.pre + all_latinos

Below, we print a summary.

summary(ICU_match)
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Figure 4: Assignment-control plot for automatic stratification of ICU data. The vertical striations are
caused by heavily weighted discrete features in the propensity model, which cause points to align
together.

Structure of matched sets:
1:2 0:1
2226 2686
Effective Sample Size: 2968
(equivalent number of matched pairs).

At this point, the researcher can compare matched treated and control individuals to infer whether
patients assigned to surgical treatment teams are more or less likely to be assigned a DNR code status,
following up with sensitivity analyses (see, for example, sensitivitymw (Rosenbaum, 2014))

5 Key design choices and advanced functionality

The selection of the pilot set

The previous illustrations demonstrated the simplest method of extracting the pilot set: a random
subsampling of all controls. Prior work by Aikens et al. (2020) contains a more thorough discussion of
the considerations that might inform the selection of a pilot set.

A first consideration is the pilot set size. In general, the researcher should create a pilot set
large enough to build a reliable prognostic model and retain enough remaining controls to select
high-quality matches to the treatment group. This depends on the quality and number of available
controls and the relative difficultly of fitting a prognostic model on the measured covariates. When
high-quality controls (i.e., those resembling the treatment group) are scarce, the researcher should
consider a smaller pilot set or a different study design altogether.

Another consideration is composition. Ideally, the individuals in the pilot set should be similar
to the individuals in the treatment group, so a prognostic model built on this pilot set will not be
extrapolating heavily when estimating prognostic scores on the analysis set. This approach can be
especially important when there is some category of observations in the data that is relatively rare, and
the researcher would like to ensure that some observations in this category end up in both the pilot
and analysis sets. When discrete covariates are specified with the ‘group_by_covariates’ argument to
auto_stratify the pilot set will be split proportionally based on these covariates so that the pilot set
will be representative of the total control sample in terms of these covariates. This option can be used
directly with auto_stratify. However, the split_pilot_set function is supplied as a convenience
for users who prefer to split the pilot set themselves before stratification, as demonstrated below.

ICU_split <- split_pilot_set(ICU_data, treat = "surgicalTeam",
pilot_fraction = 0.1, group_by_covariates = c("Female.pre", "self_pay"))

Constructing a pilot set by subsampling 10% of controls.
Subsampling while balancing on:
Female.pre self_pay
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ICU_split, above, is a list containing a pilot_set and an analysis_set, partitioned while balanc-
ing sex and payment method (i.e., insurance or self-pay). Once this is done, the results can be passed
to auto_stratify such as with the code below.

ICU_astrat2 <- auto_stratify(data = ICU_split$analysis_set,
treat = "surgicalTeam",
prognosis = DNR ~ Birth.preTimeDays + Female.pre + RaceAsian.pre +

RaceUnknown.pre + RaceOther.pre + RacePacificIslander.pre +
RaceBlack.pre + RaceNativeAmerican.pre + all_latinos,

pilot_sample = ICU_split$pilot_set, size = 500)

Fitting the prognostic model

To fit the prognostic model, auto_stratify uses either linear (continuous outcome) or logistic regres-
sion (binary outcome). To accommodate a wider variety of modeling choices, auto_stratify can also
be run using a vector of analysis set prognostic scores or prognostic model object2.

The example below uses the glmnet package (Friedman et al., 2010) to fit a cross-validated lasso
on the pilot set that was extracted in the previous section.

library("glmnet")
x_pilot <- ICU_split$pilot_set %>%

dplyr::select(Birth.preTimeDays, Female.pre, RaceAsian.pre,
RaceUnknown.pre, RaceOther.pre, RaceBlack.pre,
RacePacificIslander.pre, RaceNativeAmerican.pre, all_latinos) %>%

as.matrix()
y_pilot <- ICU_split$pilot_set %>%

dplyr::select(DNR) %>%
as.matrix()

cvfit <- cv.glmnet(x_pilot, y_pilot, family = "binomial")

The prognostic scores can then be estimated on the analysis set.

x_analysis <- ICU_split$analysis_set %>%
dplyr::select(Birth.preTimeDays, Female.pre, RaceAsian.pre,
RaceUnknown.pre, RaceOther.pre, RaceBlack.pre,
RacePacificIslander.pre, RaceNativeAmerican.pre, all_latinos) %>%

as.matrix()

lasso_scores <- predict(cvfit, newx = x_analysis, s = "lambda.min",
type = "response")

Finally, these scores can be passed to auto_stratify with the ‘prognosis’ argument, producing a
stratified data set that can be examined further with stratamatch diagnostic tools.

ICU_astrat3 <- auto_stratify(data = ICU_split$analysis_set,
treat = "surgicalTeam", outcome = "DNR", prognosis = lasso_scores,
pilot_sample = ICU_split$pilot_set, size = 500)

Other examples of prognostic score modeling options can be found in the stratamatch "Advanced
Functionality" vignette.

Matching

Section 2.4 demonstrates how the stratamatch package can be used for optimal 1 : k matching on a
propensity score. The strata_match function also supports full matching (Hansen and Klopfer, 2006;
Rosenbaum, 1991), and the use of Mahalanobis distance instead of a propensity score. If desired,
a data set stratified with stratamatch can instead be matched within strata using other matching
software (e.g., optmatch (Hansen and Klopfer, 2006) or MatchIt (Ho et al., 2011)). For example, users
proficient with optmatch will note that adding + strata(stratum) to the matching formula supplied
to optmatch::pairmatch and other matching functions will match within stratum assignments in the
analysis set.

2Model objects must have a method associated with the predict generic function
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More nuanced matching schemes may also help address imbalances in the number of treated and
control units within strata. For example, the researcher could perform 1 : k matching within each
stratum, but allow k to vary between strata - matching more controls to each treated individual in strata
where controls are plentiful and performing 1 : 1 or 1 : 2 matching where controls are less abundant.
Another solution is to use a matching scheme within strata that naturally allows for variation in the
ratio of treated and control individuals in matched sets, such as full matching (Rosenbaum, 1991;
Hansen and Klopfer, 2006) or variable k matching (Pimentel et al., 2015).

As shown in figure 5, stratification is expected to substantially accelerate the matching process,
especially for large sample sizes (several thousand or more). Hansen and Klopfer articulate a worst-
case run-time for various forms of optimal matching with optmatch as O(n3 log(nM)), where M
represents the maximum matching discrepancy between treated and control observations (Hansen
and Klopfer, 2006). For context, this scales slightly less favorably than matrix inversion, which quickly
becomes time-consuming for large inputs. By comparison, matching within strata of a fixed size tends
to scale much more favorably for large n (figure 5). To further accelerate computation, a researcher
might distribute matching the stratified data set over several computing nodes.
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Figure 5: Measured computation times for stratified and unstratified matching on a modern laptop.
Unstratified matching scales in a supra-linear manner with sample size (Hansen and Klopfer, 2006),
while stratified matching with a set strata size tends to scale more favorably with n. At sample sizes of
30,000, optimally matching a whole data set may take over an hour, and much larger sample sizes
may quickly become infeasible.

6 Trouble-shooting a stratification scheme

This section summarizes some common pitfalls and workarounds while stratifying a data set. Impor-
tantly, in order to preserve the separation of the design and analysis set, individuals partitioned into
the pilot set must not be recombined with the analysis set. For instance, simply running auto_stratify
repeatedly with different seeds to sample new pilot sets from the data and fit new prognostic score
models may lead to overfitting of the prognostic model, raising concerns of bias in the study results
(see Hansen (2008); Abadie et al. (2018)).

The following issues are common:

1. Some strata are too small or too large: This problem can often be solved simply by rerunning
auto_stratify with a different ‘size’ parameter. When this is done, the researcher should be
sure to use the same pilot and analysis set as they received when they first ran auto_stratify
(i.e., do not partition a new pilot set).

2. The strata have a poor balance of treated and control individuals: This situation is relatively
common but often straightforward to address with matching schemes that match more controls
to each treated observation or allow for variable treat:control ratios. See section 2.5.3 for some
suggestions.

3. The prognostic model is poor: In some cases, the user may encounter an error fitting the
prognostic model, or they may suspect from prognostic model diagnostics that the model does a
poor job of capturing variation predictive of the outcome. There are a few reasons the prognostic
model may be problematic.
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(a) The prognostic model was mis-specified. In this case, the user should fit a revised prognostic
model on the same pilot set as was previously used. However, refitting repeatedly can
lead to overfitting, so this should be done in moderation.

(b) The pilot set was too small to get a reliable fit. In this case, the user can add more samples
from the analysis set to the existing pilot set. Samples that are moved into the pilot set
must stay in the pilot set and should not be re-pooled with the analysis set.

(c) Pilot set size is sufficient, but prognostic model perfectly separates treated individuals from control
individuals: If this occurs in either the pilot set or analysis set, it may be a sign that overlap
is poor. See below.

4. The treated and control individuals within strata have poor overlap in propensity and/or
prognostic scores: This problem is best diagnosed with assignment-control plots (see Aikens
et al. (2020) for a deeper description). Propensity and prognostic score based subclassification
methods both depend on some form of overlap in the baseline characteristics of treated and
control individuals in order to make a valid estimate of causal effect (for a summary, see Leacy
and Stuart (2014)). Treatment and control groups that are clearly separated in terms of either
their propensity scores or prognostic scores can indicate that these two groups should not be
compared because the resulting inference on treatment effect would be misleading. A researcher
facing this situation might consider trimming the score space (Glynn et al., 2019) in some cases
or seeking out another data set if the overlap problems are severe. While this may seem to be
a disappointing result, the ability to identify these data issues before proceeding is one of the
most important strengths of design-based causal inference (see, for example, Austin (2011)).

7 Summary and discussion

Stratifying a data set prior to matching may make optimal and full matching designs scale more
practically for modern observational sample sizes (Figure 5). However, the primary objective of
stratamatch is not to directly implement a computationally taxing task, but to expand access to
sophisticated study design tools for a wide range of researchers with varying levels of technical and
statistical sophistication. Indeed, the computational steps of stratification are relatively straightforward;
however, the statistical concept of the pilot design is nuanced, and the process of stratifying a data set
and interrogating the quality of that stratification can be thought-intensive and isn’t well-supported
by other resources. The stratamatch package is intended to make prognostic score stratification pilot
designs – and stratified matching designs in general – easily implementable, with helpful diagnostic
tools and documentation. The overall goal of this effort is to push researchers toward approaches and
diagnostics that emphasize stronger study design in the observational setting. In modern observational
studies, designs, such as the stratamatch approach, that are tailored to large-sample studies can offer
increased precision and other statistical benefits that might otherwise be left on the table by more
traditional approaches.
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